2020年高中数学 2.1.1 指数与指数幂的运算学案 新人教A版必修.doc
高中数学指数函数指数与指数幂的运算说课稿1新人教A版必修

2.1 指数函数在初中的学习中,学生已经掌握了整数指数幂的概念及其运算性质.本节内容在组织学生回顾平方根、立方根的基础上,类比出一个正数的n 次方根定义,进而将指数推广到分数指数,从而完成了指数由整数指数到有理数指数的一次推广,在利用多媒体演示对无理数与无理数指数幂的近似推广,完成了指数由有理数指数到实数指数的二次推广,并将幂的运算性质由整数指数幂推广到实数指数幂,使学生对指数幂的概念以及运算性质有了一个比较完整的认识,同时也为研究指数函数作好了知识上的准备.根式的概念是教学中的难点,教材中通过复习平方根、立方根的定义,然后类比出n 次方根的定义.为了更好地分解这一难点,教学中应放慢速度,多举几个具体的例子,帮助学生理解,并在此基础上类比出n 次方根的一般定义与性质.方根的性质实际上是平方根、立方根性质的推广,教学时,可以以平方根、立方根、四次方根为基础来加以说明,加深对这一性质的理解.分数指数是指数概念的又一次推广,分数指数概念是教学中的又一个难点.教学中应多举实例让学生理解分数指数幂的意义,明确分数指数幂表示的是根式的一种新的写法,并通过根式和分数指数幂的互化来巩固、加深对这一概念的理解.由于学过负整数次幂,正分数次幂引入后,学生不难理解负分数次幂的意义,因此,教学中可以放手让学生自己得出.在掌握了有理数指数幂的基础上,利用多媒体演示对无理数与无理数指数幂的近似推广,从而直观形象地给出了有理数指数幂的运算性质也可以推广到无理数.有了把指数范围扩充到实数范围内的知识上的准备,又有前面所学的对函数概念和性质的系统学习,顺理成章地引出了指数函数概念、怎样作出指数函数图象、怎样研究指数函数的性质以及与其他函数结合的研究.教材是通过死亡后生物体内碳14含量与死亡年数的关系这样一个实际问题引入指数函数的,既说明指数函数的概念来自实践,认识到指数函数对实际生活的意义,也便于学生接受.但在教学中,学生往往容易忽略定义域,因此,在进行指数函数定义的教学时,既要明确其定义域,又要让学生去探索成立的条件,明确底数a 是一个大于零且不等于1的常数,这样既培养了学生掌握概念的能力,又锻炼了学生分析问题和处理问题的能力.在理解指数函数的定义的基础上掌握指数函数的图象和性质,是本节教学的重点,而理解底数a 的值对于函数值变化的影响(即对指数函数单调性的影响)是教学的一个难点.教学时为了帮助学生理解,可以充分利用图象.教学时可以先要学生在同一坐标系内画出函数y =2x 和y =(21)x 的图象,通过两个具体的例子,引导学生共同分析、归纳总结指数函数的性质.有条件的学校也可以利用《几何画板》等数学软件,定义变量a 作出函数y =a x 的图象,进而改变a 的值,使学生在动态变化的过程中理解指数函数的性质,认识规定底数a 是一个大于零且不等于1的常数的原因.2.1.1 指数与指数幂的运算(1)从容说课指数是学习指数函数的预备知识,初中学生已经学习了整数指数幂的概念及运算性质.为了讲解指数函数,需要把指数的概念扩充到有理数指数幂、实数指数幂;为了完成这个扩充,必须先学习分数指数幂的概念和运算性质,以及无理数指数幂的概念;为了学习分数指数幂的概念.首先要介绍根式的概念,本课主要学习根式的概念以及n次方根的性质.学生已经学习了数的平方根、立方根,根式的内容是这些内容的推广.因此,在引入根式的概念时要结合这些已学内容,列举多个具体例子以便学生理解.根式n a的讲解要分n是奇数和偶数两种情况来进行,每种情况中,都要分a>0,a=0,a<0三种情况介绍,并结合具体例子讲解,其中要强调n a(a>0,n是偶数)表示一个正数,抓住这一点,理解n次方根的性质就容易了.当n是偶数时,n n a=|a|(因为n n a总是一个非负数),这是本课的一个难点,讲解时可先复习2a=|a|这一性质,并结合具体例子加以讲解,有助于学生理解n n a=|a|这一性质.三维目标一、知识与技能理解根式的概念,掌握n次方根的性质.二、过程与方法1.通过师生之间、学生与学生之间互相交流,使学生逐步学会共同学习.2.引导学生认真体会数学知识发展的逻辑合理性、严谨性,做一个具备严谨科学态度的人.3.通过探究、思考,培养学生思维迁移能力和主动参与的能力.三、情感态度与价值观1.新知识的发现是因为面临的问题以原有的知识得不到解决所引发出来的思考,通过学习根式的概念,使学生认清基本概念的来龙去脉,加深对人类认识事物的一般规律的理解和认识,体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.2.在教学过程中,通过学生的自主探索,来加深理解n次方根的性质,具有探索能力是学习数学、理解数学、解决数学问题的重要方面.教学重点1.根式的概念.2.n次方根的性质.教学难点1.根式概念的理解.2.n次方根性质的理解.