苏科版八年级上数学期中复习练习

合集下载

苏科版八年级数学上学期期中考试复习测试卷(含答案)

苏科版八年级数学上学期期中考试复习测试卷(含答案)

苏科版八年级数学上学期期中考试复习测试卷(含答案)(试卷满分:150分 考试时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分) 1.下列图形中,轴对称图形的是A .B .C .D .2.在实数,﹣,,,3.123456…中,无理数有A .1个B .2个C .3个D .4个3.在ABC ∆和DEF ∆中,A D ∠=∠,AB DE =,则添加下列条件不能使ABC DEF ∆≅∆成立的是A .B E ∠=∠B .C F ∠=∠C .AC DF =D .BC EF =4.等腰三角形的一个角是70︒,则它的底角是 A .70︒或55︒B .70︒C .55︒D .40︒5.在△ABC 的BC 边上找一点P ,使得PA +PC =BC .下面找法正确的是A BCD6.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是A.8米 B.10米 C.12米 D.14米 7. 如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为A .2-10B .-2-10C .2D .-28.如图,点P 是∠BAC 平分线AD 上的一点,AC =9,AB =4,PB =2,则PC 的长不可能是A .3B .4C .5D .6二、填空题(本大题共有10小题,每小题3分,共30分)9. 室内墙壁上挂一平面镜,明敏在平面镜内看到他背后墙上的时钟如图,则这时的实际时间是 ▲ .10. 瘦西湖风景区某月的接待游客的人数约809700人次,将这个数字用科学记数法表示为1A-1-21第7题 第8题(精确到万位.....) ▲ . 11.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D ′O ′C ′=∠DOC ,需要证明△D ′O ′C ′≌△DOC ,则这两个三角形全等的依据是) ▲ (写出全等的简写). 12.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、6、20,则正方形B 的面积为) ▲ .13.如图,在Rt △ABC 中,∠BAC =90°,DE ⊥BC ,∠1=∠2,AC =6,AB =8,则△BDE 的周长是) ▲ .14.如图,D 、E 是△ABC 的BC 边上的两点,DM ,EN 分别垂直平分AB 、AC ,垂足分别为点M 、N .若∠DAE =24°,则∠BAC 的度数为 ▲ .15.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,M 是斜边AB 的中点,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,则∠A = ▲ °.16.如图,在△ABC 中,AB =AC =10,BC=12点D 为BC 边上一点,过点D 分别作DE ⊥AB 于E ,DF ⊥AC 于F ,若DF =2DE ,则DF 长为 ▲ .17. 如图,已知E 为长方形纸片ABCD 的边CD 上一点,将纸片沿AE 对折,点D 的对应点D '恰好在线段BE 上.若4AD =,1DE =,则AB = ▲ .18. 已知()253y x x =+--,当x 分别取1,2,3,…,2022时,所对应y 值的总和是 ▲ .三、解答题(本大题共有10小题,共96分) 19.(本题满分8分)(1)计算:20|15|(5)(10)π-+-+-; (2)已知23(1)750x --=,求x 的值.20.(本题满分8分)已知3x +1的平方根为±2,2y -1的立方根为3,求2x y +的值.第9题 第12题 第11题 第13题 第14题 第15题第16题第17题21.(本题8分)如图,已知△ABC .(1)画出△A 1B 1C 1,使△A 1B 1C 1和△ABC 关于直线MN 成轴对称; (2)画出△A 2B 2C 2,使△A 2B 2C 2和△ABC 关于直线PQ 成轴对称; (3)△A 1B 1C 1与△A 2B2C 2 ▲ 轴对称.(填“成”或“不成”) (4)△ABC 的面积= ▲ .(设网格图中每个小正方形的边长为1)22.(本题8分)如图,在△ABC 与△ABD 中,BC =BD ,∠ABC =∠ABD .点E 为BC 中点,点F 为BD 中点,连接AE ,AF 求证:△ABE ≌△ABF .23.(本题10分)如图,已知AC 平分BAD ∠,CE AB ⊥于E ,CF AD ⊥于F ,且BC CD =.(1)求证:BCE ∆≌DCF ∆;(2)若9,17==AD AB ,求AE 的长.24.(本题满分10分)如图,已知点E 在四边形ABCD 的边AD 上,∠BCE =∠ACD , ∠BAC =∠D ,AB =DE(1)△ABC 与△DEC 全等吗?说明理由; (2)若AC =AE ,∠D =40°,求∠B 的度数.QP NMCB A25.(本题满分10分)课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、▲、▲;(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律:4=2312-,12=2512-,24=2712-……,则用含a的代数式表示每组第二个数和第三个数分别为▲、▲;(3)用所学知识加以说明.26.(本题10分)如图,已知AE、BD相交于点C,AC=AD,BC=BE,F、G、H分别是DC、CE、AB的中点.求证:(1)HF=HG;(2)∠FHA与∠ABC间有何关系,并说明理由;(3)∠D=400,请直接写出∠FHG的度数.27.(本题12分)如图△ABC中,∠ACB=90°,AC=8,BC=6,动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒.(1)当P在AC上,CP=;当P在AB上,AP=;BP=.(用t表示) (2)当t为何值时,CP⊥AB?(3)在运动过程中,当△BCP为等腰三角形时,请直接写t的值.28.(本题12分)如图1,把一块三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角形的三个顶点A、B、C分别在槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中,你发现线段AD与BE有什么关系?试说明你的结论;【变式探究】如图2,在△ABC中,点D、E、F分别在边BC、AC、AB上,若∠B=∠FDE =∠C,那么∠BED与∠CDF有何关系,并加以说理;【拓展应用】如图3,在△ABC中,BA=BC,∠B=45°,点D、F分别是边BC、AB上的动点,且AF=2BD.以DF为腰向右作等腰△DEF,使得DE=DF,∠EDF=45°,连接CE.①试判断线段DC、BD、BF之间的数量关系,并说明理由;②如图4,已知AC=4,点G是AC的中点,连接EA、EG,直接写出EA+EG的最小值。

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试卷一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.一个等腰三角形的两边长分别是2cm 和5cm ,则它的周长为()A .9cm B .12cm C .7cm D .9cm 或12cm 3.如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO DO =,则再添加一个条件,仍不能证明AOC △≌BOD 的是()A .A B∠=∠B .ADE BCE ∠=∠C .AC BD =D .AD BC=4.如图,点A 、B 、C 都在方格纸的“格点”上,请找出“格点”D ,使点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有()个.A .1B .2C .3D .45.根据下列已知条件,能画出唯一的ABC ∆的是()A .90C ∠=︒,6AB =B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =6.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE²的最小值为()A.1B.2C.3D.4二、填空题7.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.8.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为_____.9.等腰三角形的一个内角为100°,则它的一个底角的度数为______.10.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为___.11.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是_____.12.如图,在△ABC中,∠C=90°,BD平分∠ABC,DC=5,则点D到AB的距离为___.13.如图所示,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为______.14.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=9,AD=6,则△AED的周长为___.15.如图,∠ADB=90°,正方形ABCG和正方形AEFD的面积分别是100和36,则以BD 为直径的半圆的面积是___.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是___.17.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC 沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是A、M 的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为___.18.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE =___.三、解答题19.已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.20.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=;(3)在AE上找一点P,使得PC+PD的值最小.22.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.23.如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD =ED=12.(1)求证:△CDE≌△BDA;(2)判断△ACE的形状,并证明;(3)求△ABC的面积.24.尺规作图:如图,射线OM ⊥射线ON ,A 为OM 上一点,请以OA 为一边作两个大小不等的等腰直角三角形.保留作图痕迹,标上顶点字母,并写出所画的三角形.25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >.(1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B ,D ,E 在同一直线上,连接CE ,容易发现:①∠BEC 的度数为;②线段BD 、CE 之间的数量关系为;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点B ,D ,E 在同一直线上,连接CE ,试判断∠BEC 的度数及线段BE 、CE 、DE 之间的数列关系,并【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=3,OB=6,AC=BC,则OC2的值为.参考答案1.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.不是轴对称图形,故A不符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D符合题意.故选:D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠2.B【解析】【分析】根据已知条件和三角形三边关系可知,等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得三角形的周长.【详解】本题只知道等腰三角形的两边的长,并不知道腰和底,所以需要分两种情况讨论,当腰长为2cm时,由于2+2<5,所以此时三角形不存在;当腰长为5cm时,5+5>2,所以此三角形满足题意,此时三角形的周长为:5+5+2=12cm.故答案为B.【点睛】本题考查了等腰三角形的概念,注意三角形两边之和大于第三边是解题的关键.3.C【解析】【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【详解】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;C、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有4个.故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.5.C【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6.B【解析】在AB 上截取AQ=AO=1,利用SAS 证明△AQD ≌△AOE ,推出QD=OE ,当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,利用勾股定理即可求解.【详解】解:如图,在AB 上截取AQ=AO=1,连接DQ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD=∠CAE ,在△AQD 和△AOE 中,AQ AOQAD OAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE(SAS),∴QD=OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得∴线段OE²有最小值为2,故选:B .【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.7.WL027【解析】【详解】解:关于水面对称的图形为W L027,∴该汽车牌照号码为WL027.8.9【解析】【分析】根据直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半,即可得出答案.【详解】在△ABC中,∵∠ACB=90°,D是AB边的中点,∴CD=12AB=9.故答案为9.【点睛】本题考查的是直角三角形的性质.掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.40°【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】解:①当100°这个角是顶角时,底角=(180°-100°)÷2=40°;②当100°这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.10.10【解析】【分析】根据勾股定理列式计算即可得解.【详解】解:∵直角三角形的两直角边长分别为8和6,∴斜边长=10.故答案为:10.【点睛】本题主要考查了勾股定理,比较简单,熟练掌握勾股定理是解题的关键.11.AB=AC【解析】【分析】根据角平分线定义求出∠BAD=∠CAD ,根据SAS 推出两三角形全等即可.【详解】解:AB=AC ,理由是:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故答案为AB=AC .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.5【解析】【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD .【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,BD 平分∠ABC ,∴DE=CD=5,即点D 到AB 的距离是5.故答案为:5.13.62【分析】根据C ∠和AEB DFC V V ≌可得28B ∠=︒,再根据AE CB ⊥和三角形的内角和定理即可求解.【详解】解:∵AEB DFC V V ≌,28C ∠=︒,∴28B C ∠=∠=︒.∵AE CB ⊥,∴90AEB =︒∠.∴18062A AEB B ∠=︒-∠-∠=︒.故答案为:62.14.15【详解】解:∵ED ∥BC ,∴∠EDB=∠CBD ,∵BD 平分∠ABC ,∴∠CBD=∠ABD ,∴∠EDB=∠ABD ,∴DE=BE ,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED 的周长为15,故答案为:15.15.8π【分析】根据勾股定理求出BD ,再利用圆的面积公式求半圆面积即可.【详解】∵正方形ABCG 和正方形AEFD 的面积分别是100和36,∴AB 2=100,AD 2=36,∵∠ADB =90°,∴在Rt ABD △中,8BD =,∴半圆面积:218822ππ⎛⎫⨯= ⎪⎝⎭.故答案为:8π.16.30°【分析】由折叠的性质可得出:∠CAE=∠DAE ,∠ADE=∠C=90°,结合点D 为线段AB 的中点,利用等腰三角形的三线合一可得出AE=BE ,进而可得出∠B=∠DAE ,再利用三角形内角和定理,即可求出∠B 的度数.【详解】解:由折叠,可知:∠CAE=∠DAE ,∠ADE=∠C=90°,∴ED ⊥AB .∵点D 为线段AB 的中点,ED ⊥AB ,∴AE=BE ,∴∠B=∠DAE .又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=90°,∴∠B=30°.故答案为:30°.17.10【解析】连接PQ,AM,根据PQ=AM即可解答.【详解】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM2=12+32=10.∴PQ2=AM2=12+32=10.故答案为:10.18.8 3【解析】设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x.当AE=AC′时,作AH⊥EC′,由∠AEF=90°,EF平分∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即8-x=2x,解方程即可.【详解】解:∵四边形ABCD是矩形,设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x,作AH⊥EC′,如图,∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△EC′F,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′,∴EC′=2EH,即8-x=2x,解得x=8 3,∴BE=8 3.故答案为:8 3.19.见解析【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.【详解】证明:∵点C是AE的中点,∵AB ∥CD ,∴∠A=∠ECD ,在△ABC 和△CDE 中,AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).20.(1)见解析;(2)见解析【解析】(1)求出90EDA FCB ∠=∠=︒,AD=BC ,根据HL 证明Rt AED Rt BFC ∆≅∆即可;(2)根据全等三角形的性质得出∠A=∠B ,根据平行线的判定得出即可.【详解】解:(1)∵ED ⊥AB ,FC ⊥AB ,∴90EDA FCB ∠=∠=︒∵AC =BD ,∴AC CD BD CD +=+,即AD BC=在Rt AED ∆和Rt BFC ∆中,AD BC AE BF=⎧⎨=⎩∴Rt AED Rt BFC∆≅∆(2)由(1)知Rt AED Rt BFC∆≅∆∴∠A=∠B∴AE ∥BF .21.(1)见解析;(2)6;(3)见解析【解析】(1)根据轴对称的性质确定出点B 关于AE 的对称点F 即可;(2)即DC 与EF 的交点为G ,由四边形ADGE 的面积=平行四边形ADCE 的面积-△ECG 的面积求解即可;(3)根据轴对称的性质取格点M ,连接MC 交AE 于点P ,此时PC+PD 的值最小.【详解】解:(1)如图所示,△AEF 即为所求作:(2)重叠部分的面积=S 四边形ADCE-S △ECG =2×4-12×2×2=8-2=6.故答案为:6;(3)如图所示,点P 即为所求作:22.(1)证明见解析;(2)22°.【解析】(1)连接DE .由G 是CE 的中点,DG CE ^得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =.(2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠,由此根据外角的性质来求BCE ∠的度数.【详解】(1)如图,连接DE .∵G是CE的中点,DG CE^,∴DG是CE的垂直平分线,∴DE DC=.∵AD是高,CE是中线,∴DE是Rt ADB的斜边AB上的中线,∴12DE BE AB==.∴DC BE=;(2)∵DC DE=,DEC BCE∴∠=∠,2EDB DEC BCE BCE∴∠=∠+∠=∠,DE BE=,B EDB∴∠=∠,2B BCE∴∠=∠,366AEC BCE∴∠=∠= ,22BCE∴∠= .23.(1)见解析;(2)△ACE是直角三角形,证明见解析;(3)84【解析】(1)根据SAS证明△CDE≌△BDA即可;(2)由全等三角形的性质得出AB=CE=7,利用勾股定理逆定理证得△ACE是直角三角形;(3)求得△ACE的面积,即可得出△ABC的面积.【详解】解:(1)证明:∵AD 是边BC 上的中线,∴BD=CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD ED ⎧⎪∠∠⎨⎪⎩===,∴△CDE ≌△BDA (SAS ),(2)△ACE 是直角三角形,证明如下:∵△ABD ≌△ECD ,∴AB=CE=7,∵AE=AD+ED=24,AC=25,CE=7,∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,(3)∵△CDE ≌△BDA∴CDE BDAS =S ∴△ABC 的面积=△ACE 的面积=12×7×24=84.【点睛】此题考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.24.见解析【分析】以O 为圆心,OA 为半径作圆,与射线ON 交于点B ,则△AOB 是以OA 为腰的等腰直角三角形;作∠MON 的平分线OP ,过点A 作AC ⊥OP 于点C ,则△AOC 是以OA 为斜边的等腰直角三角形.【详解】解:如图:△AOB 和△AOC 即为所作..【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3.【解析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高;(2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯,∴1153422h ⨯⨯=⨯⨯,∴125h =.∴斜边AB 上的高为125.(2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动,①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩,∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =,故答案为:83;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P在线段AB上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴125 CH=,在Rt△BCH中,由勾股定理得:1.8BH==,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则30.52BQ CQ BC ==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ中,由勾股定理得: 2.5BP ==,点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由见解析;(3)92【解析】【分析】(1)根据等边三角形的性质得到AB=AC ,AD=AE ,∠BAC=∠DAE=60°,得到∠BAD=∠CAE ,证明△BAD ≌△CAE ,根据全等三角形的性质证明结论;(2)由“SAS”可证△ABD ≌△ACE ,可得BD=CE ,∠AEC=∠ADB=135°,即可求解;(3)由“AAS”可证△ACF ≌△CBE ,可得BE=CF ,AF=CE ,可求OF=CF=32,由勾股定理可求解.【详解】解:(1)∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD=CE ;∠AEC=∠ADB=180°-∠ADE=120°,∴∠BEC=∠AEC-∠AED=120°-60°=60°,故答案为:60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由如下:∵∠BAC=∠DAE=90°,∴AB=AC ,AD=AE ,∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠AEC=∠ADB=135°,∴∠BEC=∠AEC-∠AED=135°-45°=90°,∵BE=BD+DE ,∴BE=CE+DE ;(3)如图,过点C 作CF ⊥AO 交AO 延长线于F ,过点B 作BE ⊥CF 于E,∵∠ACB=90°=∠E=∠AFC ,∴∠BCE+∠ACF=90°=∠BCE+∠CBE ,∴∠ACF=∠CBE ,又∵AC=BC ,∠AFC=∠E ,∴△ACF ≌△CBE (AAS ),∴BE=CF,AF=CE,∵OA=3,OB=6,∴EC+CF=BO=6,OA=AF-OF=CE-BE=CE-CF=3,∴EC=92,CF=32=OF,∴OC2=CF2+OF2=(32)2+(32)2=92.故答案为:9 2.。

