八年级下学期其中测试

合集下载

四川省成都市树德中学2023-2024学年八年级下学期期中考试英语试题

四川省成都市树德中学2023-2024学年八年级下学期期中考试英语试题

树德中学初2022级初二下学期期中测试英语试题A卷(共100分)第一部分听力(共30小题;计30分)一、听句子,根据所听到的内容选择正确答语。

每小题念两遍。

(共5小题,每小题1分;计5分)()1.A.OK,I will. B.I think so. C.It tastes bad.()2.A.You’re welcome. B.Idon’t agree. C.That’sOK()3.A.Good day! B.Good idea! C.Good job!()4.A.On the phone. B.It doesn’t matter. C.You’re right.()5.A.Sounds bad. B.Goodluck. C.Don’t worry.二、听句子,选择与所听句子内容相符合的图片,并将代表图片的字母填涂在答题卡的相应位置。

每小题念两遍。

(共5小题,每小题1分;计5分)6.7.8.9.10.三、听对话,根据对话内容及问题选择正确答案。

每段对话念两遮。

(共10小题,每小题1分;计10分)()11.A.Clean his room B.Play the game. C.Takeout the rubbish.()12.A.In his office. B.At a park. C.At a supermarket.()13.A.Because Alan argued with him.B.Because Alan copied his homework.C.Because he disliked doing homework.()14.A.Three times a week. B.Twice a week C.Everyday.()15.A.Listening to music.B.Cooking dinner. C.Doing homework.()16.A.By having a food festival B.By having a concert C.By having a book sale.()17.A.Rainy. B.Sunny. C.Windy.()18.A.At9:00p.m. B.At8:30p.m. C.At8:45p.m.()19.A.Father and daughter. B.Sister and brother. C.Classmates.()20.A.Helpful. B.Boring. C.Difficult.四、听短文,根据短文内容完成表格中所缺信息,并将答案填写在答题卡相应题号后。

重庆市渝中区巴蜀中学2023-2024学年八年级下学期期中数学试卷(含答案)

重庆市渝中区巴蜀中学2023-2024学年八年级下学期期中数学试卷(含答案)

