固体物理第三章(2)
固体物理-第三章 金属自由电子论讲解

3.1.量子自由电子理论
I2=(1/2!)-(E-EF)2(-f/E) dE 不难算出, I0=1(d-函数积分), I1=0 (根据d-函数的性质) 为了计算I2, 而令h=(E-EF)/kBT,于是, I2=[(kBT)2/2]-{h2/[(eh+1)(e-h+1)] }dh=(pkBT)2/6
波长),可见k为电子的波矢, 是3 维空间矢量. r:电 子的位置矢量。
由波函数的归一化性质:vy*(r) y(r)d(r)=1, v:金属体积, 假设为立方体,边长为L,把3.1.1.3式 代入归一化式子, 得: A=L-3/2=V-1/2, 所以
y(r)= V-1/2eik•r 3.1.1.4, 此即自由电子的本征态。 由周期性边界条件, y(x,y,z)= y(x+L,y,z) = y(x,y+L,z) = y(x,y,z+L)
一状态的电子具有确定的动量ħk和能量ħ2k2/(2m),因而 具有确定的速度,v=ħk/m,故一个k全面反映了自由电子 的一个状态,简称态。
2. k-空间
以kx, ky , kz 为坐标轴建立的 波矢空间叫k-空间。电子的 本征态可以用该空间的一点
来代表。点的坐标由3.1.1.5 式确定。
3.1.量子自由电子理论
T>0K的费米能EF 把3.1.2.2和3.1.3.1代入3.1.3.2, 分步积分, 得:
N= (-2C/3) 0 E3/2(f/E) dE 3.1.3.3 令G(E)= 2C E3/2/3, 3.1.3.3.式化简为 N= 0G(E) (-f/E) dE 3.1.3.4 (-f/E)函数具有类似d函数的特性,仅仅在EF附近kBT范 围内才有显著的值,且为E-EF偶函数. 由于(-f/E)函数 具有这些性质,把G(E)在EF附近展开为泰勒级数, 且积分 下限写成 -,不会影响积分值. 3.1.3.4化为:
《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。
王淑华固体物理答案第三章

3.4 由原子质量分别为 m, M 两种原子相间排列组成的一维复 式格子,晶格常数为 a ,任一个原子与最近邻原子的间距 为 b ,恢复力常数为 β1 ,与次近邻原子间的恢复力常数 β2 , 试求 (1)格波的色散关系; (2)求出光学波和声学波的频率最大值和最小值。 解:(1)只考虑最近邻原子的相互作用
由上式可知,存在两种独立的格波。
声学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωA sin 1 1 2 m 2 β1 β2
光学格波的色散关系为
12 β β 4 β β qa 2 2 1 2 1 2 ωO sin 1 1 2 m 2 β1 β2
为角频率; 式中,A为轻原子的振幅;B为重原子的振幅;
q 2 为波矢。
将试探解代入运动方程有
m 2 A e iaq e iaq B 2 A
M 2 B e iaq e iaq A 2B
(1)
经整理变成
2 A 2 cos aqB 0 2 2 cosaqA M 2 B 0
2
m
要A、B有不全为零的解,方程(1)的系数行列式必须等于零, 从中解得
12 2 2 m M m M 2mM cos 2aq mM 2
(2)
式中的“+”“-”分别给出两种频率,对应光学支格波和声学支 格波。上式表明, 是q的周期函数, 2a q 2a 。当q取 边界值,即 q 2a 时,从(2)式得
固体物理学第三章

