第三讲 圆综合复习

合集下载

第三章圆复习课北师大版九年级下册数学

第三章圆复习课北师大版九年级下册数学
第三章 圆
第三章 复习课
复习目标
1.会利用垂径定理及其推论进行计算和证明.
2.知道弧、弦、圆心角、圆周角之间的关系,并能应用它们
之间的关系进行推理和证明.
3.知道点与圆的位置关系、直线与圆的位置关系,并能判断
这些位置关系,知道切线的性质和判定定理及切线长定理,并
能应用其进行推理和计算.
复习目标
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的
度.
合作探究
7.如图,P为☉O直径延长线上一点,PC是☉O的切线,∠P
=30°,求证:CA=CP.
合作探究
证明:如图,连接OC.∵PC是☉O的切线,
∴∠OCP=90°,
∴∠COP=90°-∠P=60°.∵OA=OC,
∴∠A=∠OCA,


∴∠A=∠COP=×60°=30°,
∴∠P=∠A,∴CA=CP.
以及BC、AC的函数解析式等.
预习导学
探究性问题1:如图2,你能在图中找到一点E,使得弧BE的
度数是60°吗?说说你的想法.你能确定弦BE所对的圆周角的度
数吗?
预习导学
预习导学
核心梳理
1.垂径定理及其推论.
(1)垂直于弦的直径
平分这条弦 ,并且平分这条弦所对
的弧.
(2)平分弦(不是直径)的直径 垂直于弦 ,并且平分弦所
4.如图,在Rt△ABC中,∠C=90°,AC=3 cm,BC=4
cm,以点C为圆心,以2 cm长为半径作圆,则☉C与AB的位置
关系是
相离 .
合作探究
5.如图,☉O的半径为3 cm,点P到圆心的距离为6 cm,经
过点P引☉O的两条切线,这两条切线的夹角为

初三数学圆的总复习

初三数学圆的总复习
内切
两个圆有且仅有一个公共点,且该点在两个圆的内部时,称 这两个圆内切。
圆与圆的相交
相交
两个圆有两个不同的公共点时,称这两个圆相交。此时两个公共点连成的线段叫 做两圆的公共弦。
特殊相交
当两个圆的半径相等且相交于两点时,这两点连成的线段既是两圆的公共弦也是 两圆的直径。
05 圆的综合应用
圆的面积与周长计算
01
02
03
圆的面积公式
$S = pi r^{2}$,其中 $r$ 是圆的半径。这个公 式用于计算圆的面积。
圆的周长公式
$C = 2pi r$ 或 $C = pi d$,其中 $r$ 是圆的半径, $d$ 是圆的直径。这两个 公式用于计算圆的周长。
扇形面积公式
$S_{扇形} = frac{npi r^{2}}{360}$,其中 $n$ 是扇形的圆心角,$r$ 是 圆的半径。这个公式用于 计算扇形的面积。
线的性质。
圆的拓展应用问题
圆锥曲线问题
圆锥曲线包括椭圆、双曲线和抛物线。在解决这类问题时,需要掌握圆锥曲线的定义、标 准方程和性质等知识点。
极坐标与参数方程问题
极坐标是一种用距离和角度来描述平面上点的方法,参数方程则是用参数来描述曲线上点 的坐标的方法。在解决这类问题时,需要掌握极坐标与直角坐标的互化以及参数方程与普 通方程的互化等知识点。
通过一般方程,可以计算出圆心坐标$left( frac{D}{2},-frac{E}{2} right)$和半径 $r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
方程变形
通过配方等方法,可以将一般方程转化为标准方 程。
圆的图形与方程的关系
图形与方程对应
01

《圆的综合计算》专题复习

《圆的综合计算》专题复习

《圆》专题综合复习一、圆的概念集合形式的概念: 圆可以看作是到定点的距离等于定长的点的集合; 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧; 以上共4个定理,简称二推三3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