2023-2024学年重庆市渝中区巴蜀中学八年级(下)期中数学试卷一、选择题(共12个题,每小题4分,共48分)1.(4分)以下国产电动汽车标志中,不是轴对称图形的是 A .B .C .D .2.(4分)下列各式计算正确的是 A .B.C .D3.(4分)从我校4月30日的春季运动会中,抽取了甲、乙、丙3位同学的跳远成绩进行分析,这3位同学三次跳远平均成绩大致相同,他们的方差分别是,,,则这3位同学三次跳远成绩发挥最稳定的是 A .甲B .乙C .丙D .无法确定4.(4分)用配方法解方程,配方结果正确的是 A .B .C .D .5.(4分)下列命题正确的是 A .对角线相等的平行四边形是菱形B .平行四边形的两条对角线互相垂直C .一组对边平行另一组对边相等的四边形是平行四边形D .有三个角为直角的四边形为矩形6.(4分)已知点、、在关于的一次函数的图象上,则,,的大小关系是 A .B .C .D .7.(4分)如图,点的坐标为,点在直线上运动,则线段的最短长度为 ()()222()a b a b -=-22211x x x -=--1|2|20--+=4÷=2 2.5s =甲21.0s =乙2 4.5s =丙()2470x x +-=()2(4)23x +=2(2)3x +=-2(2)11x +=2(4)9x +=()1(1,)y -2(3,)y 3(5,)y x 5y x m =-+1y 2y 3y ()123y y y >>123y y y <<213y y y <<132y y y >>A (1,0)-B y =+AB ()A .B .2C .D .38.(4分)甲、乙两人在同一条滨江健身步道上从同一起点沿同一方向匀速慢跑720米,到终点后则停止运动.已知甲先出发2分钟,在整个慢跑过程中,甲、乙两人的距离(米与甲出发的时间(分之间的函数关系如图所示,下列说法中错误的是 A .甲慢跑的速度为80米分B .乙跑完全程用了6分钟C .的值为9D .乙到达终点时,与甲的距离为75米9.(4分)如图,在渝中区的劳动技能课程中,小张同学将一张长,宽的矩形纸板,剪去两个全等的正方形和两个全等的矩形后,剩余部分恰好制作成底面积为的有盖的长方体工艺盒,则剪去的正方形的边长为 A .1.5B .2C .2.5D .310.(4分)正方形,正方形,正方形按如图方式排列,点、、在直线上,点、、在轴上,则正方形的边长为y )t )()/m 16cm 12cm 248cm ()111OA C B 1222A A C B 2333A A C B ⋯1B 2B 3B ⋯2y x =+1A 2A 3A ⋯x 2023202420242024A A C B ()A .B .C .D .11.(4分)如图,菱形的顶点、在直线上,点在轴上,点的坐标为,则点的坐标为 A .B .C .D .12.(4分)对于整式列,,第一次操作:将中相邻两个整式之和插入,之间,得到新整式列整式列,,;第二次操作:将中相邻两个整式之和依次插入,之间,得到新整式列,,,;类似的,第三次操作后得到新整式列,,,,;以此类推.现有以下结论:①第四次操作后的整式列,,,,,;②将整式列中相邻两个整式的乘积之和记为,当时,有;③若中所有整式之和记为,中所有整式之和记为,,中所有整式之和为记为,,若系数不大于1024,则所有符合条件的之和为10.其中正确的结论有 个.A .0B .1C .2D .3二、填空题(共8个题,每小题4分,共32分)20242202422-2023220252ABCD A D 36y x =--A x C (2,4)B ()3(4,)2-(4,2)-95(,)22-9(,2)2-:3A x 3m x -A 3x 3m x -1:3A x m 3m x -1A 3x 3m x -2:3A x 3x m +23m x -3m x -3:3A x 6x m +3m 36m x -3m x -⋯4:3A x 9x m +64x m +66m x -49m x -3m x -3A ()F x 2()14F x m =16x m =1A 1B 2A 2B ⋯n A n B 1231n n n T B B B B B -=⋅⋅⋅⋯⋅n T n ()13.(4分)若关于的函数是正比例函数,则的值为 .14.(4分)如果是方程的一个根,那么代数式的值为 .15.(4分)花园中学规定学生的学期体育成绩满分为100分,其中大课间自编操成绩占,体育模块化成绩占,期末体考项目成绩占,小桂同学三项体育成绩(百分制)依次95分、90分、88分,则小桂同学这学期的体育成绩是 分.16.(4分)如图,直线与直线相交于点,点的纵坐标为4,则关于的不等式的解集为 .17.(4分)如图,在中,,,点从点出发,沿射线运动,速度为,点从点出发,沿线段运动,速度为,连接.、两点同时出发,当点到达点时,点也停止运动,请问经过 后,的面积恰为.18.(4分)若关于的一元二次方程有两个不相等实数解,且关于的分式方程有整数解,那么满足条件的所有整数的和为 .19.(4分)如图,中,,为的中点,将沿折叠得,点的对应点为点,连接,与交于点,,则的长为 .x 73y x a =+-a m 2340x x --=226m m -20%30%50%1:3l y x =+2:l y kx b =+P P x 3kx b x ++…Rt ABC ∆30BAC ∠=︒5BC cm =E A AB 2/cm s F C CA 1/cm s EF E F F A E s AEF ∆212cm x 2(2)420m x x --+=x 3222my yy y+=---m ABC∆AC =D BC ABD ∆AD AED ∆B E CE AE BC F 135BAC AFC ∠=∠=︒AB20.(4分)若一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则称这个四位数为“乐蜀数”,则最大乐蜀数与最小乐蜀数之差为 ,若,,、、为整数,且,,且、均为“乐蜀数”,记,、的各个数位的数字之和分别记为、.当为整数,且取最小值时,的值为 .三、解答题(共7个题,22题8分,27题12分,其余每题10分,共70分)21.(10分)解方程:(1);(2).22.(8分)学习了菱形的知识后,爱思考的小蜀同学发现,过平行四边形其中一条对鱼线中点且满足某个特殊条件的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点,形成的图形恰好是一个菱形.根据他的思路,完成以下作图与填空.已知:在中,点为对角线上一点,且;(1)尺规作图:请用无刻度直尺和圆规,过点作的垂线,分别交、于点、,连接、;(保留作图痕迹)(2)求证:四边形为菱形.证明:在中,① ,,在和中,,,又,四边形为平行四边形,③ ,四边形为菱形.通过小蜀的上述探究过程,我们可以得出以下真命题:5M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 22(,)11M N b nF M N -+-=M N ()G M ()G N (,)F M N ()()G M G N M N +22(23)9(2)x x -=+261x x -=ABCD O BD OB OD =O BD AD BC E F BE DF BEDF ABCD EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO EOD FOB ∠=∠⎧⎪⎨⎪∠=∠⎩②()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF ∴BEDF过平行四边形④ 的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.23.(10分)某校初二年级数学组为了解学生数学错题整理的效果,决定在全年级开展错题重做比赛,数学组选择了近一个月作业中部分易错题,制作了一张比赛测试卷,共100分,张老师为了解、两个班级的易错题整理效果,从、两个班级各随机抽取了10人的测试成绩数据,并对数据进行整理、描述和分析(测试成绩用表示,共分为四个等级:不合格:,合格:,良好:,优秀:,下面给出部分数据信息:班10名学生的测试成绩:72,60,64,80,86,80,90,98,100,80.班10名学生的测试成绩中,等级为“良好”的所有数据为:82,84,84.抽取两个班的学生测试成绩统计表:班级平均数中位数众数班8180班8184请根据以上信息,解答下列问题:(1)根据上述图表填空: , , ;(2)根据以上数据,你认为哪个班级的错题整理效果更好?请说明理由(写出一条理由即可);(3)根据抽取的两个班的学生测试成绩情况,估计该校初二年级840名同学中错题整理成绩为“优秀”的有多少名?24.(10分)如图,四边形中,,,,,连接,点从点出发,沿着折线运动,到点时停止运动,连接,设点的运动路程为,A B A B x 70x <7080x <…8090x <…90100)x ……A B A aB ba =b =m =ABCD //AD BC BC CD ⊥24BC AD ==3CD =AC P B B C D →→D AP P x ACP∆的面积为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出的函数图象,并写出该函数的一条性质;(3)当的函数图象与直线有两个交点时,请直接写出的取值范围为 .25.(10分)某智能家电经销商销售、两种智能空调,其中一台种空调的销售价格比一台种空调的销售价格高1500元,已知4月份种空调的销量是种空调销量的,且4月份种空调的销售总额为120万元,种空调的销售总额为225万元.(1)请问、两种智能空调的销售单价分别为多少元?(2)5月份气温回升、该经销商对两种空调进行了降价促销活动,已知种空调降价元、种空调降价元.经销商发现5月的第一周内:种空调的销量就已经与4月份种空调的总销量相同,种空调的销量比4月份种空调的总销量增加了台,5月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,请求出的值.26.(10分)如图1,直线AB 交x 轴于点A (﹣4,0),交y 轴于点B ,且OA =OB ,直线BC :4交x 轴于点C ,点D 为AB 的中点.(1)求直线CD 的解析式;(2)如图2,点E 在线段CB 上,过E 作EF ∥y 轴交CD 于点F ,过E 作EG ∥x 轴交AB 于点G ,连接DE ,当时,求△BED 的面积;(3)点H (m ,1﹣2m )为平面内一点,且满足∠ABH =∠OBC ,请直接写出点H 的坐标.y y x x y y 12y x b =+b A B B A A B 45A B A B A 70a B 100a A A B B 20a A B A B a27.(12分)如图,等腰中,,,点是射线上一点,连接,过点作于点,.(1)如图1,点在上,,,求的长;(2)如图2,点在延长线上,点为的中点,过点作于点,连接,求证:;(3)如图3,点在的延长线上,,,点在的延长线上,点在的延长线上,且,连接、,当取得最小值时,请直接写出的面积.Rt ACB ∆90ACB ∠=︒AC BC =D CA BD C CF BD ⊥E //AF BD D AC 75CAF ∠=︒4BD =BC D CA F CE F FH BC ⊥HEH HB HF +=D CA 30CDB ∠=︒4AC =N BA M AC AM BN =BMDN BM AN -BDN ∆2023-2024学年重庆市渝中区巴蜀中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12个题,每小题4分,共48分)1.(4分)以下国产电动汽车标志中,不是轴对称图形的是 A .B .C .D .【解答】解:根据轴对称图形的定义,选项、、中的图形都能沿着一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故、、不符合题意;选项中的图形不是轴对称图形,符合题意,故选:.2.(4分)下列各式计算正确的是 A .B.C .D【解答】解:.故本选项不符合题意;.原式,故本选项符合题意;.,故本选项不符合题意;.原式,故本选项不符合题意;故选:.3.(4分)从我校4月30日的春季运动会中,抽取了甲、乙、丙3位同学的跳远成绩进行分析,这3位同学三次跳远平均成绩大致相同,他们的方差分别是,,,则这3位同学三次跳远成绩发挥最稳定的是 A .甲B .乙C .丙D .无法确定【解答】解:,,,,()A B C A B C D D ()222()a b a b -=-22211x x x -=--1|2|20--+=4÷=A 222()2a b a ab b -=-+B 2(1)21x x -==-C 115|2|2222--+=+=D 2==B 2 2.5s =甲21.0s =乙2 4.5s =丙()22.5s = 甲21.0s =乙2 4.5s =丙222s s s ∴ 乙甲丙这3位同学三次跳远成绩发挥最稳定的是乙.