教具准备多媒体课件、投影仪、打印好的作业.教学过程一、创设情景,引入新课师:你们知道考古学家是怎样来判断生物的发展与进化的吗?生:对生物体化石的研究.师:那么他们是怎样来判断该生物体所处的年代的?你们知道吗?(众生摇头)师:考古学家是按照这样一个规律来推测的.问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少? 生:21,(21)2,(21)3,…. 师:当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少? 生:(21)57306000,(21)573010000,(21)5730100000.师:由以上的实例来推断关系式应该是什么?生:P =(21)5830t . 师:考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数(21)57306000,(21)573010000,(21)5730100000的意义究竟是什么呢?它和我们初中所学的指数有什么区别?生:这里的指数是分数的形式.师:指数可以取分数吗?除了分数还可以取其他的数吗?我们对于数的认识规律是怎样的?生:自然数——整数——分数(有理数)——实数.师:指数能否取分数(有理数)、无理数呢?如果能,那么在脱离开上面这个具体问题以后,关系式P =(21)5830t就会成为我们后面将要相继研究的一类基本初等函数——“指数函数”的一个具体模型.为了能水到渠成地研究指数函数,我们有必要认识一下指数概念的扩充和完善过程,这就是我们下面三节课将要研究的内容:分数指数幂(有理数指数幂)、无理数指数幂.(引入课题,书写课题——指数与指数幂的运算)二、讲解新课(一)探求n 次方根的概念师:32=9,那么,在这个等式中3对于9来说,扮演着什么角色?9对于3来说又扮演着什么角色呢?生:9叫做3的平方数,3叫做9的平方根.师:若53=125,那么125对于5来说,扮演着什么角色?5对于125来说又扮演着什么角色呢?生:125是5的立方数,5是125的立方根.师:如果x 2=a ,那么x 对于a 来说扮演着什么角色?生:x 是a 的平方根.师:能否用一句话描述你的结论?生:如果一个数的平方等于a,那么这个数叫做a的平方根. 师:如果x3=a,那么x对于a来说又扮演着什么角色?生:x是a的立方根.师:能换一种说法表述你的结论吗?生:如果一个数的立方等于a,那么这个数叫做a的立方根.师:如果x4=a,x5=a,又有什么样的结论呢?生:如果一个数的四次方等于a,那么这个数叫做a的四次方根;如果一个数的五次方等于a,那么这个数叫做a的五次方根.师:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?生:一般地,如果x n=a,那么x叫做a的n次方根.师:上述结论中的n的取值有没有什么限制呢?(生探索,完善n次方根的定义,并强调n的取值范围,师板书如下定义)一般地,如果x n=a,那么x叫做a的n次方根(n—th root),其中n>1,且n∈N*.(二)概念理解课堂训练:试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,生完成)(1)25的平方根是________;(2)27的三次方根是________;(3)-32的五次方根是________;(4)16的四次方根是________;(5)a6的三次方根是________;(6)0的七次方根是________.(师组织学生紧扣n次方根的定义,完成以上各题)方法引导:在n次方根的概念中,关键的是数a的n次方根x满足x n=a,因此求一个数a的n次方根,就是求出哪个数的n次方等于a.(三)n次方根的性质合作探究:观察并分析以上各数的方根,你能发现什么?(学生交流,师及时捕捉与如下结论有关的信息,并简单板书)1.以上各数的对应方根都是有理数;2.第(1)、第(4)的答案有两个,第(2)、第(3)、第(5)、第(6)的答案只有一个;3.第(1)题的答案中的两个值互为相反数.师:请仔细分析以上各题,你能否得到一个一般性的结论?(提供一个比较发散的问题,给学生提供广阔的思维空间,培养学生理性思维能力和数学的分析问题、解决问题的能力)生甲:一个数的奇次方根只有一个.生乙:一个数的偶次方根有两个,且互为相反数.师:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?生:因为任何一个数的偶次方都是非负数,所以负数没有偶次方根,0的n次实数方根等于0.师:你能否把你所得到的结论再叙述的具体一些呢?(组织学生交流,得出以下结论)n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a 的n 次方根用符号n a 表示.