高三物理一轮复习 第3讲 圆周运动

高三物理一轮复习  第3讲  圆周运动

心力。
(×)
(6)“魔盘”的转速逐渐增大时,盘上的人便逐渐向边缘滑去,这是人受沿
半径向外的离心力作用的缘故。
(× )
(7)当“魔盘”转动到一定速度时,人会“贴”在“魔盘”竖直壁上而不会
滑下,此时的向心力是由静摩擦力提供。
(×)
提能点(一) 描述圆周运动的物理量(自练通关)
点点通
1.[皮带传动]
(多选)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小
3.[同轴传动] (2021·上海黄浦区模拟)某高中开设了糕点制作的选修课, 小明同学在体验糕点制作“裱花”环节时,他在绕中心匀 速转动的圆盘上放了一块直径 8 英寸(20 cm)的蛋糕,在 蛋糕上每隔 4 s 均匀“点”一次奶油,蛋糕一周均匀 “点”上 15 个奶油,则下列说法正确的是 A.圆盘转动的转速约为 2π r/min B.圆盘转动的角速度大小为3π0 rad/s C.蛋糕边缘的奶油线速度大小约为π3 m/s D.蛋糕边缘的奶油向心加速度约为9π0 m/s2
速圆周运动需要的向心力。
情景创设 现在有一种叫作“魔盘”的娱乐设施,如图所示。当“魔盘”转动很慢时, 人会随着“魔盘”一起转动,当盘的速度逐渐增大时,盘上的人便逐渐向边缘 滑去,离转动中心越远的人,这种滑动的趋势越明显,当“魔盘”转动到一定 速度时,人会“贴”在“魔盘”竖直壁上而不会滑下。
微点判断
(1)人随“魔盘”一起做匀速圆周运动时,其角速度是不变的。
(√ )
(2)人随“魔盘”一起做匀速圆周运动时,其合外力是不变的。
(× )
(3)人随“魔盘”一起做匀速圆周运动的向心加速度与半径成反比。
(× )
(4)随“魔盘”一起做匀速圆周运动时,人离“魔盘”中心越远,人运动得

圆的综合复习

圆的综合复习

圆的综合复习本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March精锐教育学科教师辅导讲义学员编号:年级:初三课时数:3学员姓名:范诗源辅导科目:数学学科教师:季益鸣授课类型T(同步知识主题) C (专题方法主题)T (学法与能力主题)授课日期及时段教学内容一、同步知识梳理知识点1:圆的有关概念(1)圆心和半径:圆心确定位置,半径确定大小。

等圆或同圆的半径都相等。

(2)弦:圆上任意两点之间的线段。

直径是圆中最长的弦。

(3)弧:圆上任意两点之间的部分。

完全重合的弧叫做等弧(强调度数相等且长度相等)(4)三角形的外心是三边垂直平分线的交点,它到三个顶点的距离相等。

(5)经过不在同一条直线上的三个点唯一确定一个圆。

(6)【常作辅助线1】连接圆心和圆上的点,形成半径。

知识点2:圆的有关性质(1)圆是中心对称图形,也是轴对称图形。

(2) 弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中,有一组量相等,那么它们所对的其余各组量都分别相等。

(3)垂径定理:垂直于弦的直径平分弦,也平分弦所对的优弧和劣弧。

(4) 圆周角的性质:①同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半;②直径所对的圆周角是直角,90°的圆周角所对的弦是直径。

【常作辅助线2】过圆心向弦作垂线,形成垂径定理的条件,构造直角三角形应用勾股定理进行计算。

【常作辅助线3】利用直径,构造直角。

知识点3:与圆有关的位置关系(1)点与圆的位置关系:圆的半径为r ,点到圆心的距离为d ①点在圆内r d <⇔②点在圆上内r d =⇔③点在圆外r d >⇔ (2)直线与圆的位置关系圆的半径为r ,直线到圆的距离为d①直线与圆相交点在圆内r d <⇔②直线与圆相切点在圆内r d <⇔③直线与圆相离点在圆内r d >⇔(1)圆与圆的位置关系①两圆外离r R d +>⇔②两圆外切r R d +=⇔③两圆相交r R d r R +<<-⇔④两圆内切r R d -=⇔⑤两圆内含r R d -<≤⇔0 (2)切线的性质:圆的切线垂直于过切点的半径。