故选:.4.(4分)用配方法解方程,配方结果正确的是 A .B .C .D .【解答】解:,,,,故选:.5.(4分)下列命题正确的是 A .对角线相等的平行四边形是菱形B .平行四边形的两条对角线互相垂直C .一组对边平行另一组对边相等的四边形是平行四边形D .有三个角为直角的四边形为矩形【解答】解:、对角线垂直的平行四边形是菱形,原命题是假命题;、平行四边形的两条对角线互相平分,原命题是假命题;、一组对边平行另一组对边相等的四边形不一定是平行四边形,原命题是假命题;、有三个角为直角的四边形为矩形,是真命题;故选:.6.(4分)已知点、、在关于的一次函数的图象上,则,,的大小关系是 A .B .C .D .【解答】解:对于一次函数,,随的增大而减小,,∴B 2470x x +-=()2(4)23x +=2(2)3x +=-2(2)11x +=2(4)9x +=2470x x +-=247x x +=24474x x ++=+2(2)11x +=C ()A B C D D 1(1,)y -2(3,)y 3(5,)y x 5y x m =-+1y 2y 3y ()123y y y >>123y y y <<213y y y <<132y y y >>5y x m =-+50k =-< y ∴x 531>>-故;故选:.7.(4分)如图,点的坐标为,点在直线上运动,则线段的最短长度为 A .B .2C .D .3【解答】解:点在直线上运动,最短线段所在直线解析式的,设最短线段所在直线解析式为,将坐标代入解析式得:直线的解析式为:.如图,两条直线的交点正好在轴上,即,最短线段.故选:.8.(4分)甲、乙两人在同一条滨江健身步道上从同一起点沿同一方向匀速慢跑720米,到终点后则停止运动.已知甲先出发2分钟,在整个慢跑过程中,甲、乙两人的距离(米与甲出发的时间(分之间的函数关系如图所示,下列说法中错误的是 321y yy <<AA (1,0)-B y =+AB () B y =+∴k y b =+(1,0)A -b =∴AB y y B 2AB ===B y )t )()A .甲慢跑的速度为80米分B .乙跑完全程用了6分钟C .的值为9D .乙到达终点时,与甲的距离为75米【解答】解:由题意可知,甲慢跑的速度为(米分),正确,不符合题意;设乙的速度为米分,当时乙追上甲,此时二人离起点距离相等,得,解得,则乙跑完全程用时(分,正确,不符合题意;甲到达终点用时(分,,正确,不符合题意;当乙到达终点时,甲离终点的距离为(米,乙到达终点时,与甲的距离为80米,错误,符合题意.故选:.9.(4分)如图,在渝中区的劳动技能课程中,小张同学将一张长,宽的矩形纸板,剪去两个全等的正方形和两个全等的矩形后,剩余部分恰好制作成底面积为的有盖的长方体工艺盒,则剪去的正方形的边长为 A .1.5B .2C .2.5D .3【解答】解:设剪去正方形的边长为 ,则长方体盒子的底面长为,宽为/m 160280÷=/A ∴v /6t =8064v ⨯=120v =7201206÷=)B ∴720809÷=)9m ∴=C ∴720(62)8080-+⨯=)∴D ∴D 16cm 12cm 248cm ()x cm (122)x cm -.依题意得:,整理得:,解得:,(不符合题意,舍去).答:剪去的正方形的边长为.故选:.10.(4分)正方形,正方形,正方形按如图方式排列,点、、在直线上,点、、在轴上,则正方形的边长为 A .B .C .D .【解答】解:直线与轴交于点,,,当时,,,,当时,,,,,的边长,故选:.11.(4分)如图,菱形的顶点、在直线上,点在轴上,点的坐标为,则点的坐标为 162(8)2x x cm -=-(122)(8)48x x --=222720x x -+=12x =212x =2cm B 111OA C B 1222A A C B 2333A A C B ⋯1B 2B 3B ⋯2y x =+1A 2A 3A ⋯x 2023202420242024A A C B ()20242202422-2023220252 2y x =+y 1B 1(0,2)B ∴1122OB ==2x =4y =2(2,4)B ∴21242A B ==6x =8y =3(6,8)B ∴32382A B ==⋅⋅⋅20232024A B 20242=A ABCD A D 36y x =--A x C (2,4)B ()A .B .C .D .【解答】解:四边形是菱形,,,直线的解析式为,,设直线的解析式为,点,,解得,直线的解析式为,设出,,,,,解得,,.故选:.12.(4分)对于整式列,,第一次操作:将中相邻两个整式之和插入,之间,得到新整式列整式列,,;第二次操作:将中相邻两个整式之和依次插入,3(4,)2-(4,2)-95(,)22-9(,2)2- ABCD //AD BC ∴AB BC = AD 36y x =--(2,0)A ∴-BC 3y x b =-+ (2,4)C 324b ∴-⨯+=10b =∴BC 310y x =-+(,310)B a a -+(2,0)A - (2,4)B AB BC =2222(2)(310)(2)(4310)a a a a ∴++-+=-++-4a =31012102a ∴-+=-+=-(4,2)B ∴-B :3A x 3m x -A 3x 3m x -1:3A x m 3m x -1A 3x 3m x-之间,得到新整式列,,,;类似的,第三次操作后得到新整式列,,,,;以此类推.现有以下结论:①第四次操作后的整式列,,,,,;②将整式列中相邻两个整式的乘积之和记为,当时,有;③若中所有整式之和记为,中所有整式之和记为,,中所有整式之和为记为,,若系数不大于1024,则所有符合条件的之和为10.其中正确的结论有 个.A .0B .1C .2D .3【解答】解:,,;,,,一30;,,,,,,,,,,故①正确;,,故,故②正确;,,,故的系数为而,若的系数不大于1024,则,.解得:,又为正整数,符合条件的有:1,2,3,4;,故③正确;2:3A x 3x m +23m x -3m x -3:3A x 6x m +3m 36m x -3m x -⋯4:3A x 9x m +64x m +66m x -49m x -3m x -3A ()F x 2()14F x m =16x m =1A 1B 2A 2B ⋯n A n B 1231n n n T B B B B B -=⋅⋅⋅⋯⋅n T n ()1:3A x m 3m x -12B m=2:3A x 32m +230m -m 24B m=3:3A x 6x m +3m 36m x -33:8m x B m-=4:3A x 9x m +64x m +66m x -49m x -43:16m x B m -=()3(6)(6)33(36)(36)F x x x m x m m m m x m x =++++-+-(3)m x -22236151214x m xm m =+-=2236120x xm m ∴-+=2(62)0m ∴-=16x m =12B m =222B m =332B m =2nn B m=n T ∴2312345..(1)2.2.2 (212345222)n n n n++++++=+++++=1010242=n T (1)102n n+…2200n n +-…(4)(5)0n n -+…54n -……n ∴n 123410+++=故选:.二、填空题(共8个题,每小题4分,共32分)13.(4分)若关于的函数是正比例函数,则的值为 3 .【解答】解:是关于的正比例函数,,即故答案为:3.14.(4分)如果是方程的一个根,那么代数式的值为 8 .【解答】解:把代入方程,得到,所以代数式;故答案为:8.15.(4分)花园中学规定学生的学期体育成绩满分为100分,其中大课间自编操成绩占,体育模块化成绩占,期末体考项目成绩占,小桂同学三项体育成绩(百分制)依次95分、90分、88分,则小桂同学这学期的体育成绩是 90 分.【解答】解:根据题意得:(分,小桂同学这学期的体育成绩是90分.故答案为:90.16.(4分)如图,直线与直线相交于点,点的纵坐标为4,则关于的不等式的解集为 .【解答】解:点代入,,D x 73y x a =+-a 73y x a =+- x 30a ∴-=3a =m 2340x x --=226m m -m 2340x x --=234m m -=22262(3)248m m m m -=-=⨯=20%30%50%9520%9030%8850%⨯+⨯+⨯192744=++90=)∴1:3l y x =+2:l y kx b =+P P x 3kx b x ++…1x …(,4)P m 3y x =+1m ∴=,结合图象可知关于的不等式的解集为;故答案为:.17.(4分)如图,在中,,,点从点出发,沿射线运动,速度为,点从点出发,沿线段运动,速度为,连接.、两点同时出发,当点到达点时,点也停止运动,请问经过 4或6 后,的面积恰为.【解答】解:过作于,如图:设运动时间为,中,,,,根据题意得: ,,, ,的面积恰为,,解得或,经过或后,的面积恰为.故答案为:4或6.(1,4)P ∴x 3kx b x ++…1x …1x …Rt ABC ∆30BAC ∠=︒5BC cm =E A AB 2/cm s F C CA 1/cm s EF E F F A E s AEF ∆212cm E EH AC ⊥H ts Rt ABC ∆ 30BAC ∠=︒5BC cm =210AC BC cm ∴==2AE t =cm CF tcm =(10)AF t cm ∴=-12EH AE t ==cm AEF ∆ 212cm ∴1(10)122t t -=4t =6t =∴4s 6s AEF ∆212cm18.(4分)若关于的一元二次方程有两个不相等实数解,且关于的分式方程有整数解,那么满足条件的所有整数的和为 .【解答】解:关于的一元二次方程有两个不相等实数解,,且,即且,解关于的分式方程,可得且,且,,,为整数,,,,足条件的所有整数的和为:.故答案为:.19.(4分)如图,中,,为的中点,将沿折叠得,点的对应点为点,连接,与交于点,,则的长为 .【解答】延长,作,垂足为,,,,由折叠的性质得:,,是中点,.设,x 2(2)420m x x --+=x 3222my y y y+=---m 4- x 2(2)420m x x --+=2(4)4(2)20m ∴--⨯-⨯>20m -≠4m <2m ≠y 3222my y y y +=---41y m =-2y ≠4m < 3m ≠2m ≠1m ≠y 0m ∴=1-3-∴m 0134--=-4-ABC ∆AC =D BC ABD ∆AD AED ∆B E CE AE BC F 135BAC AFC ∠=∠=︒AB 2-BA CM BA ⊥M 135BAC AFC ∠=∠=︒ ACF BCA ∠=∠1ABC ∴∠=∠BD ED =21ABC ∠=∠=∠D BC BD CD ED ∴==3α∠=,,,,,由折叠的性质得,,,,,,,,在中,是等腰直角三角形,,在中,,,设,,,,或(合去),,故答案为:.20.(4分)若一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则称这个四位数为“乐蜀数”,则最大乐蜀数与最小乐蜀数之差为 7943 ,若,,、、为整数,且,,且、均为“乐蜀数”,记,、的各个数位的数字之和分别记为、.当为整数,且取最小值时,的值为 .180319022DEC DCE α︒-∠∴∠=∠==︒-18045AFD AFC ∠=︒-∠=︒ 2345AFD ∴∠=∠+∠=︒2145ABC α∴∠=∠=∠=︒-1803180BDE α∠=︒-∠=︒- 36019022BDE ADB ADE C ︒-∠∠=∠==︒+12∠=∠ //AC DE ∴43α∴∠=∠=14902CAD BDA ∴∠=∠-∠=︒-13902ADC ADE α∠=∠-∠=︒-CAD ADC ∴∠=∠CD AC BD ∴===Rt ACM ∆18045CAM BAC ∠=︒-∠=︒ACM ∴∆2CM AM ∴===Rt BCM ∆BC BD CD =+=2CM =AB x =2BM x =+222(2)2x ∴++=24240x x ∴+-=2x ∴=-2x =--2AB ∴=25M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 22(,)11M N b n F M N -+-=M N ()G M ()G N (,)F M N ()()G M G N M N +【解答】解:一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则最大乐蜀数是8970,最小乐蜀数是1027,则最大乐蜀数与最小乐蜀数之差为:;,,、、为整数,且,,且、均为“乐蜀数”,,,且、均为“乐蜀数”,,,,所以的取值范围是到,即2.68到24.19.