3 1 !(d d 3 U 3)r a 3 ..... .n 1 !.(d d .n U .n)r .a.n
简谐近似—— 振动很微弱,势能展式中只保留到二阶项。
U (r) U (a ) (d)U 1(d 2 U ) 2 da r 2 !d2ra U(r)U(a)1 2(dd2U 2r)a2
此处N=5,代入上式即得:
ei(5a)q 1 5aqn2(n为整数)
由于格波波矢取值范围:
q
a
a
则:5n5
22
故n可取-2,-1,0,1,2这五个值
相应波矢:4,2,0,2,4
5a 5a 5a 5a
由于,2 sinqa
m2
代入,β,m及q值 则得到五个频率依次为(以rad/sec为单位) 8.06×1013,4.99×1013,0,4.99×1013,8.06×1013
f du(d2u) d 2u 为恢复力常数
dr d2r
dr 2
周期边界条件
N 2 a l q l 为 整 N /2 h N 数 /2 且
3.1 一维单原子链的振动
3.1.1 一维单原子链的振动
设原子链为一维,则:原子间距为a; 第n个原子的平衡位置为rn=na 第n个原子离开平衡位置的位移为xn
格波的应用:
晶体的弹性力常数β约为15N/m,若一个原 子的质量为6×10-27Kg,则晶格振动的最大圆频 率为ωm=1014弧度/秒,最大频率γm约为1013Hz即 10THz。THz波段在微波与红外光之间。
不同材料的晶格振动频谱具有各自的特征, 可以作为这个材料的 “指纹”,THz谱技术作为 一种有效的无损探测方法,通过晶格振动频谱可 以鉴别和探测材料。
3.1.2 格波频率与波矢关系——色散关系
《固体物理学》房晓勇主编教材-思考题解答参考03第三章_晶体振动和晶体的热学性质

第三章晶体振动和晶体的热学性质3.1相距为某一常数(不是晶格常数)倍数的两个原子,其最大振幅是否相同?解答:(王矜奉3.1.1,中南大学3.1.1)以同种原子构成的一维双原子分子链为例, 相距为不是晶格常数倍数的两个同种原子, 设一个原子的振幅A, 另一个原子振幅B, 由《固体物理学》第79页公式,可得两原子振幅之比(1)其中m原子的质量. 由《固体物理学》式(3-16)和式(3-17)两式可得声学波和光学波的频率分别为, (2). (3)将(2)(3)两式分别代入(1)式, 得声学波和光学波的振幅之比分别为, (4). (5)由于=,则由(4)(5)两式可得,1B A=. 即对于同种原子构成的一维双原子分子链, 相距为不是晶格常数倍数的两个原子, 不论是声学波还是光学波, 其最大振幅是相同的.3.2 试说明格波和弹性波有何不同?解答:晶格中各个原子间的振动相互关系3.3 为什么要引入玻恩-卡门条件?解答:(王矜奉3.1.2,中南大学3.1.2)(1)方便于求解原子运动方程.由《固体物理学》式(3-4)可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(《固体物理学》§3.1与§3.6). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.3.4 试说明在布里渊区的边界上()/q π=a ,一维单原子晶格的振动解n x 不代表行波而代表驻波。
固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32
由
2π Kh
d h1h2h3
2π
d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
固体物理 第三章 晶格振动