九年级数学专题复习圆综合复习

九年级数学专题复习圆综合复习

总复习圆综合复习【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点进阶:圆心确定圆的位置,半径确定圆的大小. 2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦. ②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧. ⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧. ⑦同心圆:圆心相同,半径不相等的圆叫做同心圆. ⑧弓形:由弦及其所对的弧组成的图形叫做弓形. ⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角. 要点进阶:圆周角等于它所对的弧所对的圆心角的一半.圆外角度数等于它所夹弧的度数的差的一半. 圆内角度数等于它所夹弧的度数的和的一半.考点二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点进阶:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点进阶:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点进阶:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°.要点进阶:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.考点五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和. 要点进阶:(1)在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.(2)求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.考点六、四点共圆 1.四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.证明四点共圆一些基本方法:1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距.2.如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆. (若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)3.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.4.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆. 即利用相交弦、切割线、割线定理的逆定理证四点共圆.考点七、与圆有关的比例线段(补充知识)1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理【典型例题】类型一、圆的有关概念及性质例1. BC为O的弦,∠BOC=130°,△ABC为O的内接三角形,求∠A的度数.【变式】如图,∠AOB=100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB 的度数为( )A .50B .80或50C .130D .50 或130类型二、与圆有关的位置关系例2.如图,已知正方形的边长是4cm ,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)例3.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?A BO【变式】已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,2sin3ABC∠=,求BF的长.类型三、与圆有关的计算例4.如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.【变式】有一个亭子,它的地基是半径为8m的正六边形,求地基的周长和面积.(结果保留根号)类型四、与圆有关的综合应用例5.如图,AB是⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过点D作EF∥BC,交AB、AC的延长线于点E、F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【变式】已知:如图,△ABC中,∠BAC=90°,点D在BC边上,且BD=BA,过点B画AD的垂线交AC于点O,以O为圆心,AO为半径画圆.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为8,tan∠C=,求线段AB的长,sin∠ADB的值.例6.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:;(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC 三者之间有何数量关系,并给予证明.【变式】(1)如图①,M、N分别是⊙O的内接正△ABC的边AB、BC上的点且BM=CN,连接OM、ON,求∠MON的度数;(2)图②、③、…④中,M、N分别是⊙O的内接正方形ABCD、正五边ABCDE、…正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON,则图②中∠MON的度数是,图③中∠MON的度数是;…由此可猜测在n边形图中∠MON的度数是;(3)若3≤n≤8,各自有一个正多边形,则从中任取2个图形,恰好都是中心对称图形的概率是 .一、选择题1.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<22.如图,等腰梯形ABCD内接于半圆D,且AB=1,BC=2,则OA=( )A.132+B.2 C.323+D.152+3.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离 B.相切 C.相交 D.相切或相交第2题第3题第5题4.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O2的位置关系是( )A.相交或相切 B.相切或相离 C.相交或内含 D.相切或内含5.如图所示,在圆O内有折线OABC,其中OA=8,AB=2,∠A=∠B=60°,则BC的长为( )A.19 B.16 C.18 D.206.如图,MN是半径为0.5的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为( )A.22B.2 C.1 D.27.如图,分别以A,B为圆心,线段AB的长为半径的两个圆相交于C,D两点,则∠CAD的度数为_______.8.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm.小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是________度.第7题第8题第9题9.如图,AB⊥BC,AB=BC=2 cm,OA与OC关于点O中心对称,则AB、BC、CO、OA所围成的面积是________cm2.10.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点,若两圆的半径分别为3 cm和5 cm,则AB的长为________cm.11.将半径为4 cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是________cm.第10题第11题12.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=n,则S△AEF=mn;④EF是△ABC的中位线.其中正确的结论是.13.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)证明:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离;(3)若,求的值.14.如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△DEC外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.15.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.16. 如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间的数量关系,并加以证明;(3)求sin∠OPA的值.。

北师大版 九年级数学下册 第三章 圆 复习课件.ppt

北师大版 九年级数学下册 第三章 圆  复习课件.ppt

1、⊙O的半径为R,圆心到点A的距离为d,且R、d分
别是方程x-2 6x+8=0的两根,则点A与⊙O的位置关系是
(D)
A.点A在⊙O内部 B.点A在⊙O上
•O ACB
(4)
B
•O D
C
A
(5)
C
•O A EB
D (6)
1、如图,已知⊙O的半径OA长 为5,弦AB的长8,OCA⊥C=ABBC于C, 则OC的长为 ___3____.
A
O
半径 弦心距
C 半弦长 B
E
2:如图,圆O的弦AB=8 ㎝ ,
DC=2㎝,直径CE⊥AB于D,
求半径OC的长。
O
D
A
图2
4.如图:圆O中弦AB等于半径R,则这条弦所对的圆 心角是__6_0度,圆周角是___30_或1_50_度.
O A
B
5:已知ABC三点在圆O上,连接ABCO,
如果∠ AOC=140 °,求∠ B的度数. 解:在优弧AC上定一点D,连结AD、 D
CD.
∵ ∠ AOC=140 ° ∴ ∠ D=70 °
A B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
性质4: 900的圆周角所对的弦是圆的直径.
C
∵AB是⊙O的直径
A
O
B ∴ ∠ACB=900
性质5: 圆内接四边形对角互补。
1、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为60°, OD⊥BC,D为垂足,且OD=10,则AB=_____,B4C0=_____;20 3
3
AB于P,则AP= 3 。
D
圆心角:我们把顶点在圆心的角叫做圆心角.