(2)当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并写成±n a (a >0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的.(四)根式的概念 式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 例如56叫做根式,其中5叫做根指数,6叫做被开方数.(五)n 次方根的运算性质求下列各式的值:(1)(5)2;(2)33)2(-;(3)44)2(-;(4)2)3(a -(a >3).(生板演,师组织学生评析)解:(1)(5)2=5;(2)33)2(-=-2;(3)44)2(-=|-2|=2;(4)2)3(a -= |3-a |=a -3.师:上面的例题中涉及了哪几类问题? 生:主要涉及了(n a )n 与n n a 的问题.合作探究:(1)(n a )n 的含义是什么?其化简结果是什么呢?(2)n n a 的含义是什么?其化简结果是什么呢?(组织学生结合例题及其解答,进行分析讨论、归纳出以下结论)(1)(n a )n =a .例如,(327)3=27,(532-)5=-32.(2)当n 是奇数时,n n a =a ;当n 是偶数时,n n a =|a |=⎩⎨⎧<-≥.0,,0,a a a a 例如,33)2(-=-2,552=2;443=3,2)3(-=|-3|=3. (六)例题讲解(生板演,师组织学生进行课堂评价)【例1】 求下列各式的值:(1)(38-)3;(2)2)10(-;(3)44)π3(-;(4)2)(b a -(a >b ).解:(1)(38-)3=-8;(2)2)10(-=10;(3)44)π3(-=π-3;(4)2)(b a -=|a -b |=a -b .【例2】 化简下列各式:(1)681;(2)62)2(-;(3)1532-;(4)48x ;(5)642b a .解:(1)681=643=323=39;(2)62)2(-=622=32;(3)1532-=-1552=-32;(4)48x =442)(x =x 2;(5)642b a =622)|(|b a ⋅=32||b a ⋅.三、课堂练习1.若x ∈R ,y ∈R ,下列各式中正确的是A.44)(y x +=x +yB.33x -44y =x -yC.2)3(+x +2)3(-x =2xD.3-x +x -3=02.12--x x =12--x x 成立的条件是 A.12--x x ≥0 B.x ≠1 C.x <1 D.x ≥23.在①42)4(n -;②412)4(+-n ;③54a ;④45a (各式中n ∈N ,a ∈R )中,有意义的是A.①②B.①③C.①②③④D.①③④4.当8<x <10时,2)8(-x -2)10(-x =________.参考答案:1.D2.D3.B4.2x -18四、课堂小结师:请同学们互相交流一下你在本课学习中的收获.(生互相交流,而后由师多媒体显示如下内容)1.若x n =a (n >1,n ∈N *),则x 叫做a 的n 次方根.当n 是奇数时,实数a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的n 次方根用符号±n a 表示,负数的偶次方根无意义.式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数.2.在实数范围内,正数的奇次方根是一个正数;负数的奇次方根是一个负数.正数的偶次方根是两个绝对值相等符号相反的数;负数的偶次方根没有意义;0的任何次方根都是0.3.(1)(n a )n =a .(2)当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a |=⎩⎨⎧<-≥.0,,0,a a a a 五、布置作业(一)复习课本第57~58页内容,熟悉巩固有关概念和性质;(二)书面作业:课本P 69习题2.1A 组第1题. 板书设计2.1.1 指数与指数幂的运算(1)一、基本概念和性质1.n 次方根的定义2.n 次方根的性质3.根式的定义4.n 次方根的运算性质二、例题解析即学生训练板演例1.求下列各式的值例2.化简下列各式目标检测评析布置作业。
2019-2020年高中数学指数与指数幂的运算教学案新人教A版必修1

2019-2020年高中数学指数与指数幂的运算教学案新人教A版必修1
学习目标:
1、了解指数函数模型的实际背景;
2、理解根式的意义、表示法,能对根式进行化简;
3、理解分数指数幂的意义、掌握根式与分数指数幂的互化。
学习重点:
1、根式的意义的扩展、分数指数幂的意义;
2、根式与分数指数幂的互化。
3、
学习难点:
根式与分数指数幂的互化。
教学过程:
一、自学导引
1、我们知道:是正整数指数幂,它们的值分别为
那么,的意义是什么呢?
