数学正考试卷
高三数学考试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. -3D. 无理数2. 函数y=2x-1的图像是:A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像3. 已知等差数列{an}的第一项a1=3,公差d=2,则第10项an的值为:A. 19B. 21C. 23D. 254. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是:A. 105°B. 120°C. 135°D. 150°5. 若复数z满足|z-1|=2,则复数z在复平面上的几何意义是:A. z到点(1,0)的距离为2B. z到点(0,1)的距离为2C. z到点(1,1)的距离为2D. z到点(0,0)的距离为26. 下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^57. 已知函数f(x)=x^2-4x+3,则f(2)的值为:A. 1B. 3C. 5D. 78. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若log2(x+1)=3,则x的值为:A. 2B. 3C. 4D. 510. 下列不等式中,正确的是:A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x二、填空题(本大题共5小题,每小题5分,共25分)11. 已知等比数列{an}的第一项a1=1,公比q=2,则第n项an=______。
12. 在△ABC中,若∠A=60°,b=8,c=10,则a=______。
13. 函数y=2^x的图像与y=2^(-x)的图像关于______对称。
14. 若复数z=3+4i,则|z|=______。
15. 已知等差数列{an}的前n项和为Sn,若a1=2,d=3,则S10=______。
2024年对口高职升学考试数学考试卷

2024年对口高职升学考试数学考试卷一、 选择题(共10小题,每题6分,共计60分。
)1、已知不等式2x-5<0,x ∈N,则解集子集的个数( )解不等式求子集个数A.{1}B.{2}C.{1,3}D.{2,3}2、已知|a |>|b |,则下列正确的是( )不等式性质A.a >bB.a <bC.a ²>b ²D. a ²<b ²3、COS 25π3=( )特殊角的三角函数值 A. √32 B.− √32 C.12 D.− 124、求()f x =定义域为( )定义域及不等式A .(-∞,0) B. (-∞,0] C. D.5、不等式组{2x −6<03x +3>0的解集为( )解不等式组 6、4个男生,3个女生,选4人参赛,要求至少有一男生一女生有多少种不同的选法。
( )排列组合A . B. C.34 D.7、已知圆的半径为1,圆心(2,1),则圆的标准方程为( 园 8、在∆ABC 中,a ²=b ²+c ²-bcsinA ,求tanA ( )正弦定理9、设函数f(x)=√3cos 2x +sinxcosx ,则函数的最大值为( )三角函数10、f (x )在[-2024,2024]中,最大值为M ,最小值为m ,若f (x )+1为奇函数,求M+m 的值。
( )函数的性质A .-2 B.2 C.1 D.0二、解答题。
(共三题,共计40分)11、设数列{a n }为等比数列,已知a 2=4,a 5=32,求(1) 数列{a n }的公比;(2)数列{a n }的前8项和.+x.12、已知f(x)=1x(1)、判断f(x)的奇偶性;(2)、证明f(x)在(-∞,-1)上是增函数。
此类题型以往较少13、已知椭圆半长轴长为6,且过(3√3,0)。
(1)求椭圆方程。
(2)有一条直线与椭圆交于A、B两点,AB两点的中点坐标为(-2,1),求直线的方程。
2023年初中数学试题及答案

2023年初中数学试题及答案
一、选择题(共10题,每题2分)
1. 已知a=2,b=3,c=4,那么a的一半是多少?
A. 1
B. 2
C. 3
D. 4
2. 以下哪个数字是质数?
A. 12
B. 15
C. 17
D. 20
...
(以下省略若干选择题)
二、填空题(共5题,每题3分)
1. 200 ÷ 25 = __________.
2. 小明有2袋糖果,每袋里有8颗,他一共有多少颗糖果?
答:__________颗。
(以下省略若干填空题)
三、解答题(共3题,每题10分)
1. 用两个数字组成一个两位数,如果这个两位数可以被3整除,那么这两个数字最多可能是多少?
答:两个数字最多为__________。
2. 一个正方形的边长是5 cm,计算它的周长。
答:周长为__________cm。
(以下省略若干解答题)
四、应用题(共2题,每题15分)
1. 小明的书包里有5本数学书、4本英语书和3本科学书,他打算从中选出2本不同的书来整理,问有多少种不同选择的方法?
