锐角三角函数的简单应用(1)
《锐角三角函数的简单应用》说课稿

《锐角三角函数的简单应用》说课稿一、教学内容与学情分析1.本课内容在教材、新课标中的地位和作用《锐角三角函数的简单应用》是初中数学九年级上册第一章第六节的内容。
本节课是《锐角三角函数的简单应用》的第三课时,是继前面学习了三角函数应用中的有关旋转问题和测量问题后的又一种类型的应用:即有关工程中的坡度问题。
三种类型的问题只是问题的背景不同,事实上解决问题所用的工具都相同,即直角三角形的边角关系。
因此本节课沿用前两节课的教学模式。
直角三角形是最简单、最差不多的几何图形,在生活中随处可见,是研究其他图形的基础,在解决实际问题中也有着广泛的应用.《锐角三角函数的简单应用》是解直角三角形的连续,渗透着数形结合思想、方程思想、转化思想。
因此本课不管是在本章依旧在整个初中数学教材中都具有重要的地位。
关于锐角三角函数的简单应用,《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(把握)。
2、学生已有的知识基础和学习新知的障碍通过前几节课的学习,学生差不多经历过了建立三角函数模型解决问题的过程,把握了一定的解题技巧和方法,具备了一定的分析问题、解决问题的能力。
这为本节课的学习奠定了良好的基础。
由于坡度问题涉及梯形的有关性质和解题技巧,而学生对此遗忘严峻,再次面对梯形的问题情境,会产生思维上的障碍。
另外坡度问题的运算较复杂,而学生的运算能力较弱,运算器使用不熟练,专门角的三角函数值还没记牢,这些对整个问题的解决都会起到延缓的作用。
二、目标的设定基于以上分析,将本节课教学目标设定为:1.应用三角函数解决有关坡度的问题,进一步明白得三角函数的意义。
2.经历探究实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用。
3.经历实际问题数学化的过程,在独立摸索探究解决问题方法的过程中,不断克服困难,增强应用数学的意识和解决问题的能力。
三、重、难点的确立及依据1、重点:有关坡度问题的运算。
九年级数学锐角三角形的简单应用

到0.1m)
九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
7.6锐角三角函数的简单应用第1课(沭阳县怀文中学)

初 三 数 学( 7.6锐角三角函数的简单应用第1课)教学目标:通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。
教学过程:一、自主探究1.在△ABC 中,∠C=90°,∠A=45°,则BC :AC :AB = .2.在△ABC 中,∠C=90°(1)已知∠A=30°,BC=8cm ,求AB 与AC 的长;(2)已知∠A=60°,AC=3cm ,求AB 与BC 的长.二、自主合作解:拓展1.摩天轮启动多长时间后,小明离地面的高度将首次到达10m ?2.小明将有多长时间连续保持在离地面20m 以上的空中? 三、自主展示1.如图,单摆的摆长为90cm,当它摆动到AC 的位置时,∠CAB =15°,问这时摆球C 较最低点B 升高了多少?2.已知跷跷板长4m,当跷跷板的一端碰到的地面时,另一端离地面2m,求此时跷跷板与地面的夹角?3.如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它的南偏东30°的方向,炮台B 测得敌舰C 在它的正南方,试求敌舰与两炮台的距离(结果保留根号).四、自主拓展3.4.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠;(2)根据手中剩余线的长度求出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米. 根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.11.73)5.如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角ABC ∠为30°,则引桥的水平距离BC 的长是_________米(结果保留根号) 6.A DB EC 60° 第4题图A B C 第5题图第六题图。
锐角三角函数(余弦、正切)

振动与波动
余弦函数在振动和波动的研究中有广泛 应用。例如,简谐振动的位移、速度和 加速度都可以表示为余弦函数的形式。
03
正切函数
正切函数的定义与性质
正切函数的定义
正切函数是锐角三角函数的一种,定义为直角三角形中锐角的对边与邻边的比 值,记作tan(α),其中α为锐角。
正切函数的性质
正切函数具有连续性、周期性、奇偶性等性质。在区间(0,π/2)和(π/2,π)内,正 切函数是单调递增的,而在区间(-π/2,0)和(π/2,3π/2)内,正切函数是单调递减 的。
01
余弦函数和正切函数的定义
余弦函数和正切函数是锐角三角函数的重要组成部分,它们分别描述了
直角三角形中锐角对应的邻边和斜边的比值,以及锐角对应的对边和邻
边的比值。
02
基本性质和应用
余弦函数和正切函数具有周期性、奇偶性等基本性质,这些性质在解决
几何、物理和工程问题中有着广泛的应用。例如,在计算角度、长度、
工程学中的应用
结构设计
在建筑和机械工程中,锐 角三角函数用于设计各种 结构,如桥梁、建筑和机 器部件。
控制系统
在控制工程中,锐角三角 函数用于设计和分析控制 系统,以确保系统的稳定 性和性能。
信号处理
在电子和通信工程中,锐 角三角函数用于信号处理, 如滤波、调制和解调等。
06
总结与展望
锐角三角函数的总结
正切函数的图像与周期性
正切函数的图像
正切函数的图像是一条周期函数,其周期为π,且在每一个周期 内,图像呈现出先增后减的趋势。
正切函数的周期性
由于正切函数的周期为π,因此对于任意整数k,tan(x+kπ) = tan(x),即正切函数在每个周期内具有相同的形状,但位置会随 着k的变化而变化。
锐角三角函数及应用经典例题