2、阅读教材P49~P51
二、理解与检测
1、一般地,若,那么叫做,其中>1,;
2、式子叫做根式,这里叫做,叫做;
3、规定: ,
= ,
4、求下列各式的值
⑴= ;⑵= ;⑶= ;
⑷= ;⑸= ;⑹= ;
5、求下列各式的值:
⑴= ; ⑵= ; ⑶= ;
6、疑惑摘
三、探究与思考、讨论
1、根式有意义的条件是什么?
2、是否相同?
四、训练与提高
1、()()3
334212122⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+-+----的值是( ) A 、 B 、8 C 、-24 D 、-8
2、化简: ;
3、计算:= ;
4、已知,求下列各式的值;
(1)(2) (3)
五、课堂点评与小结
六、作业:P59,习题2.1/1
.。
高中数学 2.1.1.1指数与指数幂的运算(1)导学案 新人教A版必修1

四川省古蔺县中学高中数学必修一 2.1.1.1指数与指数幂的运算(1)导学案一、教学目标1.理解n 次方根与根式的概念;理解分数指数幂的概念2.正确运用根式运算性质化简、求值;掌握分数指数幂和根式之间的互化;分数指数幂的运算性质。
3.分类讨论思想,观察分析、抽象概括等的能力。
二、重难点1. 根式概念的理解与分数指数幂的理解;2. 运用根式与分数指数幂的运算性质。
三、课时学法指导(学习方法)从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n 次方根的概念,有理指数幂的运算性质。
四、预习案(任务布置+自评、互评+反馈与评价)完成任务情况自评: 学科组长评价: .1.任务布置:(1)阅读教材P47—51完成大聚焦课堂P23—24内容;(2)思考:①什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?你能由具体的例子推导a 的n 次方根吗?②类比平方根、立方根的概念,归纳出n 次方根的概念。
③类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?(3)回顾初中时的整数指数幂及运算性质是:(4)观察教材P50分数指数幂下具体式子,并总结分数指数幂规律:2.存在问题:五、探究案(教学流程与探究问题)探究1:根式的概念问题1:根据下面的具体例子概括n 次方根的概念?如果x 2=a ,那么x 叫做a 的平方根,例如±2是4的平方根;如果x 3=a ,那么x 叫做a 的立方根,例如2是8的立方根;16)2(4=±,±2是16的4次方根;25=32,2叫做32的5次方根;…… a n =2,……?问题2:若x 2=a ,那么x 如何用a 表示呢?有关概念是?(P49)(1)教材P50探究如何回答?(2)结论:n 为奇数时,nn a = ;n 为偶数时,n n a = = (3)训练与反馈:教材P50—例1;探究2:分数指数幂的概念问题3:观察①②③例子,结果的指数与被开方数的指数、根指数有什么关系?1025a a===)0(>a;842a a===)0(>a;1234a a===)0(>a;1025a a===)0(>a23(0)a a==>;12(0)b b==>;54(0)c c==>③34343451515==-;结论:问题4:问题3的结论中,若没有“0>a”这个条件行不行?原因是探究3:课堂检测:1.p51——例2;2. p54——练习1、2六、训练案1. 教材P59——习题2.1A组——1、2题2. 大聚焦课堂P23—24内容3. 小聚焦课堂P12内容七、反思与小结1.2.3.古蔺中学高 2013 级 数学 导学案模块 必修1 课题2.1.1指数与指数幂的运算(第2课时)课型: 检查时间: 月 日 学科组长评价: 教师评价: 一、教学目标 1. 掌握分数指数幂和根式之间的互化; 2. 理解有理指数幂的含义及其运算性质,并能进行化简,求值;理解无理数指数幂的概念; 3. 培养学生严谨的思维和科学正确的计算能力。
2019-2020学年高中数学 2.1.1 指数与指数幂的运算(1)学案新人教A版必修1.doc