苏科版八年级上册数学期中考试试题附答案

苏科版八年级上册数学期中考试试题附答案

苏科版八年级上册数学期中考试试卷一、单选题1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A.B.C.D.2.4的平方根是()A.±2B.2C.-2D.±83.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是()A.3、4、5B.7、8、10C.5、12、14D.2、3、44.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°5.一个等腰三角形的两边长分别是2和7,则它的周长是()A.11B.16C.15D.11或166.等边三角形中,两条中线所夹的锐角的度数为A.30°B.40°C.50°D.60°7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适 ()当的位置是在ABCA.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点8.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.已知()22x -,求x+y 的值()A .-1B .-3C .1D .310.如图,DE 是△ABC 中AC 边上的垂直平分线,如果BC=5cm ,AB=6cm ,则△EBC 的周长为()A .8cmB .9cmC .10cmD .11cm二、填空题11.9的算术平方根是.12.等腰三角形的一个内角120°,则它的底角是_____.13.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.14.直角三角形的一直角边长4cm ,斜边长5cm ,则其斜边上的高是__________cm .15.在△ABC 中,∠A =80°,当∠B =_____时,△ABC 是等腰三角形.16.如图,∠1=∠2,要使△ABE ≌△ACE ,需添加一个条件是__________.(填上一个条件即可)17.如图,点E 在正方形ABCD 内,满足90AEB =︒∠,3AE =,4BE =,则阴影部分的面积是________.18.如图所示,已知△ABC 的周长是12,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D,且OD=3,则△ABC的面积是_____________三、解答题19.计算:求出下列x的值.x-=(1)x2=16(2)()316420.已知:如图,AC∥DF,AC=DF,AB=DE.求证:(1)△ABC≌△DEF;(2)BC∥EF.21.如图,△ABC中,∠B=90°,BC上一点D,BD=6,CD=10(1)若AD平分∠BAC,求点D到AC边的距离;(2)若点D恰好在AC边的垂直平分线上,求AB的长.22.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△BDE≌△CEF;(2)当∠A=40°时,求∠B和∠EDF的度数;23.已知△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=40°,求∠B和∠BCD的度数;(2)若AC=5,CD=3,求BD和BC的长.24.钓鱼岛是中国的固有领土.近期我国海监船加大钓鱼岛海域的巡航维权力度.如图,OA OB,OA=90海里,OB=30海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置.(不写作法,保留作图痕迹)(2)求我国海监船行驶的航程BC的长.25.在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°,(1)如图1,当点A、C、D在同一条直线上时,AC=4,EC=3,①求证:AF⊥BD;②AF的长度为直接写出答案);(2)如图2,当点A、C、D不在同一条直线上时,求证:AF⊥BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,则∠FCD+∠FEC=(直接写出答案)26.如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG;②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.参考答案1.D【解析】【分析】根据轴对称图形的定义,逐一判断选项,即可.【详解】A.不是轴对称图形,不符合题意,B.不是轴对称图形,不符合题意,C.不是轴对称图形,不符合题意,D.是轴对称图形,符合题意,故选D【点睛】本题主要考查轴对称图形的定义,熟练掌握轴对称图形的定义,是解题的关键.2.A【解析】【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【详解】解:∵(±2)2=4,∴4的平方根是±2,故选:A.【点睛】本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.3.A【解析】【分析】判断是否为直角三角形,这里给出三边的长,只要验证两小边的平方和是否等于最长边的平方即可.A、32+42=52,能构成直角三角形,故此选项符合题意;B、72+82≠102,不能构成直角三角形,故此选项不符合题意;C、52+122≠142,不能构成直角三角形,故此选项不符合题意;D、22+32≠42,不能构成直角三角形,故此选项不符合题意.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.C【解析】【分析】根据等腰三角形的性质及三角形的内角和定理即可求得结果.【详解】解:①当等腰三角形的一个底角为40°时,它的顶角为180°-40°×2=100°②当等腰三角形的一个顶角为40°时,它的顶角为40°故选:C.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,解答本题的关键是熟练掌握等腰三角形的两个底角相等,三角形的内角和为180°.5.B【解析】【分析】题目给出等腰三角形有两条边长为2和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<7,所以不能构成三角形;当腰为7时,2+7>7,所以能构成三角形,周长是:2+7+7=16.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.D【解析】【分析】如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC=30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC,AD、BE分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故选:D.【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.7.B【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三边中垂线的交点最适当.故选:B.【点睛】本题主要考查了游戏的公平性与线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.8.A【解析】【分析】建立格点三角形,利用勾股定理求解AB的长度即可.【详解】解:如图所示:AB==.5故选:A.【点睛】本题考查了勾股定理的知识,解题的关键是掌握格点三角形中勾股定理的应用.9.C【解析】【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】x-+=0,解:∵()22∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1,故选:C.【点睛】本题考查了代数式的求值,非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.D【解析】【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【详解】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=6cm,∴△EBC的周长=BC+BE+CE=5+6=11(cm).故选:D.【点睛】本题主要考查了线段垂直平分线的性质,利用线段进行等量代换是解答本题的关键.11.3【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239 ,∴9算术平方根为3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12.30°【解析】【分析】因为三角形的内角和为120°,所以120°只能为顶角,从而可求出底角.【详解】∵120°为三角形的顶角,∴底角为:(180°﹣120°)÷2=30°.故答案为30°.【点睛】本题考查等腰三角形的性质,等腰三角形的两个底角相等,从而可求出解.13.5【解析】【分析】先根据勾股定理求出斜边的长,再根据斜边上的中线等于斜边的一半求解即可.【详解】解:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=5.故答案为:5.【点睛】本题主要考查了勾股定理的应用和直角三角形斜边上的中线等于斜边的一半,关键是能正确求出斜边的长度.14.2.4【解析】【分析】根据勾股定理求出直角三角形另一条一直角边,根据三角形的面积公式计算即可.【详解】解:设斜边上的高为hcm,=3,由三角形的面积公式可得,1 2×3×4=12×h×5,解得,h=12 2.45=,故答案为:2.4.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.15.20°或50°或80°【解析】【分析】分三种情况分析,A ∠是顶角,B Ð是顶角,C ∠是顶角,【详解】∵80A ∠=︒,∴①当C ∠是顶角,80B A ∠=∠=︒时,△ABC 是等腰三角形;②当A ∠是顶角,∠B=(180°﹣80°)÷2=50°时,△ABC 是等腰三角形;③B Ð是顶角,∠B=180°﹣80°×2=20°时,△ABC 是等腰三角形;故答案为:80°或50°或20°16.∠B=∠C (或BE=CE 或∠BAE=∠CAE )【解析】【分析】根据题意,易得∠AEB=∠AEC ,又AE 公共,所以根据全等三角形的判定方法容易寻找添加条件.【详解】解:∵∠1=∠2,∴∠AEB=∠AEC ,又AE 是公共边,∴当∠B=∠C 时,△ABE ≌△ACE (AAS );当BE=CE 时,△ABE ≌△ACE (SAS );当∠BAE=∠CAE 时,△ABE ≌△ACE (ASA ).故答案为:∠B=∠C (或BE=CE 或∠BAE=∠CAE ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.19【解析】【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是12AE×BE=12×3×4=6,∴阴影部分的面积是25-6=19,故答案为:19.18.18【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解.【详解】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=3,∴△ABC的面积=12×(AB+BC+CA)×3=12×12×3=18.故答案为:18.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.注意:角平分线上的点到角的两边的距离相等.19.(1)x=±4;(2)x=5【解析】【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)x 2=16,解得:x=±4;(2)(x-1)3=64,故x-1=4,解得:x=5.【点睛】本题主要考查了立方根和平方根,正确掌握相关定义是解题关键.20.(1)见解析;(2)见解析【解析】【分析】(1)由平行线的性质可得∠A=∠FDE ,再由已知即可证得结论;(2)由全等三角形的性质可得∠ABC=∠E ,由平行线的判定定理即可得到结论.(1)∵AC ∥DF∴∠A=∠FDE在△ABC 和△DEF 中AC DFA FDE AB DE=⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF(SAS)(2)∵△ABC≌△DEF∴∠ABC=∠E∴BC∥EF【点睛】本题考查了全等三角形的判定与性质、平行线的判定与性质,掌握这两个判定与性质是关键.21.(1)6;(2)8【解析】【分析】(1)过点D作DH⊥AC于点H,根据角平分线的性质可得出结论;(2)根据D恰好在AC边的垂直平分线上得出AD=CD=10,在Rt△ABD中根据勾股定理即可得出AB的长.【详解】(1)过点D作DH⊥AC于点H,∵AD平分∠BAC,∠B=90°,∴DH=BD=6,即点D到AC边的距离是3;(2)∵点D恰好在AC边的垂直平分线上,∴AD=CD=10,在Rt△ABD中,∵AD=10,BD=6,∴8=.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.(1)见解析;(2)∠B=70°;∠EDF=55°【解析】【分析】(1)由等腰三角形的性质可知B C ∠=∠,即可直接利用“SAS”证明BDE CEF ≅ .(2)根据三角形内角和定理和等腰三角形的性质可求出B Ð的大小,再根据全等三角形的性质可推出BDE CEF ∠=∠,DE EF =,进而得出EDF EFD ∠=∠.再次根据三角形内角和定理和平角可得出180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒,即得到70B DEF ∠=∠=︒,最后再次利用三角形内角和定理和等腰三角形的性质即可求出答案.【详解】解:(1)∵AB=AC∴B C ∠=∠.在BDE 和CEF △中BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴()BDE CEF SAS ≅ .(2)∵40A ∠=︒,∴1(180)702B C A ∠=∠=︒-∠=︒.∵BDE CEF ≅ ,∴BDE CEF ∠=∠,DE EF =,∴EDF EFD ∠=∠.∵180B BDE BED DEF CEF BED ∠+∠+∠=∠+∠+∠=︒∴70B DEF ∠=∠=︒,∴1(180)552EDF EFD DEF ∠=∠=︒-∠=︒.23.(1)∠B=70°,∠BCD=20°;(2)BD=1,【分析】(1)在△ABC 中,AB=AC ,∠A=40°,利用等腰三角形的性质求出∠B 的度数,在Rt △CBD 中,求出∠BCD 的度数;(2)在Rt △CDA 中,利用勾股定理求出AD 的长,然后求出BD 的长,再在Rt △CDB 中,利用勾股定理求出BC 的长即可.【详解】解:(1)∵在△ABC 中,AB=AC ,∠A=40°,∴∠B=12×(180°-40°)=70°,又∵CD ⊥AB 于D ,∴在Rt △CBD 中,∠BCD=90°-∠B=20°;(2)在Rt △CDA 中,∵AC=AB=5,CD=3,∴,∴BD=AB-AD=5-4=1.在Rt △CDB 中,CD=3,BD=1,∴=24.(1)见解析;(2)我国渔政船行驶的航程BC 的长为50海里【分析】(1)利用尺规作图作AB 的垂直平分线即可;(2)设BC 为x 海里,在Rt OBC ∆利用勾股定理列方程即可解题.【详解】解:(1)作AB 的垂直平分线与OA 交于点C ;(2)连接BC ,设BC 为x 海里,则CA 也为x 海里,OC 为(90-x)海里∵∠O=90°,∴在Rt OBC ∆中,222BO OC BC +=,即:302+(90-x)2=x 2解得:x=50,答:我国渔政船行驶的航程BC 的长为50海里【点睛】本题考查了勾股定理的应用以及线段垂直平分线的性质,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.25.(1)①见解析;②AF=5.6;(2)见解析;(3)45°【解析】【分析】(1)①证明△ACE ≌△BCD ,得到∠1=∠2,由对顶角相等得到∠3=∠4,所以∠BFE=∠ACE=90°,即可解答;②根据勾股定理求出BD ,利用△ABD 的面积的两种表示方法,即可解答;(2)证明△ACE ≌△BCD ,得到∠1=∠2,又由∠3=∠4,得到∠BFA=∠BCA=90°,即可解答;(3)∠AFG=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,由△ACE ≌△BCD ,得到S △ACE=S △BCD ,AE=BD ,证明得到CM=CN ,得到CF 平分∠BFE ,由AF ⊥BD ,得到∠BFE=90°,所以∠BFC=45°,根据三角形外角的性质即可得到∠FCD+∠FEC=45°.【详解】(1)①证明:如图1,在△ACE 和△BCD 中,∵90AC BC ACB ECD EC DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFE=∠ACE=90°,∴AF ⊥BD ;②∵∠ECD=90°,BC=AC=4,DC=EC=3,∴=5,∵S △ABD=12AD•BC=12BD•AF ,即12×(4+3)×4=12×5•AF ,∴AF=5.6;(2)证明:如图2,∵∠ACB=∠ECD=90°,∴∠ACB+∠ACD=∠ECD+∠ACD ,∴∠BCD=∠ACE ,在△ACE ≌△BCD 中,AC BCACE BCD EC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ,∴∠1=∠2,∵∠3=∠4,∴∠BFA=∠BCA=90°,∴AF ⊥BD ;(3)∠FCD+∠FEC=45°,如图3,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,∵△ACE ≌△BCD ,∴S △ACE=S △BCD ,AE=BD ,∠FEC=∠FDC ,∵S △ACE=12AE•CN ,S △BCD=12BD•CM ,∴CM=CN ,∵CM ⊥BD ,CN ⊥AE ,∴CF 平分∠BFE ,∵AF ⊥BD ,∴∠BFE=90°,∴∠BFC=45°,∴∠FCD+∠FEC=∠FCD+∠FDC=∠BFC=45°.【点睛】本题考查了全等三角形的判定定理与性质定理,角平分线的判定和性质,解决本题的关键是证明△ACE ≌△BCD ,得到三角形的面积相等,对应边相等.26.(1)3;(2)①见解析,②6;(3)223【分析】(1)根据翻折的性质可得BF =EF ,然后用AF 表示出EF ,在Rt △AEF 中,利用勾股定理列出方程求解即可;(2)①根据翻折的性质可得∠BGF =∠EGF ,再根据两直线平行,内错角相等可得∠BGF =∠EFG ,从而得到∠EGF =∠EFG ,再根据等角对等边证明即可;②根据翻折的性质可得EG =BG ,HE =AB ,FH =AF ,然后在Rt △EFH 中,利用勾股定理列式计算即可得解;(3)设EH 与AD 相交于点K ,过点E 作MN ∥CD 分别交AD 、BC 于M 、N ,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根据△GEN和△EKM相似,利用相似三角形对应边成比例列式求出EK、KM,再求出KH,然后根据△FKH和△EKM相似,利用相似三角形对应边成比例列式求解即可.【详解】(1)解:∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)①证明:∵纸片折叠后顶点B落在边AD上的E点处,∴∠BGF=∠EGF,∵长方形纸片ABCD的边AD∥BC,∴∠BGF=∠EFG,∴∠EGF=∠EFG,∴EF=EG;②解:∵纸片折叠后顶点B落在边AD上的E点处,∴EG=BG=10,HE=AB=8,FH=AF,∴EF=EG=10,在Rt△EFH中,FH6,∴AF=FH=6;(3)解:如图3,设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为2cm,∴EM=2,EN=8﹣2=6,在Rt△ENG中,GN=8,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴EKEG=KMEN=EMGN,即EK10=KM6=28,解得EK=52,KM=32,∴KH=EH﹣EK=8﹣52=112,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴FHEM=KHKM,即FH2=11232,解得FH=22 3,∴AF=FH=22 3.。