初中九年级数学第三章圆的复习PPT课件

初中九年级数学第三章圆的复习PPT课件

五 、大于半圆的弓形面积为 S弓形=S扇形+S△ 六 、小于半圆的弓形面积为 S弓形=S扇形-
圆锥的侧面积和全面积
圆锥的底面周长就是其侧面展开图扇形的弧长, 圆锥的母线就是其侧面展开图扇形的半径。
S侧=S扇形
1 la 1 2ra ra
ha
lS全=S2 侧+2S底
r
ra r2
1、扇形的面积是它所在圆的面积的 2 ,这个扇 形的圆心角的度数是___2_40_°____°. 3
M
A
助线。
P
圆心到弦的距离、半径、弦长构成
直角三角形,便将问题转化为直角三
O
角形的问题。
圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦 的弦心距中有 一组量相等,那么它们所对应的其余各组量都分别相等。
EB A
O
圆心角定理:
AOB= COD
C
F
D
AB =CD
AB=CD
OE=OF (OE AB于E
C A.
O1
r O1
弦:连结圆上任意两点的线段 B 直径:经过圆心的弦
圆弧:圆上任意两点间的部分,有优弧 和劣弧之分
r 等圆:半径相等的两 O2 个圆。
同心圆:圆心相同,半径
.
不相等的圆。
O
一、点与圆的位置关系
1、见复习题1
r
C ●

O
●B d ●A
点与圆的 位置关系 点在圆外 点在圆上 点在圆内
二、过三点的圆及外接圆
无数 1.过一点的圆有________个 无数 2.过两点的圆有_________个,这些圆的圆心的都在_______________
上. 连结着两点的线段的垂直平分线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