2019-2020学年高中数学 2.1.1 指数与指数幂的运算(1)学案新人教A 版必修1 学习目标1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.学习过程一、课前准备(预习教材) 复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a ,那么这个数叫做a 的 ,记作 ; 如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 .小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察: 2(2)4±=,那么2±就叫4的 ;3327=,那么3就叫27的 ;4(3)81±=,那么3±就叫做81的 . 依此类推,若n x a =,,那么x 叫做a 的 .新知:一般地,若n x a =,那么x 叫做a 的n 次方根,其中1n >,n *∈N .简记:n a . 例如:328=,则382=.反思:当n 为奇数时, n 次方根情况如何?例如:3273=,3273-=-, 记:n x a =.当n 为偶数时,正数的n 次方根情况?例如:81的4次方根就是 ,记:n a ±.强调:负数没有偶次方根;0的任何次方根都是0,即00n =.试试:4b a =,则a 的4次方根为 ;3b a =,则a 的3次方根为 .新知:像n a 的式子就叫做根式,这里n 叫做根指数,a 叫做被开方数.试试:计算22(3)、334、(2)n n -.反思: 从特殊到一般,()n n a 、n n a 的意义及结果? 结论:()n n a a =. 当n 是奇数时,n n a a =;当n 是偶数时,(0)||(0)n n a a a a a a ≥⎧==⎨-<⎩.※ 典型例题例1求下类各式的值:(1) 33()a -; (2) 44(7)-;(3)66(3)π-; (4) 22()a b -(a b <).变式:计算或化简下列各式.(1)532-; (2)36a .推广:npn mp m a a = (a ≥0).※ 动手试试练1. 化简526743642++---.练2. 化简6323 1.512⨯⨯.三、总结提升※ 学习小结1. n 次方根,根式的概念;2. 根式运算性质.※ 知识拓展1. 整数指数幂满足不等性质:若0a >,则0n a >.2. 正整数指数幂满足不等性质:① 若1a >,则1n a >;② 若01a <<,则01n a <<. 其中n ∈N *.学习评价※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 44(3)-的值是( ).A. 3B. -3C. ±3D. 812. 计算34a a -⨯和3(8)a +-,它们之间有什么关系? 你能得到什么结论?3. 对比()n n n ab a b =与()nn n a a b b=,你能把后者归入前者吗?。
高中数学 2.1.1 指数与指数幂的运算导学案 新人教A版必修1

2.1.1指数与指数幂的运算课前预习· 预习案【自主学习】1.次方根定义表示两个结论2.根式的概念及性质(1)概念:式子叫做根式,其中①根指数为:;②被开方数为: .(2)性质:① (且);②3.分数指数幂的概念分数指数幂4.无理数指数幂(1)无理数指数幂,是无理数)是一个确定的 .(2)有理数指数幂的运算性质同样适用于无理数指数幂.5.有理数指数幂的运算性质(1) (,,).(2) (,,).(3) (,,). 【预习评价】1.9的平方根为A.±3B.±9C.3D.92.是实数,则下列式子中可能没有意义的是A. B. C. D.3.化为分数指数幂为A. B. C. D.4.已知,则 .5.计算: .6.计算: .知识拓展· 探究案【合作探究】1.次方根的定义定义中的取值范围是 .2.次方根的定义当为奇数时,在“且)”中,的实数值有几个?3.次方根的定义当为偶数时,在“且,)”中,的实数值有几个?4.根式的性质求值与化简中常用到与,那么它们的含义是什么?5.根式的性质成立吗?呢?6.根式的性质成立的条件是什么?7.根式与分数指数幂的互化根据公式,,且)观察互化公式,指出根式的根指数与被开方数分别对应分数指数幂的什么位置?8.根式与分数指数幂的互化根据公式,,且)请你根据所学知识思考上述互化公式是否适用于或?9.根式与分数指数幂的互化根据公式,,且)任何根式都能化成分数指数幂的形式吗?10.有理数指数幂的运算性质有理数指数幂的运算性质是否适用于或?11.有理数指数幂的运算性质公式,,)成立吗?请用有理数指数幂的运算性质加以证明,并说明是否要限制?【教师点拨】1.对与的两点说明(1)已暗含有意义,根据是奇数还是偶数可知的取值范围.(2)中的可以是全体实数,的值取决于是奇数还是偶数.2.对次方根的两点说明(l)次方根的存在:任何实数都存在奇次方根;负数没有偶次方根,非负数才存在偶次方根.(2)次方根的个数:任何实数的奇次方根只有一个;正数的偶次方根有两个,且互为相反数;零的次方根只有一个零.3.对有理数指数幂运算性质的两点说明(1)用分数指数幂进行根式运算,顺序是先把根式化为分数指数幂,再根据幂的运算性质计算.(2)结果不能同时含有根号和分数指数,也不能既含有分母又含有负指数.4.