2023-2024学年苏科版八年级上学期数学期中考前必刷卷(含答案解析)

2023-2024学年苏科版八年级上学期数学期中考前必刷卷(含答案解析)

2023-2024学年上学期期中考前必刷八年级数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1-3章(苏科版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、选择题(共8小题,满分16分,每小题2分)1.(2分)下列图形中是轴对称图形的是( )A.B.C.D.2.(2分)如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为( )A.45°B.60°C.90°D.100°3.(2分)下列各组数中,是勾股数的为( )A.1,2,3B.4,5,6C.8,15,17D.1.5,2,254.(2分)已知等腰三角形的一个外角是80°,则这个等腰三角形的顶角是( )A.100°B.80°C.80°或100°D.40°5.(2分)如图,在△ABC中,AB=AC,分别以点A、点B为圆心,大于1/2AB的长为半径画弧,两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若∠B=46°,则∠CAD=( )A.28°B.36°C.42°D.46°6.(2分)如图,AD是△ABC的角平分线,DE⊥AB,AB=6cm,DE=4cm,S△ABC=30cm2,则AC的长为( )A.10cm B.9cm C.4.5cm D.3cm7.(2分)如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,DE的长为( )A.7.4m B.3.7m C.1.85m D.2.85m8.(2分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )A.B.C.D.第Ⅱ卷(非选择题)二、填空题(共8小题,满分16分,每小题2分)9.(2分)小明从镜子里看到对面电子钟的像如图所示,则实际时间是 .10.(2分)等腰三角形的边长为5cm,另一边为6cm,则等腰三角形的周长为 .11.(2分)如图,BE,CD是△ABC的高,BD=CE,可判定 ≌ ,根据是 .12.(2分)如图,在△ABC中,∠ABC<∠BCA<∠BAC,∠BAC和∠ABC的外角平分线AE、BD分别与BC、CA的延长线交于E、D.若AB=AE,BD=BA.则∠BCA的度数为 .13.(2分)如图,Rt△ABC中,∠ABC=90°,AB=2,BC=4,点D在射线CB上,点E是AB延长线上的点,且DE=AC,(CD>2),若△ABC与△DBE全等,则CD的值为 .14.(2分)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有 个.15.(2分)如图,△ABC的三边AB、BC、CA长分别是40、60、80,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于 .16.(2分)如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为1/2的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的1/2)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P4﹣P3= ;P n﹣P n﹣1= .三、解答题(共9小题,满分68分)17.(6分)求满足下列各式的未知数x的值.(1)4(x﹣1)2=100;(2)(x+2)3=﹣27.18.(4分)如图是4×4正方形网格,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使整个涂成黑色的图形成为轴对称图形.请补全图形,并且画出对称轴(如图例),要求所画的四种方案不能重复.19.(8分)如图,△ABC中,AB的垂直平分线分别交AB,BC于D,E,AC的垂直平分线分别交AC,BC于F,G.(1)若△AEG的周长为10,求线段BC的长.(2)若∠BAC=128°,求∠EAG的度数.20.(8分)学过《勾股定理》后,八(1)班数学兴趣小组来到操场上测量旗杆AB的高度.小华测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1),小明拉着绳子的下端往后退,当他将绳子拉直时,小凡测得此时小明拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为8米(如图2).(1)设AB长为x米,绳子为 米,AE为 米(用x的代数式表示);(2)请你求出旗杆的高度AB.21.(8分)已知:在△ABC中,AB=AC,CD是△ABC的角平分线,AD=CD.(1)如图1,求∠A的度数.(2)如图2,过点D作DE∥BC交AC于点E,在不添加任何辅助线的情况下,请直接写出图2中的所有等腰三角形(△ABC除外).22.(8分)如图,A城气象台测得台风中心在A城正西方向600km的B处,以每小时200km的速度向北偏东60°的方向移动,距台风中心500km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响有多长时间?23.(8分)如图,在△ABC中,∠ABC=2∠ACB,BD为△ABC的角平分线;(1)若AB=BD,则∠A的度数为 °(直接写出结果);(2)如图1,若E为线段BC上一点,∠DEC=∠A;求证:AB=EC.(3)如图2,若E为线段BD上一点,∠DEC=∠A,求证:AB=EC.24.(8分)如图1,△ABC的两条外角平分线AO,BO相交于点O,∠ACB=50°.(1)直接写出∠AOB的大小;(2)如图2,连接OC交AB于K.①求∠BCK的大小;②如图3,作AF⊥OC于F,若∠BAC=105°,求证:AB=2CF.25.(10分)请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案一、选择题(共8小题,满分16分,每小题2分)1.B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】首先证明△ABC≌△AED,根据全等三角形的性质可得∠1=∠AED,再根据余角的定义可得∠AED+∠2=90°,再根据等量代换可得∠1与∠2的和为90°.【解答】解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故选:C.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.3.C【分析】根据勾股数的定义对各选项进行逐一分析即可.【解答】解:A、∵12+22≠32,∴1,2,3不是勾股数,不符合题意;B、∵42+52≠62,∴4,5,6不是勾股数,不符合题意;C、∵82+152=172,∴8,15,17是勾股数,符合题意;D、∵1.5不是整数,∴1.5,2,25不是勾股数,不符合题意.故选:C.【点评】本题考查的是勾股数,熟知满足a2+b2=c2的三个正整数,称为勾股数是解题的关键.4.A【分析】三角形内角与相邻的外角和为180°,三角形内角和为180°,等腰三角形两底角相等,100°只可能是顶角.【解答】解:等腰三角形一个外角为80°,那相邻的内角为100°三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以100°只可能是顶角.故选:A.【点评】本题主要考查三角形外角性质、等腰三角形性质及三角形内角和定理;判断出80°的外角只能是顶角的外角是正确解答本题的关键.5.C【分析】利用基本作图可判断MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC﹣∠DAB即可.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=46°,∵AB=AC,∴∠C=∠B=46°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣46°=88°,∴∠CAD=∠BAC﹣∠DAB=88°﹣46°=42°.故选:C.【点评】本题考查了作图﹣基本作图,线段垂直平分线的性质和等腰三角形的性质,由基本作图判断MN 垂直平分AB是解决问题的关键.6.B【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4,∵AB=6,∴S△ABC6×4AC×4=30,解得AC=9;故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.7.C【分析】由点D是AB的中点,求得AD的长度,然后在含30°角的直角三角形ADE中利用,30°角所对的直角边DE等于斜边AD的一半,求得DE的长.【解答】解:∵点D是斜梁AB的中点,∴AD AB7.4=3.7(m),∵DE垂直于横梁AC,∴∠DEA=90°,在Rt△ADE中,∠A=30°,∴DE AD 3.7=1.85(m).故选:C.【点评】本题考查含30°角的直角三角形的性质,在直角三角形中,利用30°角所对的直角边等于斜边的一半,是解题的关键.8.C【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的底角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1∠BA1C75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.二、填空题(共8小题,满分16分,每小题2分)9. 15:01 .【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻与10:21成轴对称,所以此时实际时刻为15:01,故答案为:15:01.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.10. 16cm或17cm .【分析】分为两种情况:①当腰长为5cm,底边为6cm时,②当腰长6cm,底边为5cm时,求出即可.【解答】解:①当腰长为5cm,底边长为6cm时,三边长是5cm、5cm、6cm,此时符合三角形的三边关系定理,即等腰三角形的周长是5cm+5cm+6cm=16cm;②当腰长为6cm,底边长为5cm时,三边长是6cm、6cm、5cm,此时符合三角形的三边关系定理,即等腰三角形的周长是6cm+6cm+5cm=17cm;故答案为:16cm或17cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系定理的应用,注意此题要分为两种情况讨论.11. Rt△BCD ≌ Rt△CBE ,根据是 HL .【分析】需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.【解答】解:如图,∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),故答案为:Rt△BCD,Rt△CBE,HL.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12. 36° .【分析】设∠ABC=x,由∠ABC=∠AEB,则∠AEB=x,根据三角形外角的性质得到∠1=∠ABC+∠AEB=2x,则∠2=2x,利用对顶角相等得∠3=∠D=4x,再根据三角形外角的性质得∠BCA=∠2+∠AEC=3x,∠FBD=∠D+∠BCD=7x,则∠DBA=∠FBD=7x,在△BCD中利用三角形的内角和定理可得到关于x的方程,解出x,然后在△ABC中根据三角形内角和定理即可求得∠BAC的度数.