因为是整数,所以的可能取值是3、4、4、6、7,2.68到24.19因为是整数,所以的可能取值是3、4、4、6、73、9、11、13、15、17、19、21、23:第四步,因为:因为的定义是””,所以的结果是干位和十位99数字的差乘以100,然后相减,所以千位和百位数字的和等于十位和个位数字的和;第五步,因为和都是小于10的正整数,最小值为,所以和的取值范围是1到9;第六步,因为,的取值范围是4到8,所以;第七步,因为是“中庸数”,百位数字是8,个位数字是0.故答案为:7943;5040.三、解答题(共7个题,22题8分,27题12分,其余每题10分,共70分)21.(10分)解方程:(1);(2).【解答】解:(1),,,,,或,8970102747943-=5M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 5M abc =1000100103N x m n x =++-M N 3c ∴=8m n +=22229220921978x x +=k 2442:90921978909-k k k k 18()72x P n +=()P n n n '-x y 10811107882x x -=-x x y >y 5x =n 22(23)9(2)x x -=+261x x -=22(23)9(2)x x -=+22(23)9(2)0x x --+=[(23)3(2)][(23)3(2)]0x x x x -++--+=(53)(9)0x x +--=530x ∴+=90x --=,;(2),,即,,,22.(8分)学习了菱形的知识后,爱思考的小蜀同学发现,过平行四边形其中一条对鱼线中点且满足某个特殊条件的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点,形成的图形恰好是一个菱形.根据他的思路,完成以下作图与填空.已知:在中,点为对角线上一点,且;(1)尺规作图:请用无刻度直尺和圆规,过点作的垂线,分别交、于点、,连接、;(保留作图痕迹)(2)求证:四边形为菱形.证明:在中,① , ,,在和中,,,又,四边形为平行四边形,③ ,四边形为菱形.通过小蜀的上述探究过程,我们可以得出以下真命题:过平行四边形④ 的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.135x ∴=-29x =-261x x -=26919x x -+=+2(3)10x -=3x ∴-=13x ∴=23x =ABCD O BD OB OD =O BD AD BC E F BE DF BEDF ABCD //AD BC OD OB =EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO EOD FOB ∠=∠⎧⎪⎨⎪∠=∠⎩②()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF ∴BEDF【解答】(1)解:图形如图所示:(2)证明:在中,,,,在和中,,,又,四边形为平行四边形,,四边形为菱形.过平行四边形对角线的交点与一条对角线垂直的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.故答案为:,;;,对角线的交点与一条对角线垂直.23.(10分)某校初二年级数学组为了解学生数学错题整理的效果,决定在全年级开展错题重做比赛,数学组选择了近一个月作业中部分易错题,制作了一张比赛测试卷,共100分,张老师为了解、两个班级的易错题整理效果,从、两个班级各随机抽取了10人的测试成绩数据,并对数据进行整理、描述和分析(测试成绩用表示,共分为四个等级:不合格:,合格:,良好:,优秀:,下面给出部分数据信息:ABCD //AD BC OD OB =EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF EB ED = ∴BEDF //AD BC OD OB =OD OB =EB ED =A B A B x 70x <7080x <…8090x <…90100)x ……班10名学生的测试成绩:72,60,64,80,86,80,90,98,100,80.班10名学生的测试成绩中,等级为“良好”的所有数据为:82,84,84.抽取两个班的学生测试成绩统计表:班级平均数中位数众数班8180班8184请根据以上信息,解答下列问题:(1)根据上述图表填空: 80 , , ;(2)根据以上数据,你认为哪个班级的错题整理效果更好?请说明理由(写出一条理由即可);(3)根据抽取的两个班的学生测试成绩情况,估计该校初二年级840名同学中错题整理成绩为“优秀”的有多少名?【解答】解:(1)班成绩出现次数最多的是80,因此众数是,班不合格和合格的人数为(人,所以班的中位数是,班良好所占的百分比为,,;故答案为:80,83,30;(2)班级的错题整理效果更好,理由:两个班的平均数一样,但班的中位数、众数都比班的大,所以班级的错题整理效果更好;(3)(名,答:估计该校初二年级840名同学中错题整理成绩为“优秀”的有252名.24.(10分)如图,四边形中,,,,,连接,点A B A a B b a =b =m =A 80a =B 10(20%20%)4⨯+=)B 8284832b +==B 3100%30%10⨯=%120%20%30%30%m ∴=---=30m ∴=B B A B 338402521010+⨯=+)ABCD //AD BC BC CD ⊥24BC AD ==3CD =AC P从点出发,沿着折线运动,到点时停止运动,连接,设点的运动路程为,的面积为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出的函数图象,并写出该函数的一条性质;(3)当的函数图象与直线有两个交点时,请直接写出的取值范围为  .【解答】解:(1)当时,;当时,;综上所述,;(2)函数图形如图所示;,当时,随的增大而减小;(3)的函数图象与直线有两个交点,当直线经过时,即,当直线经过时,即,B B C D →→D AP P x ACP ∆y y x x y y 12y x b =+b 122b -<<-04x ……113(4)36222y PC CD x x =⋅=-⨯=-47x <…11(4)2422y CP AD x x =⋅=-⨯=-36(04)24(47)x x y x x ⎧-⎪=⎨⎪-<⎩………04x ……y x y 12y x b =+∴12y x b =+(4,0)2b =-12y x b =+(7,3)1372b =⨯+,当的函数图象与直线有两个交点时,的取值范围为,故答案为:.25.(10分)某智能家电经销商销售、两种智能空调,其中一台种空调的销售价格比一台种空调的销售价格高1500元,已知4月份种空调的销量是种空调销量的,且4月份种空调的销售总额为120万元,种空调的销售总额为225万元.(1)请问、两种智能空调的销售单价分别为多少元?(2)5月份气温回升、该经销商对两种空调进行了降价促销活动,已知种空调降价元、种空调降价元.经销商发现5月的第一周内:种空调的销量就已经与4月份种空调的总销量相同,种空调的销量比4月份种空调的总销量增加了台,5月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,请求出的值.【解答】解:(1)设种智能空调的销售单价分为元,则种智能空调的销售单价为元,根据题意得:,解得,经检验,是原方程的解,也符合题意,,种智能空调的销售单价分为3000元,种智能空调的销售单价为4500元;(2)由(1)知,4月份种空调的总销量为(台,种空调的总销量为(台,月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,,解得(舍去)或,的值为6.26.(10分)如图1,直线AB 交x 轴于点A (﹣4,0),交y 轴于点B ,且OA =OB ,直线BC :4交x 轴于点C ,点D 为AB 的中点.(1)求直线CD 的解析式;12b ∴=-∴y 12y x b =+b 122b -<<-122b -<<-A B B A A B 45A B A B A 70a B 100a A A B B 20a A B A B a A m B (1500)m +12000002250000415005m m =⨯+3000m =3000m =1500300015004500m ∴+=+=A ∴B A 12000004003000=)B 22500005004500=)5 A B A B 400(300070)(50020)(4500100)12000002250000a a a ∴-++-=+0a =6a =a ∴(2)如图2,点E在线段CB上,过E作EF∥y轴交CD于点F,过E作EG∥x轴交AB于点G,连接DE,当时,求△BED的面积;(3)点H(m,1﹣2m)为平面内一点,且满足∠ABH=∠OBC,请直接写出点H的坐标.【解答】解:(1)∵OA=OB,A(﹣4,0),∴B(0,4),当﹣x+4=0时,x=3,∴C(3,0),∵A(﹣4,0),D为AB中点,∴D(﹣2,2),设CD解析式为y=kx+b,∴,解得,∴CD的解析式为y=﹣x+.(2)∵A(﹣4,0),B(0,4),∴直线AB的解析式为:y=x+4,设E(m,﹣m+4),F(m,﹣m+),G(﹣m,﹣m+4),∴EF=﹣m+4﹣(﹣m+)=﹣m+,EG=m,∵EF+EG=,∴﹣m++m=,解得m=2,此时E(2,),如图,作EQ∥y轴交AB于点Q.则Q(2,6),∴EQ=,∴S△BDE=EQ•(x B﹣x D)=××2=.(3)∵点H坐标是(m,1﹣2m),∴点H在直线y=﹣2x+1上,①当点H在AB左侧时,如图所示作∠ABM=∠OBC,AM⊥BM于点H,过M作GN∥y轴交x轴于点N,过B作BG∥x轴交GN于点G,∴△BAM∽△BCO,∵OC=3,OB=4,∴,易证△BGM∽△MNA,∴,∵OB=OA=4,∴MN=,BG=,∴M(﹣,)∵B(0,4)∴直线BM的解析式为y=x+4,∵点H坐标是(m,1﹣2m),∴1﹣2m=m+4,解得m=﹣,此时H的坐标为(﹣,);②当点H在AB右侧时,同理可得H(﹣,).综上,H 1(﹣,),H 2(﹣,).27.(12分)如图,等腰中,,,点是射线上一点,连接,过点作于点,.(1)如图1,点在上,,,求的长;(2)如图2,点在延长线上,点为的中点,过点作于点,连接,求证:;(3)如图3,点在的延长线上,,,点在的延长线上,点在的延长线上,且,连接、,当取得最小值时,请直接写出的面积.【解答】解:(1)如图1,过点作于点,Rt ACB ∆90ACB ∠=︒AC BC =D CA BD C CF BD ⊥E //AF BD D AC 75CAF ∠=︒4BD =BC D CA F CE F FH BC ⊥HEH HB HF +=D CA 30CDB ∠=︒4AC =N BA M AC AM BN =BMDN BM AN -BDN ∆D DH AB ⊥H,,,,,,在中,,在中,,在中,(2)如图2,过点作交延长线于点,,,,,,,,,,,是的中点,,,//AF BD 75CDB CAF ∴∠=∠=︒90ACB ∠=︒ AC BC =45DAB ∴∠=︒30DBA ∠=︒Rt ADH ∆2AH DH ==Rt BDH ∆BH =2AB ∴=+∴Rt ABC ∆BC AB ==+E EM EH ⊥CB M //AF BD CE BD ⊥90AFC CEB ∴∠=∠=︒90ACB ∠=︒ 90ACF BCE CBE BCE ∴∠+∠=∠+∠=︒ACF CBE ∴∠=∠AC BC = 90AFC CEB ∠=∠=︒()AFC CEB AAS ∴∆≅∆BE CF ∴=F CE CF EF BE ∴==90FEH BEH BEM BEH ∠+∠=∠+∠=︒,,,,,,,,,,即.(3)如图3,取,作,.,,,,,,,,,,,,FEH BEM ∴∠=∠FH BC ⊥ 90FHC ∴∠=︒90FCH CFH FCH CBE ∴∠+∠=∠+∠=︒CFH CBE ∴∠=∠HFE MBE ∴∠=∠()FEH BEM ASA ∴∆≅∆HE ME ∴=FH BM =∴HM HB BM HB HF ==+=+HB HF +=BG AB =NI BG ⊥AH NI ⊥AC BC = BAM NBG ∴∠=∠AM BN = AB BG =()ABM BGN SAS ∴∆≅∆BM GN ∴=NG BI ⊥ 45BNI NBI ∴∠=∠=︒AH NH ⊥ 45ANH HAN ∴∠=∠=︒NH ∴=BM AN NG NH HI ∴-=…如图4,当,重合时,取最小值,此时,过作于点,,,I G BG BA ==8BN =D DK BN ⊥K 8BD = DK ∴=-12BDN S BN DK ∆∴=⋅=-。