对分数指数幂与根式互化的两点说明(1)分数指数幂是指数概念的推广,分数指数幂不可理解为个相乘,它是根式的一种新写法.(2)根式与分数指数幂本质上是具有相同意义的量,只是形式上不同而已,这种写法更便于指数运算.【交流展示】1.已知,则的四次方根可表示为 .2.-2013的五次方根是 .3.若,则化简的结果是 .4.化简:.5.设,将表示成分数指数幂,其结果是 .6.下列是根式的化成分数指数幂,是分数指数幂的化成根式的形式:(1). (2).7.化简的结果是A. B. C. D.8.化简: . 【学习小结】1.求解次方根的注意事项(l)当为大于1的奇数时,对任意有意义,它表示在实数范围内唯一的一个次方根.(2)当为大于1的偶数时,只有当时有意义,当时无意义,表示在实数范围内的一个次方根,另一个是.2.根式化简的依据及应遵循的三个原则(1)化简依据:①且);②(2)遵循原则:①被开方数中不能含有能开得尽方的因数或因式.②被开方数是带分数的要化成假分数.③被开方数中不能含有分母;使用化简时,被开方数如果不是乘积形式必须先化成乘积的形式.3.有条件根式化简的两个关注点(1)条件的运用:充分利用已知条件,确定所要化简的代数式中根式的根指数是奇数还是偶数,确定被开方数是正数还是负数.(2)讨论的标准:如果根式的被开方数不确定时,可依据题设条件对被开方数取正值、负值、零进行分类讨论,得出结论.4.根式与分数指数幂互化的关键与技巧(1)关键:解决根式与分数指数幂的相互转化问题的关键在于灵活应用公式,,,).(2)技巧:当表达武中的根号较多时,由里向外用分数指数幂的形式写出来,然后再利用相关的运算性质进行化简,提醒:对含有多个根式的化简,要注意每一步的等价性,特别要注意字母的取值范围.5.利用分数指数幂的运算性质化简、求值的方法技巧(1)有括号先算括号里的.(2)无括号先做指数运算.(3)负指数幂化为正指数幂的倒数.(4)底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.【当堂检测】1.设,,,则,,的大小关系是A. B. C. D.2.若,则是 .3.计算下列各式:(1) .(2).(3) .4.下列是根式的化成分数指数幂,是分数指数幂的化成根式的形式(式中字母都是正数):(1).(2).(3).(4).5.已知,求的值.答案课前预习· 预习案【自主学习】1.x(1)R(2)a≥0(1)负数(2)02.(1)①n②a(2)①a②a|a|3.(2)①②(3)①0 ②负4.(1)实数5.(1)a r+s(2)a rs(3)a r b r【预习评价】1.A2.C3.A4.5.6.-1知识拓展· 探究案【合作探究】1.定义中的n必须是大于1的正整数,即n>1且n∈N*.答案n>1且n∈N*2.因为一个正数的奇次方是正数,一个负数的奇次方是负数,且不同实数的奇次方不同,所以当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,故x的实数值只有一个.3.因为两个相反数的偶次方相等,所以当n为偶数时,正数的n次方根有两个,故x的实数值有两个.4.(1)表示实数的n次方根,是一个恒有意义的式子,不受n是奇数还是偶数的限制,a∈R.(2)表示实数a的n次方根的n次幂,其中a的取值范围由n是奇数还是偶数来定. 5.不一定成立,如,而成立.6.等式成立的条件是n为奇数,或n为偶数且a≥0.7.根式的根指数与被开方数指数分别对应分数指数幂的分母与分子.8.均不适用,原因如下:(1)若a=0,0的正分数指数幂恒等于0,即无研究的价值.(2)若a<0,不一定成立.如=意义,故为了避免上述情况规定了a>0.9.引入分数指数幂之后,任何有意义的根式都能化成分数指数幂,即(a>0,m,n∈N*且n>1).10.(1)若a=0,因为0的负数指数幂无意义,所以a≠0.(2)若a<0,(a r)s=a rs,也不一定成立,如,所以a<0不成立.因此不适用于a=0或a<0的情况.11.成立,且不需要限制m>n.证明如下:.【交流展示】1.2.3.1-2a4.=2+.5.6.(1). (2).7.C8.x z-2【当堂检测】1.D2.3.(1)-3 (2)π-3 (3)2.4 4.(1).(2).(3).(4)5.因为,所以。
高中数学2.1.1指数与指数幂的运算教案新人教A版必修1

数,负数没有 n 次方根。此时正数 a 的 n 次方根可表示为: n a (a 0)
其中 n a 表示 a 的正的 n 次方根, n a 表示 a 的负的 n 次方根。
例 3.根据 n 次方根的概念,分别求出 0 的 3 次方根, 0 的 4 次方根。 解:因为不论 n 为奇数,还是偶数,都有 0n=0,所以 0 的 3 次方根, 0 的 4 次方根均为 0。