【解答】解:设∠ABC=x,∵∠ABC=∠AEB,∴∠AEB=x,∴∠1=∠ABC+∠AEB=2x,∴∠2=2x,∴∠3=∠D=4x,∠BCA=∠2+∠AEC=3x,∴∠FBD=∠D+∠BCD=7x,∴∠DBA=∠FBD=7x,∴7x+7x+x=180°,解得x=12°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣x﹣3x=132°,∴∠ABF=2∠DBF=168°,∴∠ACB=∠ABF﹣∠BAC=36°.【点评】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了角平分线的性质以及三角形外角的性质.13. 6或8 .【分析】根据CD>2可知:D在点B的右侧,因为DE=AC,所以当△ABC与△DBE全等时,有两种情况,分别根据全等三角形的性质可解答.【解答】解:分两种情况:①如图1,△ABC≌△DBE,∴BD=AB=2,∴CD=BD+CB=2+4=6;②如图2,△ABC≌△EBD,∴BD=BC=4,∴CD=4+4=8;综上,CD的长是6或8.【点评】本题考查了全等三角形的判定和性质,正确画图并分情况讨论是本题的关键.14. 5 【分析】根据轴对称图形的定义与判断可知.【解答】解:与△ABC成轴对称且也以格点为顶点的三角形有5个,分别为△BCD,△BFH,△ADC,△AEF,△CGH.【点评】本题考查轴对称图形的定义与判断,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.15. 2:3:4 .【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是40、60、80,所以面积之比就是2:3:4.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵点O是内心,∴OE=OF=OD,∴S△ABO:S△BCO:S△CAO•AB•OE:•BC•OF:•AC•OD=AB:BC:AC=2:3:4,故答案为:2:3:4.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点非常重要.16. ;P n﹣P n﹣1= .【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.【解答】解:P1=1+1+1=3,P2=1+1,P3=1+13,P4=1+123,…∴p3﹣p2;P4﹣P3,则P n﹣P n﹣1,故答案为:,【点评】本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.三.解答题(共9小题,满分68分)17.【分析】(1)根据等式的性质解决此题.(2)根据立方根的定义解决此题.【解答】解:(1)∵4(x﹣1)2=100,∴(x﹣1)2=25.∴x﹣1=±5.∴x=6或﹣4(2)∵(x+2)3=﹣27,∴x+2=﹣3.∴x=﹣5.【点评】本题主要考查解一元一次方程、立方根,熟练掌握一元一次方程的解法、立方根的定义是解决本题的关键.18.【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【解答】解:如图所示:【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题的关键.19.【分析】(1)根据垂直平分线的性质可知EA=EB,GA=GC,则△AEG周长转化为BC长;(2)由∠BAC=106°,可求得∠B+∠C的度数,又由AC的垂直平分线分别交AC、BC于点F、G,则可求得AE=BE,AG=CG,继而求得∠BAE+∠CAG的度数,则可求得答案.【解答】解:(1)∵DE是AB的垂直平分线,∴EA=EB.∵FG是AC的垂直平分线,∴GA=GC.∴BC=BE+EG+CG=AE+EG+AG=△AEG周长=10;(2)解:∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∵AB的垂直平分线分别交AB、BC于点D、E,∴AE=BE,AG=CG,∴∠BAE=∠B,∠CAG=∠C,∴∠BAE+∠CAG=∠B+∠C=52°,∴∠EAG=∠BAC﹣(∠BAE+∠CAG)=76°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.20.【分析】根据图形标出的长度,可以知道AB和AC的长度差值是1,以及CD=1,CE=8,从而构造直角三角形,根据勾股定理就可求出旗杆的高度.【解答】解:(1)设AB长为x米,则绳子长为(x+1)米,AE的长度为(x﹣1)米.故答案为:(x+1);(x﹣1);(2)在Rt△ACE中,AC=x米,AE=(x﹣1)米,CE=8米,由勾股定理可得,(x﹣1)2+82=(x+1)2,解得:x=16.答:旗杆的高度为16米.【点评】此题主要考查了勾股定理的应用,表示出AE与AC长度利用勾股定理求出,善于挖掘题目的隐含信息是解决本题的关键.21.【分析】(1)根据等腰三角形的性质可得∠A=∠ACD,再利用角平分线的定义可得∠ACB=2∠ACD,∠ACB=2∠A,然后再利用等腰三角形的性质可得∠B=∠ACB=2∠A,最后利用三角形内角和定理进行计算即可解答;(2)利用平行线的性质可得∠ADE=∠B,∠AED=∠ACB,从而可得∠ADE=∠AED,然后利用等角对等边可得AD=AE;再利用角平分线的定义和平行线的性质可得△EDC是等腰三角形;根据已知可得△ADC是等腰三角形;最后再利用三角形的外角性质可得∠CDB=∠A+∠ACD=2∠A,从而可得∠B=∠CDB,进而利用等角对等边可得CD=CB,即可解答.【解答】解:(1)∵AD=CD,∴∠A=∠ACD,∵CD平分∠ACB,∴∠ACB=2∠ACD,∴∠ACB=2∠A,∵AB=AC,∴∠B=∠ACB=2∠A,∵∠A+∠B+∠ACB=180°,∴5∠A=180°,∴∠A=36°,∴∠A的度数为36°;(2)△ADE,△CDB,△ADC,△DEC是等腰三角形,理由:∵DE∥BC,∴∠ADE=∠B,∠AED=∠ACB,∵∠B=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形;∵DE∥BC,∴∠EDC=∠DCB,∵CD平分∠ACB,∴∠ACD=∠DCB,∴∠EDC=∠ACD,∴ED=EC,∴△EDC是等腰三角形;∵AD=CD,∴△ADC是等腰三角形;∵∠CDB=∠A+∠ACD,∠A=∠ACD,∴∠CDB=2∠A,∵∠B=2∠A,∴∠B=∠CDB,∴CD=CB,∴△CDB是等腰三角形,∴△ADE,△CDB,△ADC,△DEC是等腰三角形.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,熟练掌握等腰三角形的判定与性质是解题的关键.22.【分析】(1)点到直线的线段中垂线段最短,故应由A点向BC作垂线,垂足为M,若AM>500则A城不受影响,否则受影响;(2)点A到直线BC的长为500千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AM ⊥BC,则M是DG的中点,在Rt△ADM中,解出MD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【解答】解:(1)A城受到这次台风的影响,理由:由A点向BC作垂线,垂足为M,在Rt△ABM中,∠ABM=30°,AB=600km,则AM=300km,因为300<500,所以A城要受台风影响;(2)设BC上点D,DA=500千米,则还有一点G,有AG=500千米.因为DA=AG,所以△ADG是等腰三角形,因为AM⊥BC,所以AM是DG的垂直平分线,MD=GM,在Rt△ADM中,DA=500千米,AM=300千米,由勾股定理得,MD400(千米),则DG=2DM=800千米,遭受台风影响的时间是:t=800÷200=4(小时),答:A城遭受这次台风影响时间为4小时.【点评】此题主要考查了勾股定理的应用以及点到直线的距离及速度与时间的关系等,构造出直角三角形是解题关键.23.【分析】(1)如图1中,设∠C=x.则可证∠A=∠ADB=2x,利用三角形内角和定理,构建方程求出x即可解决问题;(2)证明△ABD≌△ECD(AAS),可得结论;(3)如图2中,延长BD到T,使得CD=CT.证明△ABD≌△ECT(AAS),可得结论.【解答】(1)解:如图1中,设∠C=x.∵∠ABC=2∠C,∴∠ABC=2x,∵BD平分∠ABC,∴∠ABD=∠CBD=x,∵AB=BD,∴∠A=∠ADB=∠DBC+∠C=2x,∵∠A+∠ABC+∠C=180°,∴2x+2x+x=180°,∴x=36°,∴∠A=2x=72°,故答案为:72.(2)证明:如图1中,∵∠ABD=∠DBC=∠C,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AB=EC.(3)证明:如图2中,延长BD到T,使得CD=CT.∵CD=CT,∴∠T=∠CDT=∠ADB,∵BD=CD,∴BD=CT,在△ABD和△ECT中,,∴△ABD≌△ECT(AAS),∴AB=EC.【点评】本题属于三角形综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题.24.【分析】(1)根据三角形的内角定理求出∠CBA+∠CAB=130°,则∠EBA+∠BAD=230°,再由角平分线定义求出∠OBA+∠OAB=115°,根据四边形的内角和求出∠AOB即可;(2)过O点作OM⊥AD于M,ON⊥BE于N,OP⊥AB于P,根据角平分线的性质求解即可;(3)先求出KB=KC,过A点作AH∥BC交CO于H,再求出KA=KH,则AB=CH,分别求出AH=AC,HF=CF,即可证明AB=CH=2CF.【解答】(1)解:∵AO平分∠BAD,∴∠DAO=∠OAB,∵BO平分∠EOA,∴∠EBO=∠OBA,∵∠ACB=50°,∴∠CBA+∠CAB=130°,∴∠EBA+∠BAD=360°﹣130°=230°,∴∠OBA+∠OAB=115°,∴∠AOB=360°﹣50°﹣115°﹣130°=65°;(2)解:过O点作OM⊥AD于M,ON⊥BE于N,OP⊥AB于P,∵AO,BO分别平分∠DAB,∠EBA,∴OM=OP,OP=ON,∴OM=ON,∴CO平分∠ACB,∵∠ACB=50°,∴∠BCK=∠ACK=25°;(3)证明:∵∠BAC=105°,∠ACB=50°,∴∠ABC=25°,∵∠KCB=25°,∴∠KBC=∠KCE,∴KB=KC,过A点作AH∥BC交CO于H,∴∠AHK=∠KCB,∠HAK=∠KBC,∴∠AHK=∠HAK,∴KA=KH,∴AB=CH,∵∠AHK=∠ACH,∴AH=AC,∵AF⊥CO,∴HF=CF,∴CH=2CF,∴AB=CH=2CF.【点评】本题考查三角形的综合应用,熟练掌握三角形的内角定理,四边形的内角和定理,角平分线的性质及定义,平行线的性质是解题的关键.25.【分析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD =DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【点评】此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据。

2023-2024学年苏科新版八年级上册数学期中复习试卷(含答案)

2023-2024学年苏科新版八年级上册数学期中复习试卷(含答案)