锐角三角函数及应用经典例题锐角三角函数是指在单位圆上,从原点出发,与 x 轴正半轴之间的夹角小于90° 的角的三角函数。
其中包括正弦函数sinα、余弦函数cosα、正切函数tanα,以及它们的倒数函数cscα、secα、cotα。
锐角三角函数在数学中有广泛的应用,尤其在几何、物理以及工程学中涉及到角度测量、距离计算等方面经常用到。
下面我们来看一些经典的例题,以加深对锐角三角函数的理解:例题1:已知在锐角 ABC 中,边长 BC = 5, AC = 13、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。
解答:由于边长BC=5,AC=13,我们可以根据勾股定理求得边长AB=√(AC^2-BC^2)=12角 A 的正弦值 sinA = BC / AC = 5 / 13,余弦值 cosA = AB / AC = 12 / 13,正切值 tanA = BC / AB = 5 / 12例题2:已知在锐角 ABC 中,角B = 35°,边长 BC = 8、求角 A 的正弦值 sinA、余弦值 cosA 和正切值 tanA。
解答:由于已知角B = 35°,边长 BC = 8,我们可以根据正弦函数的定义求得角 A 的正弦值为 sinA = BC / AC。
由于 sinA = BC / AC,我们可以得到 AC = BC / sinA = 8 /sin(180° - A - B)。
根据余弦定理,可以计算出边长AC = √(AB^2 + BC^2 - 2 * AB * BC * cosB)。
代入已知的B = 55° 和 BC = 8,我们可以求得AC = √(AB^2 +8^2 - 2 * AB * 8 * cos35°)。
我们可以进一步根据余弦函数的定义计算 AB 的值,即 cosA = AB / AC,所以 AB = AC * cosA。
1.1锐角三角函数第1课时正切(教案)

2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-正切表的使用:学会查找和利用正切表解决实际问题,这是进行进一步三角函数学习的基础。
-正切函数性质的探索:了解正切函数的周期性、奇偶性等性质,为学习其他三角函数性质打下基础。
举例:通过具体的直角三角形图形,引导学生理解正切值是如何计算的,以及如何判断正切值的正负。
2.教学难点
-正切概念的内化:学生需要将正切概念从具体的直角三角形中抽象出来,内化为一般的数学定义。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正切的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了锐角三角函数中的正切概念。我发现学生们对于正切的定义和应用有着不错的理解和接受度,但在具体的计算和应用中,还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重以下几个方面:
1.1锐角三角函数第1课时正切(教案)
一、教学内容
《人教版八年级下册数学》第十章“锐角三角函数”第1课时“正切”。本节课主要内容包括以下部分:
1.理解正切的概念:通过对直角三角形的观察,引导学生发现锐角与对边、邻边的比值关系,引出正切函数的定义。
7.6用锐角三角函数解决问题(仰角、俯角问题)