当 n 为奇数时,由 n 次方根定义得: a n a n
当 n 为偶数时,由 n 次方根定义得: a n an
则 |a | | n an | n an
综上所述: (n a) n
a, n为奇数 | a |, n为偶数
注意:性质②有一定变化,大家应重点掌握。 (III )例题讲解 例 1.求下列各式的值:
am an
am
n
;又因为
( a )n 可看作 a m a n ,所以
b
(a)n b
an bn
可以 归入性质
( ab) n
an bn (n ∈ Z) ) , 这是为下面学习分数指数幂的概念和性
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
高中数学 2.1.1 指数与指数幂的运算教案 新人教 A 版必修 1
质做准备。为了学习分数指数幂,先要学习
n 次根式( n N * )的概念。
(2)填空( 3),( 4)复习了平方根、立方根这两个概念。如:
22=4 ,( -2 )2=4
2
, -2 叫 4 的平方根
23=8
2 叫 8 的立方根;
(-2 ) 3=-8 -2 叫-8 的立方根
25=32
2 叫 32 的 5 次方根
高中数学2.1.1指数与指数幂的运算(1)学案新人教A版必修1

2.1.1 (1)指数与指数幕的运算(学生学案)内容:根式1、问题引入:(1)若x2a,则x叫a的__ 如:2是4的平方根一个正数的平方根有 _个,它们互为____________ 数;负数没有平方根;零的平方根是(2 )若X3a,则x叫a的__ 如:2是8的立方根,一2是一8的立方根。
一个正数的立方根是一个 _数,一个负数的立方根是一个 _数,0的立方根是 _(3)类比平方根、立方根的定义,你认为,一个数的四次方等于a,则这个数叫a的__________ ;一个数的五次方等于a,则这个数叫a的;一个数的六次方等于a,则这个数叫a的________________ ;……;一个数的n次方等于a , 则这个数叫a的_______ ;一般地,如果X a,则X叫a的n次方根,其中n 1且n N.问:(1) 16的四次方根是.32 的五次方根是—32的五次方根是(2)一个正数的n次方根有几个?一个负数的n次方根有几个?0的n次方根是多少?(给学生留点时间进行探究)得出结论:(1) 一个正数的偶次方根有两个,这两个数互为相反数;负数没有偶次方根。
(2) —个正数的奇次方根是一个正数,一个负数的奇次方根是一个负数。
(3) 0的任何次方根都是0。
n为奇数,a的n次方根有一个为2 a n为偶即a为正数:数,a的n次方根有两个为n'aa为负数:n为奇数,a的n次方根只有一个为v a n为偶数,a的n次方根不存在零的n次方根为零,记为n0 0注意:正数a的正的n次方根n a叫做a的n次算术根指出:式子n a叫做根式,这里n叫根指数,a叫被开方数。
探究1: (1) (亦)2=—;尺审)3= ____________ ;&16)4=—_(2)从(1)你有何发现?(3)(° a)" = a —定成立吗?为什么?得出结论:(n a)n= a探究2: ( 1) 3 33 = _____ ;3 ( 2)3 = ____ ;525 = _____ ;5 ( 3)5=.(2) 由(1)你发现了什么结论?(3) _______________________________________________________ 22=—;.32=—;424=—;4 34 = .2)2=—;、(—3)2= —;4(一2)4= —;4(一3)4= -------------------(4) 由(3)你发现了什么结论?由此得出:当n 是奇数时,n a n = a(5) (旷32)5 , (6)变式训练3:若. a 2 2a 1 a 1,求a 的取值范围。
新人教A版必修1高中数学2.1.1指数与指数幂的运算导学案

高中数学 2.1.1指数与指数幂的运算导学案 新人教A 版必修1学习目标:理解根式、分数指数幂、无理数指数幂、实数指数幂的定义 学习重点:会应用运算性质进行根式、指数幂的运算计算学习过程:一、 根式1、观察发现:422=中2叫做4的平方根,记作___; 4)2(2=-中2-叫做4的平方根,记作____823=中2叫做8的立方根,记作___;8)2(3-=-中2-叫做8-的立方根,记作___16)2(4=±中2±叫做16的4次方根,记作_________32)2(5-=-中2-叫做______________,记作_______64)2(6=±中2±叫做________________,记作________2、归纳总结:若a x n =,则x 叫做a 的_______ (其中*∈>N n n ,1)当n 