答:共有__________种不同选择的方法。
2. 一辆汽车从市中心出发,以每小时60公里的速度行驶,行驶了4个小时后,在距离市中心180公里的地方停车休息。
请问,汽车停下来休息前所行驶的距离是多少公里?
答:汽车停下来休息前所行驶的距离是__________公里。
(以下省略若干应用题)。
初中数学基础知识考试卷

一、选择题(每题2分,共20分)1. 若一个数的3倍与5的和是18,则这个数是()A. 3B. 4C. 5D. 62. 一个长方形的长是8cm,宽是3cm,它的周长是()A. 19cmB. 20cmC. 21cmD. 22cm3. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 14. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²5. 下列各数中,是质数的是()A. 11B. 12C. 13D. 146. 已知x² - 5x + 6 = 0,那么x的值为()A. 2B. 3C. 4D. 57. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 三角形D. 梯形8. 一个等边三角形的边长为6cm,那么它的面积是()A. 18cm²B. 24cm²C. 27cm²D. 30cm²9. 下列各数中,是偶数的是()A. 11B. 12C. 13D. 1410. 一个长方体的长、宽、高分别为4cm、3cm、2cm,那么它的体积是()A. 24cm³B. 28cm³C. 32cm³D. 36cm³二、填空题(每题2分,共20分)11. 3的平方根是______。
12. 若a = 5,b = 2,那么a² - b²的值为______。
13. 一个圆的半径是r,那么它的直径是______。
14. 下列各数中,最小的数是______。
15. 若a、b、c成等差数列,且a + b + c = 15,那么b的值为______。
高等数学考试试卷及答案

1. ( 单选题) 若函数 f(x) 在点 x0 处可导且,则曲线 y=f(x) 在点( x0, f(x0) )处的法线的斜率等于()(本题2.0分)A、B、C、D、学生答案:C标准答案:B解析:得分:02. ( 单选题) 函数f(x)=ln(x-5)的定义域为()。
(本题2.0分)A、x>5B、x<5C、D、学生答案:A标准答案:A解析:得分:23. ( 单选题)极限(本题2.0分)A、-2B、0C、 2D、 1学生答案:A标准答案:A解析:得分:24. ( 单选题) 设则(本题2.0分)A、B、C、D、学生答案:A标准答案:C解析:得分:05. ( 单选题) 设函数f(x)=(x+1)Cosx,则f(0)=( ).(本题2.0分)A、-1B、0C、 1D、无定义学生答案:C标准答案:C解析:得分:26. ( 单选题) (本题2.0分)A、B、C、D、学生答案:A标准答案:A解析:得分:27. ( 单选题) 若,则f(x)=()。
(本题2.0分)A、B、C、D、学生答案:B标准答案:A解析:得分:08. ( 单选题)微分方程是一阶线性齐次方程。
(本题2.0分)A、正确B、错误学生答案:B标准答案:B解析:得分:29. ( 单选题)设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:010. ( 单选题)设函数f(x) 在点x=1 处可导,则()。
(本题2.0分)A、B、C、D、学生答案:D标准答案:D解析:得分:211. ( 单选题) 设函数,其中是常数,则。
(本题2.0分)A、B、C、D、0学生答案:C标准答案:A解析:得分:012. ( 单选题)极限(本题2.0分)A、 1B、-1C、0D、不存在学生答案:B标准答案:A解析:得分:013. ( 单选题) 不定积分(本题2.0分)A、正确B、错误学生答案:A标准答案:B解析:得分:014. ( 单选题) 已知极限,则 k = ()。
2025届西安市高三数学上学期第一次质量检测考试卷附答案解析

2025届西安市高三数学上学期第一次质量检测考试卷本卷满分:150分考试时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,1=-=-A x x B x log x x ,则A B ⋂=()A.{}10x x - B.{}10x x -< C.{}10x x -< D.{}10x x -<<2.“01a <<”是“函数()log (2)a f x a x =-在(,1)-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()()2sin x xf x x e e x-=-+-在区间[]2.8,2.8-的大致图像为()A. B. C. D.4.已知5log 2a =,2log b a =,1()2bc =,则()A.c b a >> B.c a b>> C.a b c>> D.b c a>>5.已知定义在R 上的函数()f x 满足3(2)()f x f x +=,且(2)1f =-,则(100)f =()A.3B.1C.1-D.3-6.已知函数1,0,()()12,0,x e x f x g x kx x x⎧-⎪==-⎨<⎪⎩ ,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[,)e +∞ C.1(,0){}8e -⋃ D.1(,){}8e -∞-⋃7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.直线2y x =是曲线()y f x =的切线D.点(0,1)是曲线()y f x =的对称中心8.已知函数24,0(),0x x f x x log x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28-B.28C.14- D.14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211(x x'=- B.