7.6 锐角三角函数的简单应用——仰角、俯角问题一、画一画 根据题意,画出仰角或俯角(1)人看气球 (2)在飞机上看地面控制中心二、实际问题问题1: “小机灵”在飞行高度为180米的飞机A 上看到上海浦东国际机场地面指挥中心B 的俯角为30°,求此时飞机A 在地面上的投影点C 离B 点的水平距离。
(结果保留根号)变式:“小机灵”在离中国馆AB 120米的C 处,用高为1米的测角仪测得中国馆的最高处A的仰角为30°,已知测角仪CD 垂直于地面,求中国馆AB 的高。
(结果保留根号)AB问题2:在南浦大桥AB 的上方有一只热气球停在P 点处,此时热气球离桥面的高度为1200米,“小机灵”在大桥的两端A 、B 分别测得热气球的仰角为27°、40°,求南浦大桥的AB 。
参考数据:sin27°≈0.5,cos27°≈0.9, tan27°≈0.5,sin40°≈0.6, cos40°≈0.8,tan40°≈0.8PB A人的眼睛 P · 0· A · 地面控制中心 B · A ·B · D C变式1:已知南浦大桥的主桥AB长900米,热气球由西向东飞行,一段时间后到达C处,此时“小机灵”在大桥两端A、B分别测得热气球的仰角为30°、45°,求此时热气球距桥面的高度。
(结果保留根号)CB A变式2:热气球继续向东飞行至D处,此时“小机灵”在大桥两端A、B分别测得热气球的仰角为40°、27°,已知主桥AB的长为900米,求此时热气球距桥面的高度。
参考数据:sin27°≈0.5,cos27°≈0.9,tan27°≈0.5,sin40°≈0.6,cos40°≈0.8,tan40°≈0.8DB A三、数学活动室思考:1、如何测量得到旗杆的高度?(图1 )2、怎样从地面测量小山的高度呢?(图2 )仪器:卷尺,高度为h的测角仪;要求:画出图形,测得的角用α、β等表示,测得的长度用a、b、c等表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 某商场门前的台阶截面如图所示.已知每级台阶的宽度 某商场门前的台阶截面如图所示. (如CD)均为 )均为30cm,高度(如BE)均为 ,高度( )均为20cm.为了方 . 便残疾人行走, 便残疾人行走,商场决定将其中一个门的门前台阶改造成 供轮椅行走的斜坡,并且设计斜坡的倾斜角为9° 供轮椅行走的斜坡,并且设计斜坡的倾斜角为 °.请计算 从斜坡起点A到台阶前的点 的水平距离. 到台阶前的点B的水平距离 从斜坡起点 到台阶前的点 的水平距离.
4. 如图是某宾馆大厅到二楼的楼梯设计图,已知 如图是某宾馆大厅到二楼的楼梯设计图, BC=6m,AB=9m,中间平台宽度 DE为2米 ,DM,EN 中间平台宽度 为 米 为平台的两根支柱, 分别垂直于AB, 为平台的两根支柱, DM,EN分别垂直于 ,垂足 分别垂直于 =30° 为M,N ∠EAB=30°, ∠CDF=45°, =30 ° 的水平距离BM的长 求DM到BC的水平距离 到 的水平距离 的长 C
3. 某学校体育看台的侧面如阴影部分所示, 某学校体育看台的侧面如阴影部分所示, 看台有4级高度相等的小台阶 已知看台高1.6m, 级高度相等的小台阶。 看台有 级高度相等的小台阶。已知看台高 , 现要做一个不锈钢的扶手AB及两根与 及两根与FG垂直且 现要做一个不锈钢的扶手 及两根与 垂直且 长为1m的不锈钢架杆 的不锈钢架杆AD和 ( 长为 的不锈钢架杆 和BC(杆子的底端分 别为D, ), ),且 别为 ,C),且∠DAB=66.5° ° 与点C的高度差 (1)求点 与点 的高度差 )求点D与点 的高度差DH; (2)求所用不锈钢材料的总长度 )求所用不锈钢材料的总长度l; 结果保留到0.1m) (即AD+AB+BC,结果保留到 结果保留到 )
无锡市羊尖中学 许新
1. 单摆的摆长 为90cm,当它摆动到 单摆的摆长AB为 当它摆动到AB ′的位 当它摆动到 的位 置时, 置时,∠BAB′=11°,问这时摆球 ′较最低点 = ° 问这时摆球B 较最低点 B升高了多少(精确到 升高了多少( 升高了多少 精确到1cm)? )
A
B′
ቤተ መጻሕፍቲ ባይዱ
C B
2. 已知跷跷板长 ,当跷跷板的一端碰到地面 已知跷跷板长4m, 另一端离地面1.5m,求此时跷跷板与地面 时,另一端离地面 , 的夹角(精确到0.1° 的夹角(精确到 °)。
E D F
A
N
M
B
为缓解“停车难”的问题, 5. 为缓解“停车难”的问题,某单位拟 建造地下停车库, 建造地下停车库,建筑设计师提供了该地下停 车库的设计示意图,按规定, 车库的设计示意图,按规定,地下停车库坡道 口上方要张贴限高标志, 口上方要张贴限高标志,以便告知停车人车辆 能否安全驶入,为标明限高, 能否安全驶入,为标明限高,请你根据该图计 CE。(精确到0.1m 。(精确到0.1m) 算CE。(精确到0.1m)
D
2. 如图所示,电工李师傅借助梯子安装天花板上距地面 如图所示, 2 .90m的顶灯 已知梯子由两个相同的矩形面组成,每 的顶灯.已知梯子由两个相同的矩形面组成 的顶灯 已知梯子由两个相同的矩形面组成, 个矩形面的长都被六条踏板七等分, 个矩形面的长都被六条踏板七等分,使用时梯脚的固 定跨度为1m.矩形面与地面所成的角α为 ° 李师傅 定跨度为 .矩形面与地面所成的角 为78°.李师傅 的身高为l.78m,当他攀升到头顶距天花板 的身高为 ,当他攀升到头顶距天花板0.05~0.20m ~ 安装起来比较方便.他现在竖直站立在梯子的第三级 时,安装起来比较方便 他现在竖直站立在梯子的第三级 踏板上,请你通过计算判断他安装是否比较方便? 踏板上,请你通过计算判断他安装是否比较方便
C D E A B
H
1. 如图,在离水面高度为 米的岸上有人用绳子 如图,在离水面高度为5米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹角为30° 此人 拉船靠岸,开始时绳子与水面的夹角为 °,此人 以每秒0.5米收绳 米收绳.问 以每秒 米收绳 问:8秒后船向岸边移动了多少 秒后船向岸边移动了多少 米?(结果精确到 米) (结果精确到0.1米