是正奇数时,若0>a ,则x>0,x=________,若0<a ,则x____,x=_____当n 是正偶数时,若0>a ,则x=___________,若0<a ,则x_____________ 其中式子n a 叫做_______,这里n (*∈>N n n ,1)叫做_________,a 叫做_______注:______0=n ()=nn a ___________ n 是正奇数时,=n n a __________;n 是正偶数时,=n n a __________3、练习体验: _______)8(33=- ______)10(2=- 44)3(π-=________ _______)(66=-y x (x>y )_____)4(2=-π _____)(2=-b a二、 分数指数幂1、 观察与归纳:(1)_______________224===;_______________248===_______________510===a ______________412===a()0____32>=a a ;()0_____>=b b ;()0_____45>=c c 正数的正分数指数幂)10______(>∈>=*,n N ,m、n a a m n(2)______21=- )0_______(1≠=-x x______534—= _____32—=a正数的负分数指数幂)10______(—>∈>=*,n N ,m、n a a m n(3)0的正分数指数幂等于0;0的负分数指数幂没有意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高中数学 2.1.1 指数与指数幂的运算学案 新人教A 版必修
一、【学习目标】
1. 理解分数指数幂的概念;
2. 掌握根式与分数指数幂的互化;
3. 掌握有理数指数幂的运算;
4. 掌握无理数指数幂的运算.
二、【自学内容和要求及自学过程】
复习1:一般地,若n x a =,则x 叫做a 的 ,其中1n >,n *∈N . 简记为: .
的式子就叫做 ,具有如下运算性质:
n = ;= ;= .
复习2:整数指数幂的运算性质.
(1)n m n m a a a +=⋅;(2)mn n m a a =)(;(3)n n n b a ab =)(.
※ 学习探究:分数指数幂
引例:a >0时,
1025a a ==,则类似可得 ;
2
3a = .
新知:规定分数指数幂如下:
*(0,,,1)m n a a m n N n >∈>;
*1
(0,,,1)m
n
m
n a a m n N n a -==>∈>.
试试:
(1)将下列根式写成分数指数幂形式:
= ;= ;= (0,)a m N *>∈.
(2)求值:2
38= ; 255= ; 4
36-= ; 5
2a -= .
反思:
① 0的正分数指数幂为 ;0的负分数指数幂为 .
② 分数指数幂有什么运算性质?
规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数
指数幂的运算性质也同样可以推广到有理数指数幂.
※有理指数幂的运算性质
(1)r a ·s r r a a +=
),,0(Q s r a ∈>; (2)rs s r a a =)(
),,0(Q s r a ∈>; (3)s r r a a ab =)(
),0,0(Q r b a ∈>>. ※无理指数幂
结合教材P 52实例利用逼近的思想理解无理指数幂的意义.
指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数
幂的运算性质同样适用于无理数指数幂.
三、【魅力精讲 举一反三】
四、【跟踪训练 展我风采】(约8分钟) 根据今天所学内容,完成下列练习
1. 若0a >,且,m n 为整数,则下列各式中正确的是( ). A. m
m n n
a a a ÷= B. m n mn a a a ⋅= C. ()n m m n a a += D. 01n n a a -÷= 2. 化简3225的结果是( ).
A. 5
B. 15
C. 25
D. 125
3. 计算(122
--⎡⎤⎢⎥⎣⎦的结果是( ).
A B . D . 五、【学以致用 能力提升】
1、必做题:
2、选做题:
六、【提炼精华 我有所得】
规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数
指数幂的运算性质也同样可以推广到有理数指数幂.
有理数指数幂的运算性质:
r a ·r r s a a +=; ()r s rs a a =; ()r r s ab a a =.(0,0,,a b r s Q >>∈)
七、【教学反思】。