2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.在下列数中,π,,3.14.0.101010,4,(π﹣1)0,无理数有( )个.A.1个B.2个C.3个D.4个2.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A.B.C.D.3.如图,∠1=∠2,∠3=∠4,则判定△ABD≌△ACD的依据是( )A.角角角B.角边角C.边角边D.边边边4.已知等腰三角形三边的长分别为4,x,10,则x的值是( )A.4B.10C.4 或10D.6 或105.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25B.5,12,13C.12,16,20D.4,7,86.把边长为1的正方形ABCD按如图所示放置在数轴上,以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,则点F对应的数值是( )A.2B.C.D.7.如图,若△ABE≌△ACF,且AB=7cm,AE=3cm,则EC的长为( )A.3cm B.4cm C.5cm D.7cm8.如图,把直角△ABC沿AD折叠后,使点B落在AC边上点E处,若AB=6,AC=10,则S△CDE=( )A.15B.12C.9D.6二.填空题(共8小题,满分24分,每小题3分)9.用四舍五入法将3.694精确到0.01,所得到的近似数为 .10.定义新运算“△”:对于任意实数a,b都有a△b=ab﹣a﹣b+2.(1)若3△x值不大于3,则x的取值范围是 ;(2)若(﹣2m)△5的值大于3且小于9,则m的整数值是 .11.若+y2﹣4y+4=0,则x= ,y= .12.如图,由两个直角三角形和三个正方形组成的图形.其中两正方形面积分别是S1=22,S2=14,AC=10,则AB= .13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于 .14.三角形的三边长分别为cm,cm,cm,这个三角形的周长是 cm.15.如图,将长方形ABCD沿对角线AC折叠,点B的对应点为点E,连接CE交AD于点F,且AD=2AB=8,则△AFC的面积为 .16.若三边均不相等的三角形三边a、b、c满足a﹣b>b﹣c(a为最长边,c为最短边),则称它为“不均衡三角形”.例如,一个三角形三边分别为7,5,4,因为7﹣5>5﹣4,所以这个三角形为“不均衡三角形”.(1)以下4组长度的小木棚能组成“不均衡三角形”的为 (填序号).①4cm,2cm,1cm;②19cm,20cm,19cm;③13cm,18cm,9cm;④9cm,8cm,6cm.(2)已知“不均衡三角形”三边分别为2x+2,16,2x﹣6,直接写出x的整数值为 .三.解答题(共11小题,满分82分)17.计算:×﹣|﹣2|+(﹣)﹣1.18.计算下列各式的值.(1)±;(2);(3);19.求下列各式中x的值:(1)x2=2;(2)(x﹣3)3=﹣8.20.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形△ABC,使它的三边长分别为AB=、BC=2、CA=;(2)在图中建立正确的平面直角坐标系,并写出△ABC各顶点的坐标;(3)作△ABC关于y轴的轴对称图形△A′B′C′(不要求写作法);(4)直接写出△ABC的面积为 .21.如图,已知AC,BD相交于点O,BO=DO,CO=AO,EF过点O分别交BC、AD于点E、F.(1)根据所给的条件,写出图中所有的全等三角形;(2)请说明BE=DF的理由.22.如图,河岸上A、B两点相距25km,C、D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A、B,已知AD=15km,BC=10km,现要在河岸AB上建一水厂E向C,D两村输送自来水,要求水厂到两村的距离相等,且DE⊥EC,则水厂E应建在距A点多少千米处?23.如图,在四边形ABCD中,AD∥BC,∠A=∠C=90°,点E、F分别在AB、DC上,连接DE,BF,若AE=CF;求证:DE=BF.24.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.已知+2=a,且与互为相反数,求a,b的值.26.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB以每秒4cm的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB交射线BC于点Q,以PQ为一边向上作正方形PQMN,设点P的运动时间为t(秒).(1)求线段PQ的长.(用含t的代数式表示)(2)求点Q与点C重合时t的值.(3)设正方形PQMN与△ABC的重叠部分周长为1(cm),求l与t之间的函数关系式.(4)作点C关于直线QM的对称点C',连接PC'.当PC′与△ABC的边垂直或重合时,直接写出t的值.27.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,将线段BC绕点B顺时针旋转一定角度得到线段BD.连接AD交BC于点E,过点C作线段AD的垂线,垂足为点F,交BD于点G.(1)如图1,若∠CBD=45°.①求∠BCG的度数;②求证:CE=DG;(2)如图2,若∠CBD=60°,当AC﹣DE=6时,求CE的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:无理数有π,共1个.故选:A.2.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.3.解:在△ADB和△ADC中,,∴△ADB≌△ADC(ASA),故判定两个三角形全等最直接的依据是角边角.故选:B.4.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.5.解:A、72+242=252,此三角形能组成直角三角形;B、52+122=132,此三角形能组成直角三角形;C、122+162=202,此三角形能组成直角三角形;D、(4)2+(7)2≠(8)2,此三角形不能组成直角三角形.故选:D.6.解:根据勾股定理得正方形的对角线==,∴OC=,∵以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,∴点F对应的数是.故选:D.7.解:∵△ABE≌△ACF,∴AB=AC=7cm.∴EC=AC﹣AE=7﹣3=4(cm).故选:B.8.解:在Rt△ABC中,由勾股定理得,BC===8,由翻折变换的性质可知,AB=AE=6,∠B=∠AED=90°,∴EC=AC﹣AE=10﹣6=4,在Rt△DEC中,设DE=x,则BD=x,DC=8﹣x,由勾股定理得,DE2+EC2=CD2,x2+42=(8﹣x)2,解得x=3,即DE=3,∴S△DEC=DE•EC=×3×4=6,故选:D.二.填空题(共8小题,满分24分,每小题3分)9.解:将3.694精确到0.01,所得到的近似数为3.69.故答案为3.69.10.解:(1)∵3△x值不大于3,∴3x﹣3﹣x+2≤3,∴3x﹣x≤3+3﹣2,∴2x≤4,∴x≤2,即x的取值范围是x≤2,故答案为:x≤2;(2)∵(﹣2m)△5的值大于3且小于9,∴,解不等式①,得m<﹣,解不等式②,得m>﹣,所以不等式组的解集是﹣<m<﹣,即整数m为﹣1,故答案为:﹣1.11.解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x﹣y=0,y﹣2=0,解得x=2,y=2,故答案为:2,2.12.解:∵S1=22,S2=14,∴S3=S1+S2=22+14=36,∴BC==6,∵AC=10,∴AB===8,故答案为:8.13.解:∵∠C=90°,FD⊥AB,而∠AED=∠CEF,∴∠A=∠F=30°,∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∴DE=BE=×4=2.故答案为2.14.解:根据题意得:++=4+5+5=(9+5)cm;故答案为:9+5.15.解:由折叠的性质,可知:AE=AB=4,CE=CB=8,∠E=∠B=90°,∠ACE=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACE,∴AF=CF.设AF=x,则EF=8﹣x.在Rt△AEF中,AE=4,AF=x,EF=8﹣x,∠E=90°,∴42+(8﹣x)2=x2,∴x=5,∴S△AFC=AF•AB=×5×4=10.故答案为:10.16.解:(1)①∵1+2<4,∴4cm,2cm,1cm不能组成三角形,也就不能组成“不均衡三角形”;②∵19=19,∴19cm,20cm,19cm不能组成“不均衡三角形”;③∵18﹣13>13﹣9,∴13cm,18cm,9cm能组成“不均衡三角形”;④∵9﹣8<8﹣6,∴9cm,8cm,6cm不能组成“不均衡三角形”.故答案为:③;(2)①16﹣(2x+2)>2x+2﹣(2x﹣6),解得:x<3,∵2x﹣6>0,解得:x>3,故不合题意,舍去;②2x+2>16>2x﹣6,解得:7<x<11,2x+2﹣16>16﹣(2x﹣6),解得:x>9,∴9<x<11,∵x为整数,∴x=10,经检验,当x=10时,22,16,14可构成三角形;③2x﹣6>16,解得:x>11,2x+2﹣(2x﹣6)>2x﹣6﹣16,解得:x<15,∴11<x<15,∵x为整数,∴x=12或13或14,都可以构成三角形;综上所述,x的整数值为10或12或13或14,故答案为:10或12或13或14.三.解答题(共11小题,满分82分)17.解:原式=×2﹣(2﹣)﹣8=2﹣2+﹣8=3﹣10.18.解:(1)∵(±)2=,∴=;(2)∵0.33=0.027,∴=0.3;(3)∵(﹣1)3=﹣1,∴=﹣1.19.解:(1)∵x2=2,∴x2=6,∴;(2)∵(x﹣3)3=﹣8,∴x﹣3=﹣2,∴x=1.20.解:(1)如图,△ABC即为所求;(2)平面直角坐标系如图所示.A(﹣3,4),B(﹣4,2),C(﹣2,0)(答案不唯一);(3)如图,△A′B′C′即为所求;(4)S△ABC=2×4﹣×1×2﹣×2×2﹣×1×4=3.故答案为:3.21.解:(1)图中所有的全等三角形:△ADO≌△CBO,△AFO≌△CEO,△DFO≌△BEO;(2)在△CBO和△ADO中,,∴△CBO≌△ADO(SAS),∴∠B=∠D,在△BEO和△DFO中,,∴△BEO≌△DFO(ASA),∴BE=DF.22.解:E站应建在离A站10km处,即AE=BC=10km,∵AB=25km、AD=15km,∴BE=AB﹣AE=15km=AD,∵CB⊥AB、DA⊥AB,∴∠A=∠B=90°,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴DE=CE.23.证明:∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠A=90°,∴∠ADC+∠A=180°,∴AB∥CD,∴四边形ABCD为平行四边形,∴AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,即BE=DF,∵AB∥CD,∴四边形EDFB为平行四边形,∴DE=BF.24.解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,S△ABC=28,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=28,即DE(6+8)=28,∴DE=4.25.解:∵,∴,∴a﹣2=1或a﹣2=0或a﹣2=﹣1,∴a=3或2或1,当a=3时,,∴,∴b=2,当a=2时,,∴,∴,当a=1时,,∴=1,∴b=,综上所述,,.26.解:(1)∵在Rt△ABC中、∠C=90°,∴AB===10,∴AP=4t,BP=10﹣4t,PQ=BP•tan B=BP•=(10﹣4t)×=﹣3t;(2)当点Q与点C重合时,如图1所示:∵cos A==,cos A===,∴=,∴t=(s);(3)当0<t≤时,如图2所示:BN=AB﹣AP﹣PN=10﹣4t﹣+3t=﹣t,∵tan B==,∴NH===(﹣t),cos B==,∴BH===(﹣t),∴CH=BC﹣BH=8﹣(﹣t),∵tan A==,∴PD===t,∵cos A==,∴AD===t,∴CD=AC﹣AD=6﹣t,∴l=PN+NH+CH+CD+PD=﹣3t+(﹣t)+8﹣(﹣t)+6﹣t+t=﹣t+;当<t<时,如图3所示:同理:NH=(﹣t),BH=(﹣t),BQ=(10﹣4t),∴HQ=BQ﹣BH=(10﹣4t)﹣(﹣t),∴l=2PQ+NH+HQ=2(﹣3t)+(﹣t)+(10﹣4t)﹣(﹣t)=﹣t+;(4)①当C′与C重合时,PC′⊥AB,如图4所示:由(2)得:t=s;②当PC′⊥AC时,如图5所示:则PC′∥BC,连接C′E,∵点C关于直线QM的对称点C',∴CC′⊥MQ,CE=C′E,∴CC′∥PQ,∴四边形CC′PQ是平行四边形,∴CQ=C′P,CC′=PQ=﹣3t,由(3)得:BQ=(10﹣4t),∴C′P=CQ=8﹣(10﹣4t)=﹣+5t,∵PD∥BC,∴==,即==,∴PD=t,AD=t,∴C′D=PD﹣C′P=t﹣(﹣+5t)=﹣t,∵MQ∥AB,∴=,即=,∴CE=﹣+t=C′E,∴DE=AC﹣AD﹣CE=6﹣t﹣(﹣+t)=﹣t,∵C′D2+DE2=C′E2,即(﹣t)2+(﹣t)2=(﹣+t)2整理得:27t2﹣t+=0,解得:t1=(s),t2=(s)(不合题意舍去);③当C′落在AB上时,PC′与AB重合,如图6所示:∵点C关于直线QM的对称点C',∴OC=OC′,∵四边形PQMN是正方形,∴MQ∥AB,∴AD=CD=AC=3,∴DQ是△CAB的中位线,∴CQ=BQ=BC=4,由(3)得:BQ=(10﹣4t),∴(10﹣4t)=4,∴t=(s),综上所述,当PC′与△ABC的边垂直或重合时,t的值为s或s或s.27.(1)①解:∵BA=BC,∠ABC=90°,∴∠ACB=∠CAB=45°,∵∠CBD=45°,∴∠ACB=∠CBD,∴AC∥BD,∴∠CAD=∠D,∵BD=BC=BA,∴∠D=∠BAD,∴∠CAD=∠BAD=∠CAB=22.5°,∵CG⊥AD,∴∠CFD=90°,∴∠ACF=90°﹣22.5°=67.5°,∴∠BCG=∠ACF﹣∠ACB=22.5°;②证明:延长CG,AB交于T,如图:∵∠ABE=∠CBT=90°,AB=BC,∠BAE=∠BCT=22.5°,∴△ABE≌△CBT(ASA),∴BE=BT,∠AEB=∠T,∵∠BAE=22.5°,∴∠AEB=90°﹣∠BAE=67.5°=∠T,∵∠EBG=∠TBG=45°,∴∠TGB=180°﹣∠T﹣∠TBG=67.5°,∴∠T=∠TGB,∴BT=BG,∴BE=BT=BG,∵BC=BD,∴BC﹣BE=BD﹣BG,即CE=DG;(2)解:连接CD,过点D作DH⊥BC于H,在DH上取一点J,使得EJ=DJ,设CF=a,如图:∵CB=BD,∠CBD=60°,∴△BCD是等边三角形,∵AB=BC,∠ABC=90°,∴∠ABD=90°+60°=150°,∠BAC=∠ACB=45°,∴∠BAD=∠BDA=15°,∴∠CAF=30°,∵CG⊥AD,∴∠CFA=90°,∴AC=2CF=2a,∵∠CDB=60°,∠BDA=15°,∴∠FDC=∠FCD=45°,∴FC=DF=a,DC=BC=BD=a,∵DH⊥BC,∴CH=BH=a,DH=CH=a,∠HDB=30°,∴∠JDE=∠HDB﹣∠BDA=15°,设EH=x,∵JE=JD,∴∠JED=∠JDE=15°,∴∠EJH=∠JED+∠JDE=30°,∴EJ=2EH=DJ=2x,HJ=x,DE===(+)x,∵DH=a=HJ+DJ,∴x+2x=a,∴x=(﹣)a,∴DE=(3﹣)a,∵AC﹣DE=6,∴2a﹣(3﹣)a=6,∴a=3(+1),∴CE=CH+EH=a+(﹣)a=(﹣)a=(﹣)×3(+1)=6.。