1 2 T = ∑q 2 i =1 i
3N •
3.1晶体中原子的微振动 3.1晶体中原子的微振动 声子 晶体振动势能U (qi ) 按 qi 的幂将势能在平衡位置附近展开为泰勒级数 ∂U 1 ∂ 2U U = U0 + ∑ ( ) 0 qi + ∑ ( ) 0 qi q j + 高阶项 ∂q i 2 ij ∂qi ∂q j i 其中 U 0 = 0 平衡位置处的势能为零势能点
xn = x N + n
又 : xn = Ae
i ( kna − ωt )
又 − π < k ≤ π s = − N + 1,− N + 2⋯⋯ N 共有N个取值 : a a 2 2 2
=1 e ⇒ 2π ⋅ s, = N+ 2π ,− π + 2 2π ,..., π 有N种均匀分布的分立取值 种均匀分布的分立取值 a L a L a 2π L 间隔∆k = ,密度 ,第一布里渊区倒格点数N。 L 2π
, ( l =1, 2, ⋯ 3N )
Ql = Ql0 sin(ωl t + α 1 )
1 ε l = (Q l + ωl2Ql2 ) 2
• 2
能量量子化
1 εl = (nl + )hυl 2
3.2 一维布拉菲格子的晶格振动 一、简谐近似
du 1 d 2u u( x) ≈ u( x0 ) + ∆x + (∆x)2 2 dx r0 2 dx x
3.1晶体中原子的微振动 声子 3.1晶体中原子的微振动 晶格振动模式
质量加权坐标下: 质量加权坐标下:
•• 3N
↔
独立的谐振子
↔
声子
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h2 b2 b2 b2, N 2 h N 2 qy , qy 2 N2 2 2 2 2 h3 b3 b3 qz b3, N 3 h N 3 qz , 3 N3 2 2 2 2
h3 h1 h2 q b1 b2 b3 —— N N1N2 N3 个取值 N1 N2 N3
——称为声学波 其余(3n-3)支格波的频率比声学波的最高频率 还高,称之为光学波
波恩-卡门边界条件
l1 , l2 , l3 l1 N1 , l2 , l3 l u u u , p p p l1 , l2 , l3 l1 , l2 N 2 , l3 l u u u , p p p l1 , l2 , l3 l1 , l2 , l3 N 3 l u u u , p p p
对于每一个波矢q 3支声学波和3n-3支光学波
总的格波模式数目
N (3 3n 3) 3nN
结论
——晶体中原子的坐标数目
晶格振动的波矢数目等于晶体的原胞数 格波振动模式数目等于晶体中所有原子的自由度之和
金刚石的振动谱
6支格波,3支声学波,3支光学波 实验得到的振动频谱与理论相符
——玻恩卡门周期边界条件是合理的
r1、r2 、rn
各原子偏离平衡位置的位移
l l l u , u , u 1 2 n
第p个原子在α方向的运动方程
l mpu x, y, z p
——一个原胞中有3n个类似的方程 原子位移方程的解
l i[( Rl rp )q t ] u Ap ' e Ap ei[ qRl t ] p l u Ap ei[ qRl t ] 分量表示形式 p
可得
ei ( q Rl t ) ei ( q Rl qN1a1 t ) , i ( q Rl t ) i ( q Rl q N 2 a2 t ) e e , ei ( q Rl t ) ei ( q Rl q N3a3 t ) ,
q N1a1 2 h1 , q N 2 a2 2 h2 , q N 3a3 2 h3 ,
波矢q具有倒格矢的量纲,容易得出
h3 h1 h2 q b1 b2 b3 N1 N2 N3
—— h1、h2、h3 取整数
——三维晶格的波矢是分离的 波矢的基矢
——将方程解代回3n个运动方程
3n个线性齐次方程 mp 2 Ap . 系数行列式为零,得到3n个ω的实根 在3n个实根中,其中有三个,当波矢 q 0 时 Ai vAi (q)q, (i 1, 2, 3)
vAi (q) 是q方向传播的弹性波的速度,是一常数
A1 A2 An ——原胞作刚性运动
b1 b2 b3 、 、 N1 N 2 N3
波矢空间一个点占据的体积
b1 b2 b3 * (2 )3 (2 )3 V * ( )= N1 N2 N3 N N Vc
波矢密度
Vc 1 3 (2 ) (2 )3 Vc
波矢改变一个倒格矢
km m1b1 m2b2 m3b3, m1、m2、m3为整数
R(l ) Km 2 (l1m1 l2 m2 l3m3 )
eiRl ( ቤተ መጻሕፍቲ ባይዱm q ) eiR(l )q
原子的位移形式保持不变,原子振动状态一样 q的取值限制在一个倒格子原胞中 ——第一布里渊区
b1 b1 h1 N1 N1 q x , qx b1, h1 2 2 2 2 N1
固体物理
Solid State Physics
§3.2 三维晶格的振动
三维复式格子 ——一个原胞中有n个原子 原子的质量 m1 , m2 , m3 ,mn 第l个原胞的位置 R(l ) l1a1 l2a2 l3a3 晶体的原胞数目 N N1 N 2 N 3 原胞中各原子平衡位置的相对坐标