广西南宁市第二中学2023-2024学年八年级下学期期中语文试题(解析版)

广西南宁市第二中学2023-2024学年八年级下学期期中语文试题(解析版)

南宁市第二中学2024年春季学期八年级语文期中测试卷(考试时间:150分钟满分:120分)注意事项:1.答题前,考生务必将姓名、准考证号、座位号填写在试卷和答题卡上。

2.考生作答时,请在答题卡上作答,在本试卷上作答无效。

一、积累(21分)校文学社正在开展“寻民俗之美,扬文化自信”的主题活动,请你完成以下任务。

【春晚记忆】春晚见证了百姓的生活喜乐,它之所以成为中国的新民俗的原因,是因为春晚凝结着百姓的过年记忆。

春晚独具仪式感,已在不知不觉中衍化为一种新民俗,一年一度地等待着我们去品鉴、去守望。

【视听盛宴】今年的春晚注重从中华优秀传统文化中汲取创作灵感,为全国观众献上了一场精彩纷呈的文化盛宴。

节目《锦鲤》,舞蹈演员身着红白色衣裙,仿佛自由自在的锦鲤,时而鱼翔浅底,时而翩然起舞,让人目不暇接,叹为观止。

西安会场上演的《山河诗长安》,千人齐诵《将进酒》的场面令人震hàn(),当声音戛然而止的那一刻,观众热血沸腾。

创演秀《年锦》选取汉、唐、宋、明四个朝代富有代表性的纹样,织出一幅跨越千载的纹样变迁图卷。

【文化自信】2024年春节晚会无疑是一场展现中华优秀传统文化的文化盛实。

它激发了海内外华夏儿女的民族自豪感,蕴含着中国人朴素的家国情感,其影响力也是非同寻常的,是中国文化走向全球的品牌名片。

1. 根据拼音写汉字,给加点字注音。

(1)震hàn()(2)戛然而止()2. 解释语段中画波浪线的词语。

(1)翩然:____________________________(2)叹为观止:________________________3. 【视听盛宴】中有不少成语,除了以上第1、2题中出现的成语外,请你再写出其中的3个。

4. 根据对联的要求,从以下句子中选出有关春节的对联,按上下联顺序填写序号。

①节至人间万象新②赓续文化基因③近水远山皆有情④春临大地百花艳⑤清风明月本无价⑥厚植文化自信上联:_______________________下联:_______________________5. 下列从语段中选出来的句子,有语病的一项是()A. 春晚见证了百姓的生活喜乐,它之所以成为中国的新民俗的原因,是因为春晚凝结着百姓的过年记忆。

人教版英语八年级下册第二学期期中 达标测试卷(含答案)

人教版英语八年级下册第二学期期中 达标测试卷(含答案)

第二学期期中达标测试卷一、听说应用(本大题共30小题,每小题1分,共30分;A、B、C、D部分为听力理解,E部分为情景对话)A. 听句子(本题共5小题,每小题1分,共5分)请根据所听内容,选择符合题意的图画回答问题。

每个句子听两遍。

()1. Where does the speaker volunteer to help others?()2. What was Tom's mother doing when Tom came back?()3. What is the speaker's advice?()4. What does Mary help her mother do every day?()5. Why did Lily feel terrible yesterday?B. 听对话(本题共10小题,每小题1分,共10分)请根据每段对话的内容回答问题,从每小题所给的三个选项中选出一个最佳答案。

每段对话听两遍。

听第一段对话,回答第6小题。

()6. What happened to the boy?A. He fell down.B. He got hit on the head.C. He cut himself.听第二段对话,回答第7小题。

()7. What is broken?A. The computer.B. The phone.C. The bike.听第三段对话,回答第8小题。

()8. What are they going to do today?A. To fly kites.B. To climb the mountain.C. To play badminton.听第四段对话,回答第9小题。

()9. How will the boy go to the V olunteer Service Center?A. On foot.B. By bike.C. By car.听第五段对话,回答第10小题。