苏科版八年级上册数学期中考试试卷含答案

苏科版八年级上册数学期中考试试卷含答案

苏科版八年级上册数学期中考试试题一、单选题1.2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是()A .B .C .D .2.在﹣0.101101110111,22,72π0中,无理数的个数是()A .1个B .2个C .3个D .4个3.下列各式中,正确的是()A4=±B .(24=C 5=-D 3=-4.已知等腰三角形中的一个内角为40°,则这个等腰三角形的顶角为()A .40°B .100°C .40°或100°D .40°或80°5.如图,在等腰三角形ABC 中,AB =AC ,∠A =50°,直线MN 垂直平分边AC ,分别交AB ,AC 于点D ,E ,则∠BCD =()A .10°B .15°C .20°D .25°6.在下列各组条件中,不能说明△ABC ≌△DEF 的是()A .AB =DE ,∠B =∠E ,∠C =∠F B .AB =DE ,BC =EF ,AC =DF C .AB =DE ,∠B =∠E ,BC =EFD .AC =DF ,∠B =∠F ,∠A =∠D7.下列说法中:①关于某直线成轴对称的两个图形一定能完全重合;②线段是轴对称图形;③有一条公共边的两个全等三角形一定关于公共边所在直线对称;④关于某条直线对称的两个图形一定分别位于该直线的两侧.正确的有()A .1个B .2个C .3个D .4个8.如图,在△ABC 中,∠BAC 为钝角,AF 、CE 都是这个三角形的高,P 为AC 的中点,若∠B =40°,则∠EPF 的度数为()A .90°B .95°C .100°D .105°9.在等边ABC 中,D ,E 分别为,AB AC 边上的动点,2BD AE =,连接DE ,以DE 为边在ABC 内作等边DEF ,连接CF ,当D 从点A 向B 运动(不与点B 重合)时,ECF ∠的变化情况是()A .不变B .变小C .变大D .先变大后变小10.如图,在△ABC 中,∠BAC 和∠ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD ⊥BC 于D ,下列四个结论:①∠AOB =90°+12∠C ;②当∠C =60°时,AF+BE =AB ;③若OD =a ,AB+BC+CA =2b ,则S △ABC =ab .其中正确的是()A .①②B .②③C .①②③D .①③二、填空题11.9的平方根是_________.12.已知:如图,CAB DBA ∠=∠,只需补充条件_______,就可以根据“SAS ”得到ABC BAD ∆≅∆.13.数据1.44×106是四舍五入得到的近似数,其精确的数位是____.14.等腰三角形的两边长分别为2和4,则其周长为_____.15.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若△ABC 的面积为9,DE=2,AB=5,则AC 长是_________.16.等腰三角形一腰上的高与另一腰的夹角为45︒,则其底角为______度.17.如图,ABC 中,AB AC =,DE 垂直平分AB ,BE AC ⊥,EF BF =,则∠=EFC _________︒.18.如图,在△ABC 中,∠ABC =45°,AD ,BE 分别为DC ,AC 边上的高,连接DE ,过点D 作DF ⊥DE 交BE 于点F ,G 为BE 中点,连接AF ,DG .则AF ,DG 关系是____.三、解答题19.计算(111(2-+;(2)221-+-20.如图,点B 、D 、C 在一条直线上,AB =AD ,AC =AE ,∠BAD =∠EAC ;(1)求证:BC =DE ;(2)若∠B =70°,求∠EDC .21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)若有一格点P 到点A 、B 的距离相等(PA =PB ),则网格中满足条件的点P 共有个;(3)在直线l 上找一点Q ,使QB+QC 的值最小.22.如图,在△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,AC =20cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A→B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B→C→A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?23.如图,点D是△ABC中∠BAC的平分线和边BC的垂直平分线DE的交点,DG⊥AB 于点G,DH⊥AC交AC的延长线于点H.(1)求证:BG=CH;(2)若AB=12,AC=8,求BG的长.24.以△ABC的AB、AC为边作△ABD和△ACE,且AE=AB,AC=AD,CE与BD相交于M,∠EAB=∠CAD=α.(1)如图1,若α=40°,求∠EMB的度数;(2)如图2,若G、H分别是EC、BD的中点,求∠AHG的度数(用含α式子表示)(3)如图3,连接AM,直接写出∠AMC与α的数量关系是.25.(1)如图①,△ABC是等边三角形,M为边BC的中点,连接AM,将线段AM顺时针旋转120°,得到线段AD,连接BD;点N在BC的延长线上,且CN=MC,连接AN.求证:BD=AN.(2)若将问题(1)中的条件“M为边BC的中点”改为“M为边BC上的任意一点”,其他条件不变,结论还成立吗?若成立,请画出图形并给出证明;若不成立,请举反例.参考答案1.C【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;B、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;C 、能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,符合题意;D 、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;故选:C .【点睛】此题主要考查了轴对称图形,熟知轴对称图形的定义是解题的关键.2.B 【解析】【分析】根据无理数的定义,即无限不循环小数叫无理数判断即可【详解】,2π是无理数;故选B .【点睛】本题主要考查了无理数的判断,准确分析求解是解题的关键.3.D 【解析】【分析】根据算术平方根的定义、立方根的定义进行判断即可.【详解】解:A 4=,本选项错误;B 、(222==,本选项错误;C 5==,本选项错误;D3=-,本选项正确,故选:D .【点睛】本题考查算术平方根和立方根的定义及性质,熟练掌握定义和性质是解答的关键.4.C【解析】【分析】根据等腰三角形的性质分类计算即可;【详解】∵已知三角形是等腰三角形,∴当40°是底角时,顶角的度数为1804040100︒-︒-︒=︒;当40°是顶角时,符合题意;∴顶角的度数是40°或100°.故选C.【点睛】本题主要考查了等腰三角形的定义,准确计算是解题的关键.5.B【解析】【分析】由AB=AC,∠A=50°得出∠ACB=65°,根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AD=CD,推出∠ACD=∠A=50°,即可得出∠BCD=15°.【详解】解:∵AB=AC,∠A=50°,∴∠ACB=∠B18050652︒-︒==︒,∵直线MN垂直平分边AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD=∠ACB﹣∠ACD=15°,故选:B.【点睛】此题考查了等腰三角形以及垂直平分线的性质,熟练掌握相关基本性质是解题的关键.6.D【解析】【分析】根据三角形全等的判定方法逐项判断即可求解.【详解】解:A.AB=DE,∠B=∠E,∠C=∠F,根据“角角边”即可判断△ABC≌△DEF,不合题意;B.AB=DE,BC=EF,AC=DF,根据“边边边”即可判断△ABC≌△DEF,不合题意;C.AB=DE,∠B=∠E,BC=EF,根据“边角边”即可判断△ABC≌△DEF,不合题意;D.AC=DF,∠B=∠F,∠A=∠D,无法判断△ABC≌△DEF,符合题意.故选:D【点睛】本题考查了三角形全等的判定,熟知全等三角形的判定定理并根据题意灵活应用是解题关键.7.B【解析】【分析】根据轴对称的定义求解即可.轴对称:两个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这两个图形成轴对称.【详解】①关于某直线成轴对称的两个图形一定能完全重合,选项正确,符合题意;②线段是轴对称图形,选项正确,符合题意;③有一条公共边的两个全等三角形不一定关于公共边所在直线对称,选项错误,不符合题意;④关于某条直线对称的两个图形不一定分别位于该直线的两侧,选项错误,不符合题意.∴正确的个数是2个,故选:B.【点睛】此题考查了轴对称的定义,解题的关键是熟练掌握轴对称的定义.轴对称:两个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这两个图形成轴对称.8.C【解析】【分析】根据三角形内角和定理求出BCE ∠,根据直角三角形的性质得到12PF AC PC ==,12PE AC PC ==,根据等腰三角形的性质、三角形的外角的性质计算即可.【详解】解:CE BA ⊥Q ,40B ∠=︒,50BCE ∴∠=︒,AF BC ⊥Q ,CE BA ⊥,P 为AC 的中点,12PF AC PC ∴==,12PE AC PC ==,PFC PCF ∴∠=∠,PEC PCE ∠=∠,222100EPF PCF PCE BCE ∴∠=∠+∠=∠=︒,故选:C .【点睛】本题考查的是直角三角形的性质,三角形外角定理,等腰三角形性质等知识,熟知在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.A 【解析】【分析】在AC 上截取=CN AE ,连接FN ,根据等边三角形的性质证明()SAS ≌ADE NEF ,即可得到结论;【详解】如图,在AC 上截取=CN AE ,连接FN .∵ABC 是等边三角形,∴60A ∠=︒,AB AC =.∵2BD AE =,∴AD EN =.∵DEF 是等边三角形,∴DE EF =,60DEF ∠=︒.∵180********∠=︒-∠-∠=︒-︒-∠=︒-∠ADE A AED AED AED ,180********∠=︒-∠-∠=︒-︒-∠=︒-∠NEF DEF AED AED AED ,∴∠=∠ADE NEF .在ADE 和NEF 中,∵,,,AD EN ADE NEF ED EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ≌ADE NEF ,∴,60=∠=∠=︒AE FN FNE A ,∴=FN CN ,∴∠=∠NCF NFC .∵60∠=∠+∠=︒FNE NCF NFC ,∴30∠=︒NCF ,即30ECF ∠=︒,∴ECF ∠的大小不变,故选A.【点睛】本题主要考查了等边三角形的性质,结合三角形全等求解是解题的关键.10.C【解析】【分析】由角平分线的定义结合三角形的内角和的可求解∠AOB 与∠C 的关系,进而判定①;在AB 上取一点H ,使BH =BE ,证得△HBO ≌△EBO ,得到∠BOH =∠BOE =60°,再证得△HBO ≌△EBO ,得到AF =AH ,进而判定②正确;作OH ⊥AC 于H ,OM ⊥AB 于M ,根据三角形的面积可证得③正确.【详解】解:∵∠BAC 和∠ABC 的平分线相交于点O ,∴∠OBA =12∠CBA ,∠OAB =12∠CAB ,∴∠AOB =180°﹣∠OBA ﹣∠OAB =180°﹣12∠CBA ﹣12∠CAB =180°﹣12(180°﹣∠C )=90°+12∠C,①正确;∵∠C=60°,∴∠BAC+∠ABC=120°,∵AE,BF分别是∠BAC与ABC的平分线,∴∠OAB+∠OBA=12(∠BAC+∠ABC)=60°,∴∠AOB=120°,∴∠AOF=60°,∴∠BOE=60°,如图,在AB上取一点H,使BH=BE,∵BF是∠ABC的角平分线,∴∠HBO=∠EBO,在△HBO和△EBO中,BH BE HBO EBOBO BO=⎧⎪∠=∠⎨⎪=⎩,∴△HBO≌△EBO(SAS),∴∠BOH=∠BOE=60°,∴∠AOH=180°﹣60°﹣60°=60°,∴∠AOH=∠AOF,在△HBO和△EBO中,HAO FAOAO AO AOH AOF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBO≌△EBO(ASA),∴AF=AH,∴AB=BH+AH=BE+AF,故②正确;作OH⊥AC于H,OM⊥AB于M,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OH=OM=OD=a,∵AB+AC+BC=2b∴S△ABC =12×AB×OM+12×AC×OH+12×BC×OD=12(AB+AC+BC)•a=ab,④正确.故选:C.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO≌△EBO,得到∠BOH=∠BOE=60°,是解决问题的关键.11.±3【解析】【分析】根据平方根的定义解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.AC BD=【解析】【分析】已知AB BA=和CAB DBA∠=∠,需要根据“SAS”证明三角形全等,只能补充AC=BD的条件.【详解】解:补充条件AC=BD ,在ABC 和BAD 中,AB BA CAB DBA AC BD =⎧⎪∠=∠⎨⎪=⎩,∴()ABC BAD SAS ≅ .故答案是:AC=BD .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定方法.13.万位【解析】【分析】把题目中数据1.44×106还原为1440000,从而可以得到题目中的数据精确到万位,问题得解.【详解】解:因为1.44×106=1440000,∴近似数01.44×106精确到万位.故答案为:万位.【点睛】本题考查了近似数和科学记数法,熟知近似数的意义并准确将近似数还原为原数是解题关键.14.10【解析】【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【详解】①当2为腰时,另两边为2、4,2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4,2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【点睛】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.15.4【解析】【分析】根据角平分线性质求出DF,根据三角形面积公式求出△ABD的面积,求出△ADC面积,即可求出答案.