()x xe e '--= C.21(tan )x cos x'=D.1(ln ||)x x'=10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种11.已知0c b a <<<,则()A.ac b bc a+<+ B.333b c a +< C.a c ab c b+<+ D.>三、填空题:本题共3小题,每小题5分,共15分.12.某班的全体学生参加化学测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则该班学生化学测试成绩的第40百分位数为__________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =__________.14.5(1)(2)y x y x-+的展开式中,23x y 的系数为__________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()2.32a f x x x ax +=-+(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线bx a y e +=的附近,请根据下表中的数据求出(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数a 和b 的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.月份x 123456体重超标人数y987754483227ln z y= 4.58 4.37 3.98 3.87 3.46 3.29附:经验回归方程:ˆˆˆybx a =+中,1221ˆniii nii x ynx y b xnx ==-⋅=-∑∑,ˆˆay bx =-;参考数据:6123.52i i z ==∑,6177.72i ii x z==∑,62191i i x ==∑,ln10 2.30.≈17.已知函数()log (1)a f x x =+,()2log (2)(a g x x t t =+∈R ),0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x 的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布2(,)N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<<+≈,(22)0.9545P μσξμσ-<<+≈,(33)0.9973.)P μσξμσ-<<+≈(2)(ⅰ)从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ⅱ)该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19.已知函数1()ln (1).x f x ae x a x -=+-+(1)当0=a 时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.一.选择题(本题共8小题,每小题5分,共40分)二.选择题(本题共3小题,每小题6分,共18分)三、填空题:(本题共3小题,每小题5分,共15分.)12.6513.ln 214.40三、解答题:(本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分)15.(本小题满分13分)解:(1)1a =时,3213()2,()(1)(2)32f x x x x f x x x '=-+=--,所以1x <或2x >时,()0f x '>;12x <<时,()0f x '<则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞上递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =...............................5分陕西省西安中学高2025届高三第一次质量检测数学参考答案题号12345678答案CBABDCDA题号91011答案ACDBCDABD3212(2)()232a f x x x ax +=-+,则()()(2)f x x a x '=--,当2a =时,()0f x ' ,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,()0f x '>;2x a <<时,()0f x '<,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,()0f x '>;2a x <<时,()0f x '<所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减................................8分(2)令-+<=≈,所以,解得,由于,所以,所以从第十个月开始,该年级体重超标的人数降至10人以下................................5分17.