人教版八年级下册数学《期中检测题》及答案

人教版八年级下册数学《期中检测题》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.使二次根式3a -有意义的的取值范围是( ) A. 3a > B. 3a < C. 3a ≥ D. 3a ≤2.下列各式中,是最简二次根式是( )A. 12 B. 5 C. 18 D. 2a3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为()A. 1B. 3C. 5D. 34.下列运算正确的是( )A. 325+=B. 326⨯=C. 2(31)31-=-D. 225353-=-5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 46.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =,则AB 长为( )A. 2B. 3C. 4D. 438.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A 278cmB. ()24330cm + C. 21210cm D. 22410cm 10.如图,在□ABCD 中,ABAC ,若AB=4,AC=6,则BD 的长是( )A. 11B. 10C. 9D. 811.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A. B. C. D.13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 210D. 814.将四根长度相等细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22二、填空题15.若23a =-,则241a a -+的值为__________.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC 经过两次折叠,得到边AB ,BC ,CA 上的点D ,E ,F .折叠方法如下:如图2,(1)AC 边向BC 边折叠,使AC 边落在BC 边上,得到折痕交AB 于D ;(2)C点向AB 边折叠,使C 点与D 点重合,得到折痕交BC 边于E ,交AC 边于F .则下列结论:①四边形DECF 一定是矩形,②四边形DECF 一定是菱形,③四边形DECF 一定是正方形.其中错误的是__________(填序号)三、解答题20.计算:(1)148(12)3-+ (2)2(221)243-+÷21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n + 2mn ;②当3m =,3n =时,m n + 2mn ;③当12m =,12n =时,m n + 2mn ; ④当4m =,1n =时,m n + 2mn ;⑤当5m =,3n =时,m n + 2mn ;⑥当13m =,12n =时,m n + 2mn ;则关于m n +与2mn 之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值. 25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH与AE的数量关系,并证明.答案与解析一、选择题1.有意义的取值范围是( )A. 3a >B. 3a <C. 3a ≥D. 3a ≤[答案]D[解析][分析]根据二次根式有意义的条件可得30a -≥,再解不等式即可.[详解]由题意得:30a -≥,解得:3a ≤,故选:D .[点睛]本题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 2.下列各式中,是最简二次根式的是( )[答案]B[解析][分析]判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.[详解](1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.[点睛]本题考查最简二次根式的定义,掌握相关知识是解题关键.3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为( )A. 1B. 3C. 5D. 3[答案]A[解析][分析] 先根据正方形的性质得出∠B =90°,BC 2=3,然后在Rt △BCE 中,利用勾股定理即可求出EB 的长.[详解]解:解:∵四边形ABCD 是正方形,∴∠B =90°,∴EB 2=EC 2-BC 2,又∵正方形ABCD 的面积=BC 2=3,2EC =, ∴2231EB =-=故选:A .[点睛]本题主要考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.4.下列运算正确的是( ) 325=326=C. 231)31-=- 225353-=-[答案]B[解析][分析]根据二次根式的性质、运算法则及完全平方公式对各选项进行分析即可.[详解]解:A 、32+无法计算,故此选项不合题意; B 、326⨯=,正确; C 、2(31)3231423-=-+=-,故此选项不合题意; D 、2253164-==,故此选项不合题意.故选:B .[点睛]此题主要考查了二次根式的性质、运算法则及完全平方公式的应用,正确化简二次根式是解题关键. 5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 4[答案]B[解析] ∵点,分别是边AB ,CB 的中点,114222DE AC ∴==⨯= .故选B. 6.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°[答案]C[解析] 试题分析:根据勾股定理即可得到AB,BC,AC 的长度,进行判断即可. 试题解析:连接AC,如图:根据勾股定理可以得到:510.∵525210)2.∴AC 2+BC 2=AB 2.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C .考点:勾股定理.7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =则AB 长为( )A. 2B. 3C. 4D. 3[答案]C[解析][分析]根据 cos AC A AB∠=计算. [详解]解:∵∠A=30°,∠C=90°,AC=3 ∴ 3cos cos30,2AC A AB ∠=︒== ∴23 4.3AB == 故选:.[点睛]本题考查了三角函数,熟练运用三角函数关系是解题的关键8.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A. 278cmB. (24330cm C. 210cm D. 22410cm [答案]D[解析][分析] 根据题意利用正方形的面积公式即可求得大正方形的边长,则可求得阴影部分的面积进而得出答案.[详解]从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,+=+,大正方形的边长是30483043留下部分(即阴影部分)的面积是:()2+--=++--=(cm2).304330483083034830482410故选:D.[点睛]本题主要考查了二次根式的应用、完全平方公式的应用,正确求出阴影部分面积是解题关键.10.如图,在□ABCD中,ABAC,若AB=4,AC=6,则BD的长是()A. 11B. 10C. 9D. 8[答案]B[解析][分析]利用平行四边形的性质可知AO=3,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=10.[详解]解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=3.在Rt△ABO中,利用勾股定理可得:22+=345∴BD=2BO=10.故选B.[点睛]本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD[答案]B[解析][分析]根据矩形的性质即可判断;[详解]解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B . [点睛]本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A.B. C. D.[答案]B[解析][分析]求出∠AFE=∠AEF ,推出AE=AF ,求出BE ,根据勾股定理求出AE ,即可求出AF ,即可求出答案[详解]∵四边形ABCD 是矩形,∴AD=BC=8,AD ∥BC ,∴∠AFE=∠FEC ,∵EF 平分∠AEC ,∴∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AE=AF ,∵E 为BC 中点,BC=8,∴BE=4,在Rt △ABE 中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD−AF=8−5=3故选:B[点睛]本题考查了矩形的性质, 等腰三角形的判定与性质, 直角三角形中利用勾股定理求边长. 13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 10D. 8[答案]A[解析][分析]连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.[详解]解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42故选:A .[点睛]本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.14.将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22[答案]A[解析][分析] 图(1)中根据有一个角是60°的等腰三角形是等边三角形即可求得BC ,图2中根据勾股定理即可求得正方形的对角线的长.[详解]如图(1)中,连接AC ,∵∠B=60°,AB=BC ,∴△ABC 为等边三角形,∴AC=AB=BC=3,如图(2)中,连接AC ,∵AB=BC=CD=DA=3,∠B=90°,∴四边形ABCD 是正方形,∴22223332AB BC ++=故选:A .[点睛]本题考查了正方形的性质和判定,菱形的性质,勾股定理以及等边三角形的判定和性质,利用等边三角形的判定确定边长是关键.二、填空题15.若23a =-,则241a a -+的值为__________.[答案]0[解析][分析]利用完全平方公式变形得:()224123a a a -+=--,再代入求值即可得到答案.[详解]解:()224123a a a -+=--, ()22323330,=---=-=故答案为:[点睛]本题考查是利用因式分解求代数式的值,同时考查了二次根式的乘法的运算,掌握完全平方公式的变形是解题的关键.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.[答案]50°[解析][分析]由平行四边形ABCD 中,易得∠C =∠A ,又因为DB =DC ,所以∠DBC =∠C ,根据三角形内角和即可求出CDB ∠.[详解]解:∵四边形ABCD 是平行四边形,∴∠C =∠A =65°,∵DB =DC ,∴∠DBC =∠C =65°,∴180218026550CDB C ∠=︒-∠=︒-⨯︒=︒,故答案为:50°.[点睛]此题是平行四边形的性质与等腰三角形的性质的综合,解题时注意特殊图形的性质应用.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.[答案]()13,0- [解析][分析]根据勾股定理求得PO 的长度,从而确定点A 的坐标.[详解]解:由题意可知:222313OP OA ==+= ∴A 点坐标为:()130-,故答案:()130-,. [点睛]本题考查实数与数轴,掌握勾股定理计算公式,利用数形结合思想解题是关键.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.[答案2[解析][分析]根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC ,从而可求∠EBC=30°,在Rt △BCE 中可求EC 值,由DE=EC 可求DE 的长.[详解]∵四边形ABCD是菱形,∴CD=BC=AB=6,∴∠EDC=∠EBC,∵DE=CE,∴∠EDC=∠ECD,∴∠BEC=2∠EDC=2∠EBC,在Rt△BCE中,∠EBC+∠BEC=90°,∴∠EBC=30°,∴3BC tan30623EC=⋅︒=⨯=,∴DE=EC=2,故答案为:2.[点睛]本题主要考查了菱形的性质、等腰三角形的判定和性质、解直角三角形的应用;熟练掌握菱形的性质,得出∠EBC=30°是解题的关键.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC经过两次折叠,得到边AB,BC,CA上的点D,E,F.折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C 点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.则下列结论:①四边形DECF一定是矩形,②四边形DECF一定是菱形,③四边形DECF一定是正方形.其中错误的是__________(填序号)[答案]①③[解析][分析]根据折叠的性质可知,CD和EF互相垂直且平分,即可得到结论.详解]解:连接DF、DE,DC、EF相交于点O,根据折叠的性质得,CD ⊥EF ,且OD=OC ,OE=OF ,∴四边形DECF 是菱形.菱形DECF 因条件不足,无法证明是正方形.故答案为:①③[点睛]本题考察了菱形的判定以及折叠的性质,灵活运用即可.三、解答题20.计算:(114812)3(2)2(221)243+[答案](153;(2)922- [解析][分析](1)先化简成最简二次根式,再根据二次根式加减法法则计算即可;(2)先利用完全平方公式展开,再根据二次根式混合运算法则计算即可得答案. [详解](1481(12)3-+=3323-=533; (2)2(221)243+=28=942+22=922-. [点睛]本题考查了二次根式的运算,熟练掌握运算法则是解题关键.21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.[答案](1)25;(2)37[解析][分析](1)根据勾股定理计算,得到答案;(2)作CD ⊥AB 交BA 的延长线于点D ,根据直角三角形的性质求出AD ,根据勾股定理求出CD ,再根据勾股定理计算即可.[详解]解:(1)在Rt △ABC 中,∠C =90°, ∴AB =222242AC BC +=+=25;(2)作CD ⊥AB 交BA 的延长线于点D ,∵∠BAC =120°,∴∠DCA =30°,∴AD =12AC =3,∴CD =22AC AD -=226333-=,∵BD =AD+AB =6,∴在Rt △CDB 中,BC =2237CD BD +=.[点睛]本题考查的是勾股定理、含30°的直角三角形的性质,解题关键在于正确做出辅助线,求线段长度. 22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.[答案]30[解析][分析]利用基本作图作BH 平分∠ABC ,则∠ABH =∠CBH ,再利用平行四边形的性质得到CD ∥AB ,AB=CD ,AD=BC=6,接着证明∠CBH =∠BHC 得到CH =BC =6,所以DH=3,然后计算平行四边形ABCD 的周长.[详解]如图,BH 为所作.∵BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 为平行四边形,∴CD ∥AB ,AB =CD ,AD =BC =6,∴∠ABH =∠BHC ,∴∠CBH =∠BHC ,∴CH =BC =6,∵DH =12CH , ∴DH =3,∴平行四边形ABCD 周长=2(BC+CD )=2×(6+9)=30.[点睛]本题考查了作图-基本作图和平行四边形的性质,等腰三角形的判定和性质.解决本题的关键是熟记平行四边形的性质.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 是平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.[答案](1)见解析;(2)3[解析][分析](1)首先利用ASA 得出△DCF ≌△EBF ,进而利用全等三角形的性质得出CD =BE ,即可得出四边形CDBE 是平行四边形;(2)由BD ⊥AC ,四边形CDBE 是平行四边形,可推出四边形CDBE 是矩形,由F 为BC 的中点,求出BC ,根据勾股定理即可求得CE ,由矩形面积公式即可求得结论.[详解](1)证明:∵BE ∥AC ,∴∠ACB =∠CBE ,在△DCF 和△EBF 中,DCF EBF FC FBCFD BFE ∠∠⎧⎪=⎨⎪∠∠⎩==, ∴△DCF ≌△EBF (ASA ),∴CD =BE ,∵BE ∥CD ,∴四边形CDBE 是平行四边形;(2)∵BD ⊥AC ,四边形CDBE 是平行四边形,∴四边形CDBE 是矩形,在Rt △CEB 中,F 为BC 的中点,∴BC=DE=2EF=10,∴CE 2=BC 2BE 2=10252=75,∴CE =∴四边形CDBE 的面积=BEEC =.[点睛]本题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定和性质,勾股定理的应用,得出△DCF ≌△EBF 是解题关键.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n +②当3m =,3n =时,m n +③当12m =,12n =时,m n +④当4m =,1n =时,m n +⑤当5m =,3n =时,m n +⑥当13m =,12n =时,m n +则关于m n +与之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.[答案](1)①=,②=,③=,④>,⑤>,⑥>, m n +≥,≥);(2)见解析;(3)4[解析][分析](1)①-⑥分别代入数据进行计算即可得解;(2)根据非负数的性质,(m n -)2≥0,再利用完全平方公式展开整理即可得证; (3)镜框为正方形时,周长最小,然后根据正方形的面积求出边长,即可得解. 探究证明:根据非负数的性质, [详解](1)①当m =2,n =2时,由于224+=,2224⨯=,所以m n +=2mn ;②当m =3,n =3时,由于336+=,2336⨯=,所以m n +=2mn ;③当m =14,n =14时,由于111442+=,1112442⨯=,所以m n +=2mn ; ④当m =4,n =1时,由于415+=,2414⨯=,所以m n +>2mn ;⑤当m =5,n =12时,由于111522+=,125102⨯=,所以m n +>2mn ; ⑥当m =13,n =6时,由于119633+=,126223⨯=,所以m n +>2mn ; 则关于2m n +与mn 之间数量关系的猜想是m n +≥2mn (≥,≥); (2)证明:根据非负数的性质(m n -)2≥0,∴m2mn +n≥0,整理得,m n +≥2mn ;(3)面积为1平方米的长方形镜框长与宽相等,即为正方形时,周长最小,所以,边长为1,周长为1×4=4.[点睛]本题考查了二次根式的应用,完全平方公式的应用,准确进行运算判断出两个算式的大小关系是解题的关键.25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.[答案](1)见解析;(2)见解析.[解析][分析](1)根据题目连接AC ,按要求分别作出BM 、CN 即可解答;(2)过点D 作DG //AB ,由平行四边形判定和性质可得CE =CE ,DG //CE ,再证明△GDF ≌△CEF (ASA )即可得出结论.[详解](1)解:如图所示:连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(2)证明:过点D 作DG //AB ,∵AD //BC ,DG //AB ,∴四边形ADGB 是平行四边形,∴AB =DG ,∵BE //AC ,AB //CE ,∴四边形BACE 是平行四边形,∴CE =AB ,DG //CE∴DG =CE ,∠GDF =∠CEF ,∵在△GDF 和△CEF 中,GDF CEF GFD CFE DG CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△GDF ≌△CEF (AAS ),∴DF =EF .[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.[答案](1)证明见解析;(2)BH=2AE ,理由见解析.[解析][分析](1)连接DF .根据对称的性质可得AD FD =.AE FE =.证明ADE FDE △≌△,根据全等三角形的性质得到DAE DFE ∠=∠.进而证明Rt DCG △≌Rt DFG △,即可证明.(2)在AD 上取点M 使得AM AE =,连接ME .证明DME ≌EBH △,根据等腰直角三角形的性质即可得到线段BH 与AE 的数量关系.[详解](1)证明:连接DF .∵,关于DE 对称.∴AD FD =.AE FE =.在ADE 和FDE 中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =. (2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴11145222EDG EDF GDF ADF CDF ADC ∠=∠+∠=∠+∠=∠=︒∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME 和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME ≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME∴BH .[点睛]本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.。

八年级语文下学期期中考试语文试卷(含答案)

八年级语文下学期期中考试语文试卷(含答案)

八年级语文下学期期中考试语文试卷(含答案)2023初二(下)期中语文(满分100分,考试时间120分钟)一、基础·积累(共14分)学校要开展“所学课文知多少”活动,请你完成以下任务。

1. 阅读《社戏》选段,完成小题。

两岸的豆麦和河底的水草所发散出来的清香,夹杂在水气中扑面的吹来;月色便朦胧在这水气里。

淡黑的起伏的连山,仿佛是踊跃的铁的兽脊似的,都远远地向船尾跑去了,但我却还以为船慢。

他们换了四回手,渐望见依稀的赵庄,而且似乎听到歌吹了,还有几点火,料想便是戏台,但或者也许是渔火。

那声音大概是横笛,宛转,悠扬,使我的心也沉静,然而又自失起来,觉得要和他①在含着豆麦蕴藻之香的夜气里。

……最惹眼的是屹立在庄外临河的空地上的一座戏台,模胡在远处的月夜中,和空间几乎分不出界限,我疑心画上见过的仙境,就在这里出现了。

这时船走得更快,不多时,在台上显出人物来,红红绿绿的动,近台的河里一望乌黑的是看戏的人家的船②。

……月还没有落,仿佛看戏也并不很久似的,而一离赵庄,月光又显得格外的皎洁。

……不多久,松柏林早在船后了,船行也并不慢,但周围的黑暗只是浓,可知已经到了深夜。

……离平桥村还有一里模样,船行却慢了,摇船的都说很疲乏,因为太用力,而且许久没有东西吃。

这回想出来的是桂生,说是罗汉豆正旺相,柴火又现成,我们可以偷一点来煮吃的。

大家都赞成,立刻近岸停了船……(1)加点字读音全都正确的一项是()A.兽脊(jí)模样(mú)B.兽脊(jí)模样(mó)C.兽脊(jǐ)模样(mú)D.兽脊(jǐ)模样(mó)(2)文段①②处选填词语和汉字全都正确的一项是()A. ①弥漫②篷____________B.①弥散②蓬C. ①弥漫②蓬____________D.①弥散②篷(3)根据文意解释画线句“……船行也并不慢,但周围的黑暗只是浓……”中“浓”的意思。