【详解】解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=12AB×DE=12×5×2=5,∵△ABC的面积为9,∴△ADC的面积为9-5=4,∴12AC×DF=4,∴12AC×2=4,∴AC=4故答案为4.【点睛】本题考查了角平分线性质,解题的关键是作出辅助线.16.67.5或22.5【解析】【分析】根据题意可知等腰三角形需要分类讨论,分为锐角三角形和钝角三角形,画出图形解答即可.【详解】解:①如图1所示,当等腰三角形是锐角三角形时,根据题意,45ABM ∠=︒,又∵BM 是AC 边上的高,∴90AMB ∠=︒,∴904545A ∠=︒-︒=︒,∴1(18045)67.52C ∠=︒-︒=︒②如图2,当等腰三角形是钝角三角形时,根据题意,45DEN ∠=︒,∵EN 是DF 边上的高∴90N ∠=︒,∴904545EDN ∠=︒-︒=︒,∴122.52F EDN ∠=∠=︒故答案为67.5或22.5【点睛】本题考查了等腰三角形的分类讨论问题,涉及了三角形内角和和外角和的性质,解题的关键是能够画出图形,根据数形结合的思想求出答案.17.45【解析】【分析】根据线段垂直平分线的性质,由DE 垂直平分AB 可得AE =BE ,又由BE ⊥AC ,可求得∠A =∠ABE =45°,然后由AB =AC ,BF =EF 即可求得答案.【详解】解:∵DE 垂直平分AB ,∴AE =BE ,∴∠A =∠ABE ,∵BE ⊥AC ,∴∠AEB =90°,∴∠A =∠ABE =45°,∵AB =AC ,∴∠ABC =∠C =(180-∠A)÷2=67.5°,∴∠EBC =∠ABC ﹣∠ABE =22.5°,∵BF =EF ,∴∠BEF =∠EBC =22.5°,∴∠EFC =∠EBC+∠BEF =45°.故答案为:45.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.18.2AF DG =,AF DG ⊥##AF DG ⊥,2AF DG=【解析】【分析】延长DG 至M ,使GM DG =,交AF 于H ,连接BM ,根据题意证明DAE DBF ∆≅∆,推出45DEF DFE ∠=∠=︒,利用SAS 证明()BGM EGD SAS ∆∆≌,得出45MBE FED EFD ∠=∠=︒=∠,BM DE DF ==,再利用SAS 证明()BDM DAF SAS ∆∆≌,得出2DM AF DG ==,FAD BDM ∠=∠,证出90AHD ∠=︒,即可得出结论.【详解】解:2AF DG =,且AF DG ⊥;理由如下:如图,延长DG 至M ,使GM GD =,交AF 于H ,连接BM ,AD ,BE 分别为BC ,AC 边上的高,90BEA ADB ∴∠=∠=︒,45ABC ∠=︒ ,ABD ∴∆是等腰直角三角形,AD BD ∴=,90DAC C DBE C ∠+∠=∠+∠=︒ ,DAC DBE ∴∠=∠,即DAE DBF ∠=∠,90ADB FDE ∠=∠=︒ ,ADB ADF FDE ADF ∴∠-∠=∠-∠,即BDF ADE ∠=∠,在DAE ∆和DBF ∆中,DAE DBF AD BD ADE BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()DAE DBF ASA ∴∆∆≌,DE DF ∴=,FDE ∴∆是等腰直角三角形,45DEF DFE ∴∠=∠=︒,G 为BE 中点,BG EG ∴=,在BGM ∆和EGD ∆中,BG EG BGM DGE GM GD =⎧⎪∠=∠⎨⎪=⎩,()BGM EGD SAS ∴∆∆≌,45MBE DEF DFE ∴∠=∠=︒=∠,BM DE DF ==,DAC DBE ∠=∠ ,45MBD MBE DBE DBE ∴∠=∠+∠=︒+∠,45EFD DBE BDF ∠=︒=∠+∠,45BDF DBE ∴∠=︒-∠,ADE BDF ∠=∠ ,9045ADF BDF DBE MBD ∴∠=︒-∠=︒+∠=∠,在BDM ∆和DAF ∆中,BM DF MBD ADF BD AD =⎧⎪∠=∠⎨⎪=⎩,()BDM DAF SAS ∴∆∆≌,2DM AF DG ∴==,FAD BDM ∠=∠,90BDM MDA ∠+∠=︒ ,90MDA FAD ∴∠+∠=︒,∠90AHD ∴=︒,AF DG ∴⊥,2AF DG ∴=,且AF DG ⊥.故答案为:2AF DG =,AF DG ⊥.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.19.(1)6;(24-【解析】【分析】(1)由题意根据算术平方根和立方根性质以及负指数幂的运算法则进行计算即可;(2)由题意根据乘方、二次根式以及去绝对值的运算规则进行计算即可.【详解】解:(111(2-523=-+6=(2)221-++4312=-++-4=【点睛】本题考查实数的运算,熟练掌握算术平方根和立方根性质以及负指数幂的运算法则,乘方、二次根式以及去绝对值的运算规则是解题的关键.20.(1)见详解;(2)40°.【解析】【分析】(1)先证明∠BAC =∠DAE ,再证明△ABC ≌ADE ,问题得证;(2)根据△ABC ≌ADE ,得到∠B=∠ADE=70°,AB=AD ,进而得到∠B=∠ADB=70°,根据平角的定义即可求解.【详解】解:(1)∵∠BAD =∠EAC ,∴∠BAD+∠DAC =∠EAC+∠DAC ,即∠BAC =∠DAE ,在△ABC 和△ADE 中,===AB AD BAC DAE AC AE ⎧⎪∠∠⎨⎪⎩∴△ABC ≌△ADE ,∴BC=DE ;(2)∵△ABC ≌△ADE ,∴∠B=∠ADE=70°,AB=AD ,∴∠B=∠ADB=70°,∴∠EDC=180°-∠ADB-∠ADE=180°-70°-70°=40°.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质等知识,根据题意证明△ABC ≌△ADE 是解题关键.21.(1)见解析;(2)4;(3)见解析.【分析】(1)分别作出A,B,C的对应点A1,B1,C1,再顺次连接即可;(2)在线段AB的垂直平分线性质格点即可;(3)连接BC1交直线l于点Q,连接CQ,此时BQ+CQ的值最小.【详解】解:(1)如图,△A1B1C1即为所求.(2)如图,满足条件的点P有4个,故答案为:4.(3)如图,点Q即为所求.【点睛】本题考查作图-轴对称变换,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)163;(2)11秒或12秒.【解析】【分析】(1)由题意用t可分别表示出BP和BQ,根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,即可求得t;(2)根据题意用t分别表示出BQ和CQ,利用等腰三角形的性质可分CQ=BC和BQ=CQ 三种情况,分别得到关于t的方程,即可求得t的值.【详解】解:(1)由题意可知AP=t,BQ=2t,∴BP=AB-AP=16-t,当△PQB为等腰三角形时,则有BP=BQ,即16-t=2t,解得t=16 3,∴出发163秒后△PQB能形成等腰三角形;(2)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10(cm),∴BC+CQ=22(cm),∴t=22÷2=11(秒).②当,△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,则BC+CQ=24(cm),∴t=24÷2=12(秒).综上所述:当t为11秒或12秒时,△BCQ是以BC或BQ为底边的等腰三角形.本题考查等腰三角形的性质、方程思想及分类讨论思想等知识.掌握用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意结合方程思想进行分析.23.(1)见详解;(2)10【解析】【分析】(1)根据题意连接BD 、CD ,根据线段垂直平分线的性质可得DB=DC ;依据角平分线的性质可得DG=DH ;依据HL 定理可判断出Rt △BDG ≌Rt △CDH ,根据全等三角形的性质即可得出结论;(2)由题意可得Rt △ADG ≌Rt △ADH (HL ),得出AG=AH ,进而得出答案.【详解】解:(1)证明:如图,连接BD 、CD ,∵D 是线段BC 垂直平分线上的点,∴BD=DC ,∵D 是∠BAC 平分线上的点,DG ⊥AB ,DH ⊥AC∴DG=DH ,∠DGB=∠H=90°,在Rt △BDG 与Rt △CDH 中,DG DH BD DC=⎧⎨=⎩,∴Rt △BDG ≌Rt △CDH (HL ),∴BG=CH ;(2)在Rt △ADG 与Rt △ADH 中,∵DG=DH ,AD=AD ,∴Rt △ADG ≌Rt △ADH (HL ),∴AB-AC=AG+BG-(AH-CH )=2BG=12-8=4,∴BG=2,∴AG=AB-BG=12-2=10.【点睛】本题考查线段垂直平分线及角平分线的性质和直角三角形全等的判定定理及性质,解答此题的关键是作出辅助线,构造出直角三角形.24.(1)40°;(2)1902α︒-;(3)1902AMC α∠=︒+.【解析】【分析】(1)由“SAS ”可证AEC ABD ∆∆≌,可得AEC ABD ∠=∠,由外角的性质可得结论;(2)由“SAS ”可证ACG ADH ∆∆≌,可得AG AH =,CAG DAH ∠=∠,即可求解;(3)连接AM ,过点A 作AP EC ⊥于P ,AN BD ⊥于N ,由全等三角形的性质可得ACG ADH S S ∆∆=,EC BD =,由面积法可求AP AN =,由角平分线的性质可求AMD ∠,即可求解.【详解】解:(1)EAB CAD α∠=∠= ,EAC BAD ∴∠=∠,在AEC ∆和ABD ∆中,AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,()AEC ABD SAS ∴∆∆≌,AEC ABD ∴∠=∠,AEC EAB ABD EMB ∠+∠=∠+∠ ,40EMB EAB ∴∠=∠=︒;(2)连接AG ,由(1)可得:EC BD =,ACE ADB ∠=∠,G 、H 分别是EC 、BD 的中点,在ACG ∆和ADH ∆中,AC AD ACE ADB CG DH =⎧⎪∠=∠⎨⎪=⎩,()ACG ADH SAS ∴∆∆≌,AG AH ∴=,CAG DAH ∠=∠,AGH AHG ∴∠=∠,CAG CAH DAH CAH ∠-∠=∠-∠,GAH DAC ∴∠=∠,DAC α∠=∵,GAH α∴∠=,180GAH AHG AGH ∠+∠+∠=︒ ,1902AHG α∴∠=︒-;(3)如图3,连接AM ,过点A 作AP EC ⊥于P ,AN BD ⊥于N ,ACE ADB ∆∆ ≌,ACE ADB S S ∆∆∴=,EC BD =, 1122EC AP BD AN ⨯=⨯⨯,AP AN ∴=,又AP EC ⊥ ,AN BD ⊥,1802AME AMD α︒-∴∠=∠=,1902AMC AMD DMC α∴∠=∠+∠=︒+.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的判定,掌握全等三角形的判定定理是本题的关键.25.(1)证明过程见解析;(2)成立,理由见解析【解析】【分析】(1)根据等边三角形的性质得到60ABC BAC ACB ∠=∠=∠=︒,AB BC AC ==,再根据中点得到90AMB AMN ∠=∠=︒,22BC BM MC ==,30BAM BAC ∠=∠=︒,再根据旋转的性质得到2MN MC BC AB ===,证明DBA ANM ≅△△,即可得解;(2)当12BM BC >,过点A 、点D 作AG BM ⊥,DH BA ⊥,再证明DAH AMG ≅△△,得到DH AG =,AH GM =,再根据等边三角形的性质得到BG GC =,证明DBH ANG ≅△△即可得解;当12BM BC <,根据相同的方法证明即可;【详解】(1)∵△ABC 是等边三角形,∴60ABC BAC ACB ∠=∠=∠=︒,AB BC AC ==,又∵M 为边BC 的中点,∴90AMB AMN ∠=∠=︒,22BC BM MC ==,30BAM BAC ∠=∠=︒,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴1203090BAD MAD BAM ∠=∠-∠=︒-︒=︒,∴90BAD AMN ∠=∠=︒,∵MC CN =,∴2MN MC BC AB ===,在DBA 和ANM 中,AB MN BAD AMB AD AM =⎧⎪∠=∠⎨⎪=⎩,∴DBA ANM ≅△△,∴BD AN =;(2)结论成立,理由如下:如图,当12BM BC >时,过点A 、点D 作AG BM ⊥,DH BA ⊥,∴90DHA AGM =∠=︒,∵180AMG BAM ABC ∠+∠+∠=︒,60ABC ∠=︒,∴180120AMG ABC BAM BAM ∠=︒-∠-∠=︒-∠,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴120DAB BAM ∠=︒-∠,∴DAB AMB ∠=∠,在DAH 和AMG 中,DHA AGM DAH AMG AD AM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DAH AMG ≅△△,∴DH AG =,AH GM =,又∵△ABC 是等边三角形,AG BM ⊥,∴BG GC =,∴GN GC CN GC CM BG GC GM BC GM =+=+=+-=-,又∵BH AB HA =-,AH GM =,AB BC =,∴BH GN =,∵DH AG =,90DHA AGM ∠=∠=︒,BH GN =,在DBH △和ANG 中,DH AG DHB AGM BH GN =⎧⎪∠=∠⎨⎪=⎩,∴DBH ANG ≅△△,∴BD AN =;当12BM BC <时,过点A 、点D 作AE BM ⊥,DF BA ⊥,∴90DFA AEM =∠=︒,∵180AME BAM ABC ∠+∠+∠=︒,60ABC ∠=︒,∴180120AME ABC BAM BAM ∠=︒-∠-∠=︒-∠,∵AM 顺时针旋转120°得到线段AD ,∴120MAD ∠=︒,AD AM =,∴120DAB BAM ∠=︒-∠,∴DAB AMB ∠=∠,在DAF △和AME △中,DFA AEM DAF AME AD AM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DAF AME ≅△△,∴DF AE =,AF EM =,又∵△ABC 是等边三角形,AE BM ⊥,∴BE EC =,∴EN EC CN EC CM BE EC EM BC EM =+=+=+-=-,又∵BF AB FA =-,AF EM =,AB BC =,∴BF EN =,∵DF AE =,90DFA AEM ∠=∠=︒,BF EN =,在DBF 和ANE 中,DF AE DFB AEM BF EN =⎧⎪∠=∠⎨⎪=⎩,∴DBF ANE ≅△△,∴BD AN =;。