(本小题满分15分)解:(1)1=- t 时,()()2log 1log 21a a x x +- ,又01a <<,21(21)210x x x ⎧+-∴⎨->⎩,2450151242x x x x ⎧-⎪∴∴<⎨>⎪⎩,∴解集为:15{|}24x x <;...............................6分(2)解法一:()222F x tx x t =+-+,由()0F x =得:22(2x t xx +=-≠-且12)x -< ,22(2)4(2)2x t x x +∴=-+-++,设2U x =+(14U < 且2U ≠,则212424U t U U U U=-=--+-+,令2()U U Uϕ=+, 当1U <<时,()U ϕ4U <<时,()U ϕ单调递增,且9(1)3,(4).2ϕϕϕ===9()2U ϕ∴且() 4.U ϕ≠12402U U∴---< 或2044U U<--- ,t 的取值范围为:2t - 或224t +解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得:24t =,又1212x x t ==-(]1,2,∈-24t +∴=;②()F x 在(1,2]-上只有一个零点,且不是方程的重根,则有()()120F F -<,解得:2t <-或1t >,又经检验:2t =-或1t =时,()F x 在(1,2]-上都有零点;2t ∴- 或 1.t ③方程()0F x =在(1,2]-上有两个相异实根,则有0,01122(1)0(2)0t t F F >∆>⎧⎪⎪-<-<⎪⎨⎪->⎪>⎪⎩或0,01122(1)0(2)0t t F F <∆>⎧⎪⎪-<-<⎪⎨⎪-<⎪<⎪⎩,解得:214t +<<,综上可知:t 的取值范围为2t - 或224t +...............................15分18.(本小题满分17分)(1)(1)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69.x =⨯⨯+⨯+⨯+⨯+⨯=即69x μ≈=11s σ≈≈,所以X ∽2(69,11)N ,因为质量指标值X 近似服从正态分布2(69,11)N ,所以1(69116911)1()(80)22P X P X P X μσμσ--<<+--<<+== 10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16................................5分(2)()(0.010.01)1010020i +⨯⨯=,所以所取样本的个数为20件,质量指标值在[85,95]的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:3010103202(0)19C C P C η===,21101032015(1)38C C P C η===,12101032015(2)38C C P C η===,0310103202(3)19C C P C η===,随机变量η的分布列为:η0123P21915381538219所以η的数学期望2151523()0123.193838192E η=⨯+⨯+⨯+⨯=...............................11分()ii 设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以Y ∽(100,0.16)B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))()100ln(25)m m E Y m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-,令()1684ln(25)(124)f x x x x =+-<<84()16025f x x '=-=-得,794x =,又79(1,)4x ∈,()0f x '>,()f x 递增79;(,24)4x ∈,()0f x '<,()f x 递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大................................17分19.(本小题满分17分)(1)解:当0=a 时,()ln =-f x x x ,且知11()1-'=-=xf x x x,在(0,1)上,()0'>f x >,()f x 在(0,1)上单调递增;在(1,)+∞上,()0'<f x ,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞..............................4分(2)证明:因为1a =,所以1()ln 2x f x e x x -=+-,且知11()2x f x e x-'=+-,要证函数()f x 单调递增,即证()0f x ' 在(0,)+∞上恒成立,设11()2x g x ex -=+-,0x >,则121()x g x e x-'=-,注意1x y e -=,21y x=-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g = ,即()0f x ' ,因此函数()f x 在(0,)+∞上单调递增;...............................10分(3)由11()1x f x ae a x -'=+--,有(1)0f '=,令11()1x h x ae a x -=+--,有121()x h x ae x-'=-,①当0a 时,11()0x xh x aex -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1x y ae -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞..........................17分。
高等数学考试试卷四套【上海交通大学】

(C) a 9 , b 12 ;
(D) a 9 , b 12 。
2. 设 x 0 时, ln cos x axk ,则常数 a 和 k 的值分别为
()
(A) a 1 , k 2 ; 2
(B) a 1 , k 2; 2
(C) a 1 , k 1; 2
(D) a 1 , k 1。 2
11.
用极限定义证明:
lim
x1
2
arctan 1 x2
x
。
12.
求
lim
xln
ln ln
x1 x1
。
x0
13. 求 lim x0
1 x2 sin2 x tan2 x 。
x2 ln2 1 x
四、(每小题 8 分,共 16 分)
14. 已知 f x
e
x
,
1 2
x2
1
,求证:
(1)当 x 1,0 时, ex 1 x2 1 ;
2