(____________ )2. 阅读《大自然的语言》选段,完成小题。

人教版数学八年级下册《期中检测题》附答案解析

人教版数学八年级下册《期中检测题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( ) A. B. C. D.2.下列四组线段中,可以构成直角三角形的是( )A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 1,2,3 3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形5. 如图,已知在△ABC中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E,BC=5,DE=2,则△BCE的面积等于( )A 10 B. 7 C. 5 D. 46.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 27.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则所有正方形的面积的和是( 2)cm .A. 28B. 49C. 98D. 1478.如图,分别以直角ABC 斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论:①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A ①②③ B. ②③④ C. ①③④ D. ①②④二、填空题9.若直角三角形的两直角边的长分别为a 、b ,3a -(b ﹣4)2=0,则该直角三角形的斜边长为_____. 10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED =____度.12.如图,□ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是_______.13.如图:在Rt ABC ∆中,CD 是斜边AB 上中线,若20A ∠=︒,则BDC ∠=_________.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.18.已知:如图,GB =FC ,D 、E 是BC 上两点,且BD =CE ,作GE ⊥BC ,FD ⊥BC ,分别与BA 、CA 的延长线交于点G ,F .求证:GE =FD .19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.20.如图,已知四边形ABCD 是平行四边形,点E 、B 、D 、F 在同一直线上,且BE=DF .求证:AE ∥CF .21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.22.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG//DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,求证四边形AGBD 是矩形.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.26.如图,在平行四边形ABCD中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在BC 上由点B向点C 出发,速度为每秒2cm;点Q 在边AD上,同时由点D 向点A 运动,速度为每秒1cm ,当点P 运动到点C时,P 、Q 同时停止运动,连接PQ,设运动时间为t秒.(1)当t为何值时四边形ABPQ 为平行四边形?(2)当t为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?(3)连接AP ,是否存在某一时刻t,使∆ABP 为等腰三角形?并求出此刻t的值.答案与解析一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:A、C、D既是轴对称图形,也是中心对称图形,只有B是轴对称图形,但不是中心对称图形.考点:轴对称图形、中心对称图形.2.下列四组线段中,可以构成直角三角形的是()A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 12,3[答案]B[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判断即可.[详解]解:、22261517+≠,该三角形不是直角三角形,不合题意;、222+=,该三角形是直角三角形,符合题意;1.522.5、222+≠,该三角形不是直角三角形,不合题意;51012、222+≠,该三角形不是直角三角形,不合题意.123故选:B[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°[答案]D[解析][分析]两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.[详解]解: 当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A 不是平行四边形; 当三个内角度数依次是88°,104°,108°时,第四个角是60°,故B 不是平行四边形;当三个内角度数依次是88°,92°,92°时,第四个角是88°,而C 中相等的两个角不是对角,故C 不是平行四边形;,当三个内角度数依次是88°,92°,88°时,第四个角是92°,D 中满足两组对角分别相等,故D 是平行四边形. 故选D .[点睛]此题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形 [答案]D[解析][分析]根据特殊平行四边形的判定方法判断即可.[详解]解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直且相等的平行四边形是正方形,D 选项错误.故答案为D[点睛]本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.5.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE 的面积等于( )A. 10B. 7C. 5D. 4[答案]C[解析] 试题分析:如图,过点E 作EF⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .考点:角平分线的性质;三角形的面积公式.6.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 2[答案]A[解析][分析]首先根据翻折的性质得到ED=BE,用AE表示出ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE 的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.[详解]解:∵将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知:AB2+AE2=BE2.∴32+AE2=(9﹣AE)2.解得:AE=4cm.∴△ABE的面积为:12×3×4=6(cm2).故选:A.[点睛]此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是(2)cm.A. 28B. 49C. 98D. 147[答案]D[解析][分析]根据勾股定理即可得到正方形A 的面积加上B 的面积等于E 的面积,同理,C,D 的面积的和是F 的面积,E,F 的面积的和是M 的面积.即可求解.[详解]解:根据勾股定理可得:S A +S B =S E ,S C +S D =S M ,S E +S F =S M所以,所有正方形的面积的和是正方形M 的面积的3倍:即49×3=147cm 2.故选D[点睛]理解正方形A,B 的面积的和是E 的面积是解决本题的关键.若把A,B,E 换成形状相同的另外的图形,这种关系仍成立.8.如图,分别以直角ABC 的斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论: ①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A. ①②③B. ②③④C. ①③④D. ①②④[答案]C[解析][分析] 根据已知先判断ABC EFA ∆≅∆,则AEF BAC ∠=∠,得出EF AC ⊥,由等边三角形的性质得出30BDF ∠=︒,从而证得DBF EFA ∆≅∆,则AE DF =,再由FE AB =,得出四边形ADFE 为平行四边形而不是菱形,根据平行四边形的性质得出4AD AG =,从而得到答案.[详解]解:ACE ∆是等边三角形,60EAC ∴∠=︒,AE AC =,30BAC ∠=︒,90FAE ACB ∴∠=∠=︒,2AB BC =, F 为AB 的中点,2AB AF ∴=,BC AF ∴=,ABC EFA ∴∆≅∆,FE AB ∴=,30AEF BAC ∠=∠=︒,又∵60EAC ∠=︒,EF AC ∴⊥,故①正确,EF AC ⊥,90ACB ∠=︒,//HF BC ∴, F 是AB 的中点,12HF BC ∴=, 12BC AB =,AB BD =, 14HF BD ∴=,故④说法正确;AD BD =,BF AF =,90DFB ∴∠=︒,30BDF ∠=︒,90FAE BAC CAE ∠=∠+∠=︒,DFB EAF ∴∠=∠,EF AC ⊥,30AEF ∴∠=︒,BDF AEF ∴∠=∠,()DBF EFA AAS ∴∆≅∆,AE DF ∴=,FE AB =,四边形ADFE 为平行四边形,AE EF ≠,四边形ADFE 不是菱形;故②说法不正确;∵四边形ADFE 为平行四边形,12AG AF ∴=, 14AG AB ∴=, AD AB =,则4AD AG =,故③说法正确,综上所述:正确结论的是①③④.故选.[点睛]本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.二、填空题9.若直角三角形的两直角边的长分别为a 、b ,(b ﹣4)2=0,则该直角三角形的斜边长为_____. [答案]5[解析][分析]直接利用偶次方的性质以及二次根式的性质得出a ,b 的值,再利用勾股定理得出斜边长.[详解]()240b -=, 3,4a b ∴==.5=.故答案为5.[点睛]本题主要考查了勾股定理以及二次根式的性质,正确得出a ,b 的值是解题关键.10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .[答案[解析]分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=22cm.23=13故答案为13.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED=____度.[答案]45[解析][分析]根据正三角形和正方形的性质可得∠EAB=150°,AE=AB,,从而得出∠AEB的大小,进而得出∠BE D的大小.[详解]∵四边形ABCD是正方形,△AED是正三角形∴∠EAD=60°,∠AED=60°,∠DAB=90°,AE=AD=AB∴△AEB是等腰三角形,∠EAB=150°∴∠AEB=∠ABE=15°∴∠BED=45°故答案为:45°[点睛]本题考查正方形和正三角形的性质,解题关键利用正三角形和正方形的性质,得出∠AEB=∠ABE.12.如图,□ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是_______.[答案]9.[解析][详解]试题分析:解:∵E 为AD 中点,四边形ABCD 是平行四边形,∴DE=AD=BC ,DO=BD ,AO=CO ,∴OE=CD , ∵△BCD 的周长为18,∴BD+DC+BC=18,∴△DEO 的周长是DE+OE+DO=(BC+DC+BD )=×18=9,故答案为9.考点:平行四边形的性质;三角形中位线定理.13.如图:在Rt ABC ∆中,CD 是斜边AB 上的中线,若20A ∠=︒,则BDC ∠=_________.[答案]40︒[解析][分析] 先根据直角三角形斜边中线的性质得出12CD AD AB ==,则有20DCA A ∠=∠=︒,最后利用三角形外角的性质即可得出答案.[详解]∵在Rt ABC ∆中,CD 是斜边AB 上的中线,, ∴12CD AD AB ==.∵20A ∠=︒,∴20DCA A ∠=∠=︒,∴40BDC DCA A ∠=∠+∠=︒.故答案为:40︒.[点睛]本题主要考查直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质,掌握直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质是解题的关键.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).[答案]不能[解析][分析]根据梯子的长度得到梯子距离墙面的距离,然后用勾股定理求出梯子的顶端距离地面的高度后与8.5比较即可作出判断.[详解]解:∵梯子底端离墙约为梯子长度的13,且梯子的长度为9米, ∴梯子底端离墙约为梯子长度为9×13=3米,==∵8.5<,∴梯子的顶端不能到达8.5米高的墙头.故答案为:不能.[点睛]本题考查了勾股定理的应用,解题的关键是根据习惯和告诉的梯子的长度求出梯子的底端距离墙面的距离.15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.[答案]①③④⑤[解析][分析]当把完全重合含有30角的两块三角板拼成的图形有三种情况:①把短直角边重合拼图;②把长直角边重合拼图;③把斜边重合拼图;可得六种拼图,进行判断即可.[详解]解:如图,把完全重合的含有30角的两块三角板拼成的图形共有六种情况,其中可以拼出等边三角形,等腰三角形(腰与底边不相等),矩形,平行四边形(不含矩形、菱形).故答案为:①③④⑤.[点睛]本题考查了图形的剪拼接,关键是在解题时要注意分类讨论,得出拼成的所有图形.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.[答案]20152[解析][分析] 根据勾股定理和已知条件,找出线段长度的变化规律,从而求出2014OP 的长度,然后根据三角形的面积公式求面积即可.[详解]解:∵OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 12212OP PP +=再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2221123OP PP +=又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3222234OP P P +=∴P n P n+1=1,OP n 1n +∴P 2014P 2015=1,OP 2014201412015+=∴20142015OP P S ∆=12P 2014P 2015·OP 20142015故答案为:20152.[点睛]此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.[答案]8边形,每一个内角为135°[解析][分析]先根据内外角和的关系,得出内角和,再利用内角和公式确定边数,最后得出每一个内角大小.[详解]∵内角和比外角和多720°∴内角和=720°+360°=1080°设多边形的边数为n则:(n-2)×180=1080解得:n=8∵是正多边形∴每个内角=1080135 8︒=︒[点睛]本题考查多边形的内角和公式,解题关键是通过外角和求解出内角和的大小.18.已知:如图,GB=FC,D、E是BC上两点,且BD=CE,作GE⊥BC,FD⊥BC,分别与BA、CA的延长线交于点G,F.求证:GE=FD.[答案]见详解[解析][分析]根据“HL ”证明Rt △GEB ≌Rt △FDC ,问题得证.[详解]解:证明:∵BD=CE ,∴BE=CD ,∵GE ⊥BC ,FD ⊥BC ,∴∠GEB=∠FDC=90°,∵GB =FC ,∴Rt △GEB ≌Rt △FDC ,∴GE =FD .[点睛]本题考查了三角形全等的证明,当三角形为直角三角形时,直角可以作为一个条件应用,也可以考虑用“HL ”进行证明.19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.[答案]40BAO ∠=︒[解析][分析]先证明四边形BECD 是平行四边形,得到50ABO E ∠=∠=︒,再根据菱形性质得到AC BD ⊥,根据直角三角形两锐角互余得到40BAO ∠=︒.[详解]证明:四边形ABCD 是菱形,AB CD ∴=,//AB CD ,又BE AB =,BE CD ∴=,//BE CD ,四边形BECD 是平行四边形,//BD CE ∴,50ABO E ∴∠=∠=︒,又四边形ABCD 是菱形,AC BD ∴⊥,9040BAO ABO∴∠=︒-∠=︒.[点睛]本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE∥CF.[答案]AE∥CF(过程见详解)[解析][分析]根据平行四边形的对边相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠ABD=∠CDB,然后求出∠ABE=∠CDF,再利用“SAS”证明△ABE和△CDF全等,根据全等三角形对应角相等证明即可.[详解]解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,∵AB CDABE CDF BE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS).∴∠E=∠F,∴AE∥CF.[点睛]本题考查平行四边形的性质;全等三角形的判定和性质及平行线的判定.21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.[答案](1)见解析;(2)14.[解析][分析](1)根据中心对称的定义,找到各点的对应点,然后顺次连接即可;(2)根据平行四边形的面积公式求解即可.[详解](1)如图;(2)由图可知:AB=A 1B 15A 1B=AB 1=7,∴四边形11ABA B 是平行四边形,∴四边形11ABA B 的面积是72⨯=14.[点睛]本题考查了中心对称的性质,以及平行四边形的判定与性质,熟练掌握中心对称的性质是解答本题的关键.22.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG//DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求证四边形AGBD是矩形.[答案](1)见详解;(2)见详解.[解析][分析](1)证三角形全等根据边角边即可证明;(2)先证明ADBG是平行四边形再证明有一个角是直角的平行四边形是矩形即可证明;[详解](1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠C,AD//BC,又∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,∴△ADE≌△CBF(SAS);(2)∵AD//BC,AG//DB,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴BE=DE,∵E、F分别为边AB、CD的中点, ∴AE=BE,∴BE=DE=AE,∴∠ADE=∠EAD,∠EDB=∠EBD,∵∠EAD+∠EDA+∠EDB+∠EBD=180°,∴∠EDA+∠EDB=90°,∴∠ADB=90°,∴四边形ADBG是矩形,[点睛]本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.[答案](1)见解析;(2)16秒.[解析][分析](1)过点A作AC⊥ON,求出AC的长,即可判断是否受影响;(2)设当火车到B点时开始对A处有噪音影响,直到火车到D点噪音才消失,根据勾股定理即可求出BD的长,即可求出影响的时间.[详解](1)如图,过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200,故受到火车的影响,(2)当火车到B点时开始对A处有噪音影响,此时AB=200,∵AB=200,AC=120,利用勾股定理得出BC=160,同理CD=160.即BD=320米,∴影响的时间为3201620秒.[点睛]此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.[答案](1)见解析;(2)45°[解析][分析](1)根据正方形的性质四条边都相等可得BC=CD,对角线平分一组对角,可得∠ACB=∠ACD,然后利用“边角边”证明△PBC和△PDC全等,根据全等三角形对应边相等可得PB=PD,然后等量代换即可得证;(2)根据全等三角形对应角相等可得∠PBC=∠PDC,根据等边对等角可得∠PBC=∠PEB,从而得到∠PDC=∠PEB,再根据∠PEB+∠PEC=180°,求出∠PDC+∠PEC=180°,然后根据四边形的内角和定理求出∠DPE=90°,判断出△PDE是等腰直角三角形,根据等腰直角三角形的性质求解即可.[详解](1)∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,∵BC CDACB ACD PC PC=∠=∠=⎧⎪⎨⎪⎩,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°−(∠PDC+∠PEC)−∠BCD=360°−180°−90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.[点睛]本题主要考查正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质,熟练掌握正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质是解题的关键.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.[答案](1)①DG=2PC,理由见解析;②见解析;(2)四边形PEFD是菱形,理由见解析.[解析][分析](1)①结论:DG=2PC,如图1中,作PM⊥AD于M.只要证明四边形PMDC是矩形,推出PC=DM,再证明MG=MD即可解决问题.②由四边形PMDC是矩形得CD=PM,由△ADF≌△MPG,推出PG=PF,进而可得DP=PF,再证明DF∥PE,推出四边形PEFD是平行四边形,再结合PD=PE即可证明四边形PEFD是菱形;(2)如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,由△ADF≌△MPG,推出DP=PG=PE =PF,再证明DF∥PE,推出四边形PEFD是平行四边形,由PD=PE,即可证明四边形PEFD是菱形.[详解]解:(1)①结论:DG=2PC.理由:如图1中,作PM⊥AD于M.∵四边形ABCD是正方形,∴∠C=∠CDM=∠DMP=90°,AD=CD,∴四边形DCPM是矩形,∴PC=DM,∵PD=PG,PM⊥DG,∴MG=MD,∴DG=2PC.线段DG与PC的数量关系为DG=2PC.②∵四边形CDMP 矩形,∴CD =PM ,∵AD =CD ,∴AD =PM ,∵DF ⊥PG ,∴∠DAF =∠PMG =∠GHD =90°,∴∠ADF +∠AFD =90°,∠ADF +∠PGM =90°,∴∠AFD =∠PGM ,在△ADF 和△MPG 中,AFD PGM FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GMP ,∴DF =PG∵PG =PE =PD ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.(2)结论:四边形PEFD 是菱形.理由:如图2中,作PM ⊥AD 于M .则四边形CDMP 是矩形,CD =PM ,∵∠DAF =∠PMG =∠DHG =90°,∴∠ADF +∠AFD =90°,∠G +∠GDH =90°,∵∠ADF =∠GDH ,∴∠AFD =∠G ,∵AD =CD ,CD =PM ,∴AD =PM ,在△ADF 和△MPG 中,AFD G FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△MPG ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.[点睛]本题考查旋转变换、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型. 26.如图,在平行四边形 ABCD 中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在 BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点 D 向点 A 运动,速度为每秒1cm ,当点 P 运动到点C 时,P 、Q 同时停止运动,连接 PQ ,设运动时间为t 秒.(1)当t 为何值时四边形 ABPQ 为平行四边形?(2)当t 为何值时,四边形 ABPQ 的面积是四边形 ABCD 的面积的四分之三?(3)连接 AP ,是否存在某一时刻t ,使∆ABP 为等腰三角形?并求出此刻t 的值.[答案](1)当4t =时,四边形ABPQ 是平行四边形;(2)当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在,当3t =333,ABP ∆为等腰三角形[解析][分析](1)利用平行四边形的对边相等得AQ BP =,建立方程求解即可;(2)分别表示出四边形ABPQ 和四边形ABCD 面积,利用面积关系即可求出;(3)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.[详解]解:(1)由P 、Q 的运动方式得:(2)=BP t cm ,DQ t =cm ,∵当点P 运动到点C 时,P 、Q 同时停止运动,∴06t <≤,在平行四边形 ABCD 中,BC = 12cm ,∴12AD BC ==cm ,则(12)=-AQ t cm ,若四边形 ABPQ 为平行四边形,则BP AQ =,即212=-t t ,解得:4t =,∴当4t =时,四边形ABPQ 是平行四边形;(2)如图 1,过点作AE BC ⊥于,在Rt ABE △中,30B ∠=︒,6AB =cm ,3AE ∴=cm ,四边形ABCD 是平行四边形,BC = 12cm ,∴12336=⋅=⨯=ABCD S BC AE cm 2,由(1)得:(2)=BP t cm ,(12)=-AQ t cm ,∴S 四边形ABPQ =113()(212)3(18)222+⋅=+-⨯=+BP AQ AE t t t cm 2, 若四边形ABPQ 的面积是四边形ABCD 的面积的四分之三, 即33183624+=⨯t ,解得:6t =, ∴当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在某一时刻t ,使ABP △为等腰三角形,若ABP △为等腰三角形,则AB BP =或AP BP =或AB AP =, ①当AB BP =时,则6BP =cm ,即26t =,解得:3t =;②当AP BP =时, 如图 2 ,过作PM 垂直于AB ,垂足为点M ,∵AP BP =,PM ⊥AB , ∴132==BM AB cm , 30B ∠=︒,∴23BP =cm ,则223=t ,解得:3t =,③当AB AP =时,如图3,∵AB AP =,AE BC ⊥,∴E 为BP 中点,则BP =2BE ,在Rt ABE △中,30B ∠=︒,6AB =cm ,AE =3cm , ∴33BE =,263==BP BE ,则263=t 解得:33t =,所以,当3t =3或33,ABP ∆为等腰三角形.[点睛]本题是四边形综合题,主要考查了平行四边形的性质、含30的直角三角形的性质,等腰三角形的定义,解题的关键是熟练运用这些性质和运用分类讨论的思想思考问题.。