远辉教育初三数学总复习学案
主讲人:穆老师电话:62379828
第三讲圆综合复习
一、圆中面积计算
例1、如图,已知点A、B、C、D均在已知圆上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD 的周长为15.(1)求此圆的半径;
(2)求图中阴影部分的面积.
例2、如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EM∥BD,
交BA的延长线于点M.
(1)求⊙O的半径;(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.
练习1、如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB =30°.(1)求∠AOC的度数;
(2))若弦BC=6cm,求图中阴影部分的面积.
2、如图1,已知在⊙O 中,点C 为劣弧AB 上的中点,连接AC 并延长至D ,使CD=CA ,连接DB 并延长DB 交⊙O 于点E ,连接AE .(1)求证:AE 是⊙O 的直径;
(2)如图2,连接EC ,⊙O 半径为5,AC 的长为4,求阴影部分的面积之和.(结果保留π与根号)
二、圆的切线证明和计算
例1、如图,在Rt △ABC 中,∠C=90°,点D 是AC 的中点,且∠A+∠CDB=90°,过点A ,D 作⊙O ,使圆心O 在AB 上,⊙O 与AB 交于点E . (1)求证:直线BD 与⊙O 相切;
(2)若AD :AE=4:5,BC=6,求⊙O 的直径.
例2、如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为弧CF 的中点,连接
BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H . (1)求证:AB 是半圆O 的切线; (
2)若3AB =,4BC =,求BE 的长.
A A
A
练习1、如图,已知直线P A 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠P AE ,过C 作CD 丄P A ,垂足为D .(1)求证:CD 为⊙O 的切线; (2)若DC +DA =6,⊙O 的直径为10,求AB 的长度.
练习2 已知:在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧AD ⌒上取一点E 使∠EBC = ∠DEC ,
延长BE 依次交AC 于G ,交⊙O 于H .(1)求证:AC ⊥BH (2)若∠ABC = 45°,⊙O 的直径等于10,BD =8,求CE 的长.
三、圆中相似与计算
例1、如图,BD 是⊙O 的直径,A 、C 是⊙O 上的两点,且AB =AC ,AD 与BC 的延长线交于点E . (1)求证:△ABD ∽△AEB ; (2)若AD =1,DE =3,求BD 的长.
例2、如图,BD 为⊙O 的直径,AB=AC ,AD 交BC 于点E ,AE=2,ED=4, (1)求证:△ABE ∽△ADB ;(2)求AB 的长;
(3)延长DB 到F ,使得BF=BO ,连接FA ,试判断直线FA 与⊙O 的位置关系,并说明理由.
练习1、如图,已知AB 是⊙O 的弦,OB=2,∠B=30°,C 是弦AB 上的任意一点 (不与点A 、B 重合),连接CO 并延长CO 交⊙O 于点D ,连接AD .
(1)弦长等于________(结果保留根号);(2)当∠D=20°时,求∠BOD 的度数;
(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、0为顶点的三角形相似?请写出解答
过程.
2、如图,点A ,B ,C ,D 在⊙O 上,AB=AC ,AD 与BC 相交于点E ,AE=21ED ,延长DB 到点F ,使FB=2
1
BD ,连接AF .
(1)证明:△BDE ∽△FDA ;
(2)试判断直线AF 与⊙O 的位置关系,并给出证明.
四、圆中切线与三角函数的计算
3
DP DO
例2、如图所示.P 是⊙O 外一点.P A 是⊙O 的切线.A 是切点.B 是⊙O 上一点.且P A =PB ,连接AO 、
BO 、AB ,并延长BO 与切线P A 相交于点Q .
(1)求证:PB 是⊙O 的切线;(2)求证: AQ ·PQ = OQ ·BQ ; (3)设∠AOQ =α.若cos α=4
5
.OQ = 15.求AB 的长
练习1、已知:如图,在△ABC 中,BC=AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为
点E .(1)求证:点D 是AB 的中点;
(2)判断DE 与⊙O 的位置关系,并证明你的结论; (3)若⊙O 的直径为18,cosB=3
1
,求DE 的长.
2、如图,⊙O 的直径AB 与弦CD (不是直径)相交于点E ,且CE =DE ,过点B 作CD 得平行线AD 延长线
于点F .(1)求证:BF 是⊙O 的切线; (2)连接BC ,若⊙O 的半径为4,3
sin 4
BCD ∠=,求CD 的长?
3、如图,△ABC 内接于⊙O ,AB 为⊙O 直径,AC=CD ,连接AD 交BC 于点M ,延长MC 到N ,使CN=CM . (1)判断直线AN 是否为⊙O 的切线,并说明理由;
(2)若AC=10,tan ∠CAD=3
4
,求AD 的长.
4、如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线;
(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =3
5
,求圆的直径.
五、圆与一次函数结合综合类计算
例1、如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.
(1)如果BE=15,CE=9,求EF的长;(2)证明:①△CDF∽△BAF;②CD=CE;
(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=3CD,请说明你的理由.
例2、如图,⊙P与y轴相切于坐标原点O(0,0),与x轴相交于点A(5,0),过点A的直线AB与y轴的正半轴交于点B,与⊙P交于点C.(1)已知AC=3,求点B的坐标;
(2)若AC=a,D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同
一圆上,记这个圆的圆心为O1,函数
k
y
x
的图象经过点O1,求k的值(用含a的代数式表示).
C
E
l
六、圆中其他综合题
2,点A为弦BC所对优弧上任意一点(B,C两点除外).1、如图,已知⊙O的半径为2,弦BC的长为3
(1)求∠BAC的度数;
(2)求△ABC面积的最大值.
2、如图,点P为等边△ABC外接圆劣弧BC上一点.
(1)求∠BPC的度数;(2)求证:P A=PB+PC;
(3)设P A,BC交于点M,若AB=4,PC=2,求CM的长度.
3、如图,等边△ABC内接于⊙O,P是 AB上任一点(点P不与点A.B重合),连AP.BP,过点C作CM∥BP 交P A的延长线于点M.
(1)填空:∠APC=度,∠BPC=度;(2)求证:△ACM≌△BCP;
(3)若P A=1,PB=2,求梯形PBCM的面积.
4、如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB =40°,∠APD =65°. (1)求∠B 的大小:(2)已知圆心O 到BD 的距离为3,求AD 的长.
5、如图,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A 、D 为⊙O 上一点,AD 与OC 相交于点E ,且∠DAB =∠C (1)求证:OC ∥BD ;
(2)若AO =5,AD =8,求线段CE 的长.
6、已知,AB 是⊙O 的直径,AB=8,点C 在⊙O 的半径OA 上运动,PC ⊥AB ,垂足为C ,PC=5,PT 为⊙O 的切线,切点为T .(1)如图(1),当C 点运动到O 点时,求PT 的长; (2)如图(2),当C 点运动到A 点时,连接PO 、BT ,求证:PO ∥BT ; (3)如图(3),设PT 2=y ,AC=x ,求y 与x 的函数关系式及y 的最小值.
7、如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 两边相
交于A 、B 和C 、D ,连结OA ,此时有OA ∥PE .(1)求证:AP =AO ; (2)若弦AB =12,求tan ∠OPB 的值;
(3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为
,能构
成等腰梯形的四个点为 或 或 .
8、如图,已知⊙O 的直径AB 与弦CD 互相垂直,垂足为点E .⊙O 的切线BF 与弦AD 的延长线相交于点F ,且AD =3,cos ∠BCD =
4
3. (1)求证:CD ∥BF ; (2)求⊙O 的半径; (3)求弦CD 的长.。

相关文档
最新文档