(2)若函数 g x 在 R 上可导,且 g x f x ,则 g 0 1。
2
上海交通大学《高等数学》考试试卷 二
一、单项选择题(每小题 3 分,共 15 分) 1. 当 x 0 时,与 x 等价的无穷小量是
[
x ] 是取整函数),
g
x
x, 0,
x 1, x 1
则方程 g( f (x)) 0 的解集为:___________________。
7. lim( 1 1 1 1 )
。
n n2 1 n2 2 n2 3
小学数学一级职称考试卷

一、填空题(每空1分,共10分)1. 义务教育阶段的数学课程应突出体现()、()、(),使数学教学面向全体学生。
2. 在各个学段中,《标准》安排了数与代数、空间与图形、统计与概率、综合与实践四个学习领域,课程内容的学习强调学生的数学活动,发展学生的()、()、()、()以及()与推理能力。
3. 数学教学活动是师生积极参与、交往互动、共同发展的过程。
有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的()、()、()和()。
4. 通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验;体会数学知识之间、数学与其他学科之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析问题和解决问题的能力。
5. 在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。
二、简答题(每题5分,共10分)1. 请简述在第一学段(一到三年级)的数学教学中如何发展学生数感?2. 请结合实际教学,谈谈如何在小学数学教学中培养学生的空间观念?三、案例分析(每题10分,共20分)1. 分析以下案例,谈谈教师应该如何处理学生在课堂上的错误。
案例:在小学数学课上,老师提问:“同学们,谁能告诉我,5乘以6等于多少?”小明举手回答:“5乘以6等于36。
”老师微笑着说:“很好,小明同学,你回答得非常正确。
那么,谁能告诉我,5乘以7等于多少?”小华举手回答:“5乘以7等于38。
”老师疑惑地问:“小华,你是怎么算出来的?”小华回答:“我数了5个7,一共有35,再加上一个7,就是42了。
”老师笑着说:“小华,你这样数数可不太方便哦。
我们来想想有没有更简单的方法。
”2. 分析以下案例,谈谈教师应该如何引导学生进行合作学习。
案例:在小学数学课上,老师布置了一个小组合作学习任务:“请同学们以小组为单位,共同探究以下问题:如何用最少的纸张折叠出最大的正方形?”同学们分组进行讨论,有的小组尝试用不同的方法折叠,有的小组尝试用尺子测量纸张的长度,还有的小组尝试用计算机软件模拟折叠过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安技师学院
西电公司职业中专
《数学》试卷(正考卷)
适用班级:13Z 汽车维修技术1、2、3班 年 月
一.选择题(每小题2分,共18分) 1.8
29sin
π与)2005cos( -的符号分别是( )
A. +、+
B. +、-
C. -、+
D. -、- 2. 2005是(
)
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角 3.已知圆的半径为R ,弧长为43
R 的圆弧所对应的圆心角等于( )
A.
135 B.
π
135
C.
145 D.
π
145
4.已知0sin >α,0tan <α则角α是( )
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
5.下列说法不正确的是( )
A.平行向量是相等的向量
B.相反向量是平行向量
C.相等向量是平行向量
D.零向量与任意向量平行
6.下列等式中不正确的是( )
A.a b b a +=+ B .a b b a -=- C. a a -=-0 D.a a
=--)(
7.若C 是线段AB 的中点,则=+BC AB ( )
A.AB
B. BA
C. 0
D.以上均不对
~ 学年 第一学期
8.已知)0,3(=a
,)5,5(-=b ,则a 与b
的夹角为( )
A.
4
π
B.
4
3π C.
3
π
D.
3
2π
9.若)3,1(-=a
,)1,(-=x b ,且b
a ⊥,则x 等于( )
A.3
B.-3
C.3
1
D. 3
1-
二.填空题(每空1分,共30分)
1.按 时针方向旋转形成的角称为正角;按 时针方向旋转形成的角称为负角;当一条直线不旋转时,我们也认为它形成了一个角,称为 。
2.在平面直角坐标系中,通常把角的顶点放在 的位置上,让角的始边与 重合,这时角的 落在坐标系的第几象限,就说这个角是 ;如果一个角的终边落在坐标轴上,就说这个角是 。
3.我们规定, 的圆弧对应的圆心角为1弧度。
弧度单位的符号是 。
4.在弧度制下,正弦、余弦、正切函数的定义域分别为 、 、 。
5.由三角函数的定义可知,终边相同的角的 相等。
6.正弦函数的定义域为 ,值域为 ,正弦函数是周期为
的周期函数,其图像关于 对称。
7.既有 又有 的量叫做向量。
向量a
的大小也称为向量的 记作 。
8.模为零的向量称为 ,记作 ,其方向是 。
长度为1个单位的向量叫做 。
9.我们把方向 的非零向量叫做平行向量,平行向
量又叫做 ;把大小 ,方向 的向量叫做相等向量。
三.解答题(共52分)
1.在 0到 360之间找出与下列各角终边相同的角,并判定他们是第几象限角(9分)
(1) 1000 (2) 240- (3) 2460- 2.已知
4
=a
,
5
=b
,
a
与b
的夹角为 30,求
(1)b a ⋅;(2)b b a
⋅+)23(
(8分)
3.化简:AC BD DC AB -++(7分)
4.比较大小: 4
5cos π与5
7cos
π (6分)
5.已知3
1sin =α,且α为第二象限角,求αcos 和αtan 的值(8分)
6.计算: )
4
23tan(π- (7分)
7.角度与弧度的换算: 105 (7分)。