河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题

河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题

河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列调查中,适合采用抽样调查的是( )A .调查本班同学的数学小测成绩B .调查一批学生饮用奶的微量元素的含量C .为保证载人航天器成功发射,对其零部件进行检查D .对乘坐某班次飞机的乘客进行安检2.如图,在平面直角坐标系中,☆盖住的点的坐标可能是( )A .(3,1)-B .(3,1)--C .(3,1)D .(3,1)- 3.在同一平面直角坐标系内,直线3y x =与直线5y kx =-互相平行,则k 的值( ) A .3- B .13 C .3 D .5-4.一根蜡烛原来长cm a ,点燃后燃烧的时间为t min ,剩余蜡烛的长为cm y ,(cm)y 与(min)t 之间的函数图像正确的是( )A .B .C .D .5.下列说法正确的是( )A .在圆的面积公式2S r π=中,常量是π、r ,变量是SB .加工100个零件,工作效率p 与时间t 之间的关系式是100=pt ,p 、t 都是变量C .以固定的速度0v 向上抛一个小球,小球的高度(m)h 与小球运动的时间t (s )之间的关系式是20 4.9h v t t =-,常量是4.9,变量是h 、tD .在匀速运动公式S vt =中,常量是t ,变量是S 、v6.王老师对本班50名学生的年龄进行了统计,列出如下的统计表,则本班13岁的人数是( )A .30人B .25人C .20人D .18人 7.已知一次函数(31)4=-+-y m x m 图像经过原点,则下列结论正确的是( ) A .4m =- B .2m = C .4m =± D .4m =8.为了了解某校初中学生寒假规范书写情况,随机抽取80名学生20天的每日一篇练字纸,在这个问题中,样本容量是( )A .80B .20C .1600D .1600篇的练字纸 9.在画某一次函数的图像时,小红列表如右图,则下列各点不在其图像上的是( )A .(5,8)-B .(3,6)-C .(7,4)-D .(15,13)- 10.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围( )A .2k <-B .2k >-C .0k >D .0k <11.在平面直角坐标系中,已知点(4,0)A -,O 为坐标原点.若要使OAB V 是直角三角形,则点B 的坐标不可能是( )A .(4,2)-B .(0,4)C .(4,2)D .(2,2)-12.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D . 13.小红、小丽假期在同一超市购买同种水果,付款金额y (元)与购买x (千克)之间的函数图象如图所示,小红一次性购买6千克,小丽每次买3千克,连续买2次,小红比小丽少花几元( )A .4B .3C .2D .114.某校举行规范书写大赛,100名参赛同学最后得分(得分取整数)的频数分布直方图如图所示(频数轴刻度等间隔).根据图中的信息写出频数轴每隔代表人数( )A .5B .10C .15D .无法确定二、填空题15.函数321=-y x 自变量x 的取值范围是 . 16.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出不完整的频数分布表(如右图).频数分布表中的组距是 .17.已知y 与x 成正比例函数,当2x =-时,y =-6,当5x =时,y = . 18.在平面直角坐标系中,对于点(,)P x y ,若点Q 的坐标为(,)-+x ay ax y ,则称点Q 是点P 的“a 阶智慧点”(a 为常数,且0a ≠),例如:点(1,3)P 的“2阶智慧点”为点(123,213)-⨯⨯+,即点(5,5)-Q .(1)点(1,2)A --的“3阶智慧点”的坐标为 ;(2)若点(2,13)C m m +-的“5-阶智慧点”到x 轴的距离为1,则m 的值 .三、解答题19.在同一平面直角坐标系内有A 、B 两点.点A 在第二象限,且到x 轴的距离为3,到y 轴的距离为1;点(3,29)--B m m 在第三象限.(1)直接写出点A 的坐标;(2)求m 的取值范围;(3)连接AB ,且AB 垂直于x 轴,求点B 的坐标.20.如图1,在ABC V 中,8BC =,5AD =,动点E 由点C 沿CB 向点B 移动(不与点B 重合),设CE 的长为x ,ABE V 的面积为S .(1)完成表格:(2)在图2所示的平面直角坐标系中画出图像;(3)请写出S 与x 之间的函数关系式;21.某城市部分公共场所位置如图所示,小方格的边长为1个单位长度.已知学校(5,3)A ,体育馆(3,2)B --,火车站O 为坐标原点,文化馆C 与体育馆B 关于x 轴对称,超市D 与点B 关于原点对称.(1)请在图中建立平面直角坐标系,并标出点,O C 的位置;(2)直接写出点D 的坐标;(3)小红从学校出发,先向南走6个单位长度,再向西走3个单位长度,到达图书馆E . ①在图中标出点E ,并写出点E 的坐标________;②连接,,B O E ,则OBE △的面积是________.22.五一黄金周,小红一家驾车出游,出发时油箱内存有一定数量的汽油,行驶若干小时后,到达第一个旅游景点A ,游玩后驾车赶往第二个景点,从第一个景点出发4h 后在途中某一加油站加油,加油5分钟使油箱内汽油的升数与未出发前一致,若汽车从始至终都是以同一速度匀速行驶,图中表示的是该过程中油箱里的剩油量Q (L )与行驶时间t (h )之间的函数关系.(1)油箱内原有汽油________升;在第一个景点游玩________h;(2)A点坐标表示的实际意义________;(3)直接写出C点坐标________;(4)求DC所在直线解析式.23.为了创建书香校园,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成三幅不完整的统计图表.请根据图表提供的信息,解答下列问题:a________;(1)表中的(2)请你把条形统计图中“4册”部分补充完整;(3)若该校共有2200名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.24.A,B两地相距48km,甲、乙两车分别从A地和B地同时出发相向而行.他们距A地s和出发后的时间t(h)之间的函数关系的图象如图所示.的路程(km)(1)分别求出甲、乙两车距A地的路程s与时间t的函数关系式;(2)求甲乙两车相遇的时间;(3)直接写出两车相距5千米时t的值;25.一辆中型客车准乘32人(包括一名司机),这辆客车由A地行驶到B地,平均油耗为8升/百公里,现油价7元/升,设乘客有x人,盈利为y元.现有两种路线可供选择路线一:走“国道”全程180公里,每人票价25元,其他运行成本为50元;路线二:走“高速”全程120公里,每人票价30元,高速费60元,其他运行成本50元.(1)分别写出两种路线盈利y(元)与x(人)的函数关系式;(2)应该怎么选择路线,保证盈利最大?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、关于惯性,下列说法中正确的是( )A 、静止的物体才有惯性B 、做匀速直线运动的物体才有惯性C 、物体的运动方向改变时才有惯性D 、物体在任何状态下都有惯性2、在匀速直线行驶的火车车厢里,有一位乘客做立定跳远,则他( )A 、向前跳将更远B 、向后跳的更远C 、向旁边跳得更远D 、向前向后跳得一样远3.关于压力,下列说法中正确的是( )A 、压力的方向总是竖直向下的B 、压力的大小总等于物体所受重力的大小C 、压力的方向总是垂直于支持面的D 、任何情况下,压力的大小都与重力无关4.如图13-58所示,将一张明信片沿着其边长弯成弧形放在玻璃台面上,形成一座“拱桥”,当你对着“拱桥”使劲吹气时,你会发现( )A .“纸桥”被吹开较长的距离B .“纸桥”被吹开较短的距离C .“纸桥”被吹得上下跳动几下D .“纸桥”紧贴桌面不动5.我国公安部规定,汽车前排的司机和乘客都应在胸前系上安全带,这主要是为了减轻在下列那种情况出现时,可能对人体造成伤害( )A.车速太快B. 车速太慢C.突然起动D.紧急刹车6.下列说法中正确的是 [ ]A .不可能有105℃的水B .水在90℃时,绝不会沸腾C .气压为768mmHg 时,水的沸点会低于100℃D .以上说法都不正确7.做托里拆利实验时,下述说法中不妥当的是 [ ]A .玻璃管长度应约1m 左右B .玻璃管的粗细必须是均匀的C .操作过程必须严防漏气D .测量时,刻度尺必须竖直8、利用托里拆利实验装置测量大气压强时,当玻璃管内的水银柱稳定后,在玻璃的顶部穿一小孔,那么管内的水银液面将( )A.保持不变B.逐渐下降,最终与管外液面相平C.逐渐上升,最终从小孔中流出D.稍微下降一些9、用塑料管可以把瓶子中的水吸到嘴里,这是由于( )A .人对水产生吸引力的作用B .吸管本身有吸水的作用C .大气压作用在水面上的结果D .水压的作用10、有关大气压的说法正确的是( )A .因为空气受到重力作用,所以空气内部向各个方向都有压强B .在同一地点,大气压是固定不变的C .大气压随高度的增加而增大D .大气压随高度的增加而减小图13-5811.三个底面积相同,高度相同的容器A ,B ,C 盛满同种液体,如图10-10所示. 用pA ,pB ,pC 和FA ,FB ,FC 分别表示液体对容器底面的压强和压力,则( )A .pA=pB=pC FA >FB >FC B .pA=pB=pC FA=FB=FCC .pB >pC >pA FA=FB=FCD .pA >pB >pC FA=FB=FC12.将细木棍下部缠上铁丝后放入水中能直立漂浮,如图所示.若将露出水面的部分木棍剪断,则剩余部分将 ( )A .保持不动B .要下沉一点C .要上浮一点D .不好判断13.如上图一试管中装有某种液体,在试管处于图2所示的甲、乙、丙三位置时,管内液体质量保持不变,则试管底部受到的液体压强( )A .甲位置最大B .乙位置最大C 。

丙位置最大D .三个位置一样大14. (多选题)夏天到了,伟伟在盛有凉开水的杯子中放入冰块做冷饮, 如图所示。

当冰块熔化后,不发生变化的是( )A .杯中水面的高度B .杯子对桌面的压力C .水对杯底的压强D .水对杯底的压力15、下列关于浮力的说法中,错误的是 [ ]A .浮力的方向总是向上的B .浮力起因于液体内部的压强随深度的增加而增大C .只有浸在液体中的物体才受到浮力D .物体受到浮力作用时,向上的压力大于向下的压力。

16、体积相同的铜、铁、铝、木四个小球,放入水中静止后,如图,已知这几种物质的密度关系是:铜>铁>铝>水>木,则下列判断正确的是( )A 铝、木两球一定是实心的,铜、铁两球一定是空心的B 四个小球所受浮力关系是F 铜>F 木>F 铁=F 铝C 四个小球的重力关系是:G 铝>G 铁>G 木>G 铜D 四个小球的质量关系是:m 铝>m 铁>m 铜>m 木17.右图所示,一个质量分布均匀的实心球体恰能悬浮在水中,现将其沿图示虚线切成大小不等的两块,则这两块物体在水中的浮沉情况是( )A 、大的下沉,小的上浮B 、大的上浮,小的下沉C 、大小两块仍悬浮D 、大小两块都上浮18.在远洋轮船的船舷上,都漆着五条“吃水线”,又称“载重线”,如图10-7所示.其中标有W 的是北大西洋载重线,标有S 的是印度洋载重线.当船从北大西洋驶向印度洋时,轮船受到的浮力以及北大西洋与印度洋的海水密度1ρ和2ρ的关系,有( )A .浮力增大,1ρ=2ρB .浮力减小,1ρ=2ρC .浮力不变,1ρ>2ρD .浮力不变,1ρ<2ρ 19、在航天飞行器中处于失重状态的宇航员,其身体 惯性。

(没有/仍具有)铜 木 铁 铝 图10-720、.坐在汽车车箱内靠左侧车窗的乘客,车突然开动时,身体将,当汽车刹车时,身体将,当向右转弯时,身体将 ,转弯时乘客产生这种现象的原因是:。

21.作用在的两个力,如果们、、,这两个力就是的.22〃静止在水平桌面上的一本书,质量为0.2千克,受到力的作用,大小为牛,方向是,此力的施力物体是;同时书还受到力的作用,大小是牛,方向是,此力的施力物体是,这两个力的关系是.23.起重机的钢丝绳吊着5×103牛的重物,当物体以0.5米/秒的速度匀速提升时,钢丝绳对重物的拉力是牛;当物体以1米/秒的速度匀速下降时,钢丝绳对重物的拉力5×103牛;当物体以1.5米/秒的初速度加速提升时,钢丝绳对重物的拉力5×103牛;当物体以1.5米/秒的初速度减速提升时,钢丝绳对重物的拉力5×103牛,当物体静止在半空中时,钢丝绳对重物的拉力5×105牛(选填“大于”、“等于”或“小于”).24、液体内部压强的特点:(1)液体内部向各个方向(填“有”或“没有”)压强。

(2)在液体内部同一深度处,液体向各个方向的压强大小。

(3)液体内部的压强,随深度的增加。

(4)液体内部的压强跟液体的密度。

25.打开自来水龙头,使自来水流过如图13-56所示的玻璃管,在A、B、C三处,水的流速较大的是处,压强较小的是处(选填“ A”“B”或“C”)。

26、叫压力,压力产生的效果与和有关27、如上图,将去盖的雪碧瓶截去底后倒置,放入一乒乓球后压着球向里注水,然后放手,则乒乓球将,再把瓶盖盖紧,则乒乓球将。

28、弹簧测力计下吊着重为14.7N的金属块,当金属块浸没在水中时,弹簧测力计示数为9.8N,则水对金属块的浮力为N,金属块排开水的体积为m3。

29、力的条件:当F浮>G物时,物体将,最后;当F浮<G物时,物体将,最后;当F浮=G物时,物体将。

30、质量条件:当M排>M物时,物体将,最后;当M排<M物时,物体将,最后;当M排=M物时,物体将。

31、密度条件:当ρ排>ρ物时,物体将,最后;当ρ排<ρ物时,物体将,最后;当ρ排=ρ物时,物体将。

32.如图24—6所示,将两块相同的橡皮泥做成实心球形和碗形,分别放入相同的甲、乙两杯水中,静止时甲杯中橡皮泥所受的浮力 乙杯中橡皮泥所受的浮力(大于/小于/等于), 杯中水面升高得多。

33.2007年12月21日,古沉船“南海一号”在广东阳江海域被打捞出水。

打捞时,施工人员首先将未充气的16个气囊分别均匀地安装在水下沉船四周,然后将气囊充足气,借助于气囊的浮力将沉船打捞上来。

若每个气囊充足气后的体积达2m 3,则这些气囊受到海水的浮力约是 N 。

(设海水的密度为1.0×103Kg/m 3,g 取10N/Kg )34.右图所示的容器中装有水,水上漂浮着一块重16N 的木块,木块露出水面的体积占总体积的1/4,则可知木块的密度为 千克/米3。

若将木块露出水面的部分切除,则留在水中的木块将会上浮,木块静止后露出水面的体积占剩余部分总体积的 。

35.甲、乙是两个体积相同而材料不同的实心球,它们静止在某种液体中的情况如图10-5所示,那么两球所受的浮力F 甲 F 乙,两球的密度ρ甲 ρ乙(填“大于”“小于”或“等于”)36.体积为100厘米3的木块A 漂浮在水面上,有1/4露出水面(如图1),现在木块上面放一铁块B ,刚好使木块全部浸入水中(如图2)。

(g 取10N/kg )求:(1)木块浮漂时受到的浮力;(2)木块的密度;(3)铁块的重。

37、我国长江三峡工程是当今世界最大的水利枢纽工程。

至去年6月1日,三峡蓄水达海拔135m 水位。

三峡大坝设有23个泄洪深孔,深孔横截面积63m 2。

(取g=10N /kg)求:(1)设坝区河底海拔高50m ,当水位达135m 时,三峡大坝何处所受长江水的压强最大?最大压强多大?(2)设三峡坝各深孔同时泄洪,水流速v=20m/s ,该大坝每秒钟泄下的洪水是多少吨?38,一个金属块在空气中重3.8N ,将它浸没在盛满水的溢水杯中时有50mL 的水从溢水杯流入到量筒中,求。

(1)金属块的体积.(2)金属块在水中受到的浮力。

(取g =9.8N/kg)(3)金属块在水中时,弹簧测力计的示数.(4)金属块的密度.(1) A AB 图10-5。

相关文档
最新文档