苏科版八年级上册数学期中考试试题及答案

苏科版八年级上册数学期中考试试题及答案

苏科版八年级上册数学期中考试试卷一、单选题1.下列图形中,不能通过其中一个四边形平移得到的是()A .B .C .D .2.下列运算正确的是()A .236a a a⋅=B .853a a a+=C .325)aa =(D .551a a ÷=(a≠0)3.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为()A .9B .4C .5D .134.如图,60,55A B ∠=︒∠=︒.下列条件中能使//DE BC 的是()A .135BDE ∠=︒B .65DEA ∠=︒C .125DEC ∠=︒D .65ADE ∠=︒5.下列说法中,正确的个数有()①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3个D .4个6.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为()A .m=2,n=3B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=37.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a ∥b )的一边b 上,若∠1=30°,则三角板的斜边与长尺的另一边a 的夹角∠2的度数为()A .10°B .15°C .30°D .35°8.若22(23)(23)a b a b N -=++,则N 表示的代数式是()A .12abB .12ab-C .24abD .24ab-9.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数是()A .1902α-B .1902α︒+C .12αD .15402α︒-10.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG ;其中正确的个数是()A .1B .2C .3D .4二、填空题11.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .12.计算:2017201852((2)125-⨯=__________.13.已知32,2mn aa ==,则2m n a +=______.14.长、宽分别为a 、b 的长方形,它的周长为16,面积为10,则22a b ab +的值为____.15.已知(x -1)(x +2)=ax 2+bx +c ,则代数式4a -2b +c 的值为________.16.已知4s t+=则228s t t -+=____.17.如图,在△ABC 中,∠C=90°,BC=8cm ,AC=6cm ,点E 是BC 的中点,动点P 从A 点出发以每秒2cm 的速度沿A→C→B 运动,设点P 运动的时间是t 秒,那么当t=____,△APE 的面积等于6.三、解答题18.计算:(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭;(2)()()()3243652aa a +-∙-.(3)(2)()3()a b a b a a b ++-+(4)(3a+2)2(3a -2)219.因式分解:(1)x 2﹣36;(2)﹣3a 2+6ab ﹣3b 2(3)3x (a -b )-6y (b -a );(4)222(1)6(1)9y y ---+20.先化简,再求值:(a+2b)(a-2b)+(a+2b)2-4ab的值,其中a=1,b=12018.21.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上,将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A,B,C,;(2)再在图中画出△ABC的高CD;中线BM(3)△ABC的面积S△ABC=PBC的格点P的个数有个(点P异于A)(4)在图中能使S△ABC=S△22.已知a+b=2,ab=-1,求(1)5a2+5b2,(2)(a-b)2的值.23.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.24.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.如果∠1=∠2,且∠3=115°,求∠ACB的度数.25.已知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围.26.如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式____;(2)选取1张A型卡片,10张C型卡片,____张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为____;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.参考答案1.D【解析】【分析】根据平移与旋转的性质得出.【详解】解:A.能通过其中一个四边形平移得到,故本选项不符合题意;B.能通过其中一个四边形平移得到,故本选项不符合题意;C.能通过其中一个四边形平移得到,故本选项不符合题意;D.不能通过其中一个四边形平移得到,需要一个四边形旋转得到,故本选项符合题意.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.2.D【解析】【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【详解】解:A.同底数幂相乘,底数不变,指数相加,故A错误;B.系数相加字母及指数不变,故B错误;C.幂的乘方,底数不变,指数相乘,故C错误;D.同底数幂相除,底数不变,指数相减,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x.根据三角形的三边关系定理,得:9-4<x<9+4,解得5<x<13.故选:A.【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.4.B【解析】利用三角形的内角和等于180°列式求出∠C,再根据同位角相等,两直线平行和同旁内角互补两直线平行对各选项分析判断利用排除法求解.【详解】解:∵∠A=60°,∠B=55°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣55°=65°.A.∠BDE=135°时,∠BDE+∠B=135°+55°=190°,DE与BC不平行,故本选项错误;B.∠DEA=65°时,∠DEA=∠C=65°,DE∥BC,故本选项正确;C.∠DEC=125°时,∠DEC+∠C=125°+65°=190°,DE与BC不平行,故本选项错误;D.∠ADE=65°时,∠ADE≠∠B,DE与BC不平行,故本选项错误.故选B.【点睛】本题考查了平行线的判定,三角形的内角和定理,熟练掌握平行线的判定方法是解题的关键.5.A【解析】【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确;④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误.故选A.【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.6.B【解析】【分析】先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可.解:将(2x+3y)(mx-ny)展开,得2mx2-2nxy+3mxy-3ny2,根据题意可得2mx2-2nxy+3mxy-3ny2=9y2-4x2,根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9,解得m=-2,n=-3故选B.【点睛】本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.7.B【解析】【详解】∠1与它的同位角相等,它的同位角+∠2=45°所以∠2=45°-30°=15°,故选B8.D【解析】【分析】根据完全平方公式即可求出N的代数式.【详解】解:(2a﹣3b)2=4a2﹣12ab+9b2=4a2+12ab+9b2﹣24ab=(2a+3b)2﹣24ab故N=﹣24ab故选D.【点睛】本题考查了完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.9.A【解析】【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.10.C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC +∠ACB =∠AEB ,∠DCB +∠ABC =∠ADC ,∴∠AEB +∠ADC =90°+12(∠ABC +∠ACB )=135°,∴∠DFE =360°−135°−90°=135°,∴∠DFB =45°=12∠CGE ,故正确.∴正确的为:①②③,故选:C .【点睛】本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.11.89.110-⨯【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000091m 用科学记数法表示为89.110m -⨯.故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.12.-125【解析】【分析】根据同底数幂的乘法、积的乘方的逆运算进行计算即可.【详解】2017201720182017201752512125121212()(2)()()()()125125512555⎡⎤-⨯=-⨯⨯=-⨯⨯=-⎢⎥⎣⎦,故填:125-.【点睛】本题考查同底数幂的乘法、积的乘方的逆运算,属于基础题型,牢记法则是关键.13.128【解析】【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别计算得出答案.【详解】解:∵am=32,an=2,∴(an)2=4,∴a2n=4,则am+2n=am×(a2n)=32×4=128.故答案为:128.【点睛】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.14.80【解析】【详解】∵长、宽分别为a、b的矩形,它的周长为16,面积为10,∴a+b=16÷2=8,ab=10,∴a²b+ab²=ab(a+b)=10×8=80,故答案为80.15.0【解析】【详解】解:(x﹣1)(x+2)=x2﹣x+2x﹣2=x2+x﹣2=ax2+bx+c,则a=1,b=1,c=﹣2.∴原式=4﹣2﹣2=0.故答案为:0.【点睛】本题考查多项式乘多项式及求代数式的值,掌握多项式乘以多项式运算法则是解题关键.16.16【解析】【分析】先利用平方差公式进行因式分解,再代入题目给出的s+t=4,再提取公因式得到4(s+t),最后得出答案.【详解】原式=(s+t)(s-t)+8t=4(s-t)+8t=4s-4t+8t=4(s+t)=4×4=16;故答案为:16【点睛】本题考查由给定式子值求另一个式子值,考查了平方差公式和提取公因式的运用,掌握求解的方法是解题关键.17.32或5或9.【解析】【分析】分点P在线段AC上和点P在线段CE上和点P在线段EB上三种情况考虑,根据三角形的面积公式分别列出关于t的一元一次方程,解之即可得出结论.【详解】解:∵BC=8cm,点E是BC的中点,∴CE=12BC=4cm,当点P在线段AC上,如图1所示,AP=2t,∵∠C=90°,∴S△APE =12AP•CE=12t42⨯⨯=4t=6,解得:t=3 2;当点P在线段CE上,如图2所示,AC=6cm,PE=4-(t-3)=7-t,∴S△APE =12PE•AC=()17-t62⨯⨯=6,解得:t=5.如图3,当P在线段BE上时,PE=t-3-4=t-7,∴S△APE =12PE•AC=()1t-762⨯⨯=6,解得:t=9,综上所述,t的值为32或5或9;故答案为:32或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,以及解一元一次方程,和分类讨论的数学思想,解答时灵活运用三角形的面积公式求解是关键.18.(1)-11;(2)12a ;(3)2222a b -+;(4)42817216a a -+【解析】【分析】(1)根据负整数指数幂以及零指数幂即可求出答案.(2)根据积的乘方以及同底数幂的乘法即可求出答案.(3)原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并即可得到结果.(4)原式利用平方差公式和完全平方公式计算即可.【详解】(1)原式=﹣3﹣9+1=﹣11.(2)原式=5a 12﹣4a 6•a 6=a 12.(3)原式=a 2+3ab+2b 2﹣3a 2﹣3ab=﹣2a 2+2b 2.(4)原式=(9a 2-4)2=42817216a a -+.【点睛】本题考查了学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19.(1)(x ﹣6)(x+6);(2)-3(a-b )2;(3)3(x+2y )(a -b );(4)22(2)(2)y y -+【解析】(1)利用平方差公式因式分解即可;(2)先提取公因式,再利用完全平方公式因式分解即可;(3)利用提取公因式法因式分解即可;(4)将2(1)y -看做一个整体,利用完全平方公式因式分解即可;【详解】解:(1)x 2﹣36=(x ﹣6)(x+6)(2)﹣3a 2+6ab ﹣3b 2=-3(a 2-2ab+b 2)=-3(a-b )2(3)3x (a -b )-6y (b -a )=3x (a -b )+6y (a -b )=(3x+6y )(a -b )=3(x+2y )(a -b )(4)222(1)6(1)9y y ---+=22(y 13)--=22(4)y -=22(2)(2)y y -+【点睛】本题综合考查了提取公因式法、公式法分解因式.掌握因式分解的方法是关键,注意分解要彻底.20.2a²,2【解析】【分析】先算乘法,再合并同类项,最后代入求值即可.【详解】解:原式=a²−4b²+a 2+4ab+4b²−4ab=2a²,当a=1,b=12018时,原式=2×1²=2.【点睛】本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力和化简能力,难度适中.21.(1)见解析;(2)见解析;(3)8;(4)5【解析】【分析】(1)周长A,B,C的对应点A′,B′,C′即可.(2)根据高的定义作出△ABC的高CD即可.(3)利用分割法求出△ABC的面积即可.(4)利用等高模型解决问题即可.【详解】解:(1)△A′B′C′如图所示.(2)△ABC的高CD如图所示.(3)S△ABC=12×4×4=8,故答案为8.(4)如图所示,满足条件的点P有5个.故答案为5.【点睛】本题属于作图-平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)30;(2)8【解析】【分析】(1)将a+b=2两边平方,利用完全平方公式展开,把ab的值代入即可求出a2+b2的值,进而求出5a2+5b2的值;(2)所求式子利用完全平方公式展开,将ab及a2+b2的值代入计算即可求出值.【详解】解:(1)将a+b=2两边平方得:(a+b)2=a2+b2+2ab=4,把ab=﹣1代入得:a2+b2=6,则5a2+5b2=5(a2+b2)=30;(2)(a﹣b)2=a2+b2﹣2ab=6+2=8.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解答本题的关键.23.∠A=∠F,理由见解析【解析】【分析】要找∠A与∠F的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE∥BD;根据平行线的性质,可得∠C=∠ABD,结合已知条件,得∠ABD=∠D,根据平行线的判定,得AC∥DF,从而求得结论.【详解】解:∠A=∠F.理由如下:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE∥DB,∴∠C=∠ABD.∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.24.115°【解析】【分析】根据垂直的定义可得∠BFE=∠BDC=90°,然后根据同位角相等,两直线平行可得CD//EF,再根据两直线平行,同位角相等可得∠2=∠BCD,然后求出∠1=∠BCD,再根据内错角相等,两直线平行,然后根据两直线平行,同位角相等可得∠3=∠ACB.【详解】解:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF//CD;∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG//BC,∴∠ACB=∠3=115°.【点睛】本题考查了垂直的定义,平行线的性质与判定,是基础题,熟记平行线的性质与判定方法是解题的关键.25.(1)3;(2)见解析;(3)见解析【解析】【分析】(1)因为△BCD的高为OC,所以S△BCD=12 CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.【详解】解:(1)S△BCD=12CD•OC=12×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE ,∴∠CEF=∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC=∠PAD .∵∠ADC=∠DAC∴∠CAP=2∠DAC .∵∠ABC+∠ACB=∠CAP ,∴∠ABC+∠ACB=2∠DAC .∵∠H+∠HCA=∠DAC ,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH 是,∠ACB 的平分线,∴∠ACB=2∠HCA ,∴∠ABC=2∠H ,∴H ABC∠∠=12.【点睛】本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.26.(1)222()2a b a b ab +=++;(2)25,5a b +;(3)阴影部分的面积为432.【解析】【分析】(1)方法一:先求出这个正方形的边长,再利用正方形的面积公式即可得;方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和即可得;然后根据方法一与方法二的面积相等可得出所求的等式;21(2)设选取x 张B 型卡片,根据(1)中的方法二求出拼成的正方形的面积,然后利用完全平方公式即可求出x 的值,最后根据正方形的面积公式即可得其边长;(3)先利用阴影部分的面积等于大正方形的面积减去两个直角三角形的面积求出阴影部分的面积,再利用完全平方公式进行变形,然后将已知等式的值代入求解即可.【详解】(1)方法一:这个正方形的边长为a b +,则其面积为2()a b +方法二:这个正方形的面积等于两个小正方形的面积与两个长方形的面积之和则其面积为222a b ab++因此,可以得到一个等式222()2a b a b ab+=++故答案为:222()2a b a b ab +=++;(2)设选取x 张B 型卡片,x 为正整数由(1)的方法二得:拼成的正方形的面积为2210a xb ab++由题意得:2210a xb ab ++是一个完全平方公式则210()252x ==因此,拼成的正方形的面积为2222510(5)a b ab a b ++=+所以其边长为5a b+故答案为:25,5a b +;(3)阴影部分的面积为222211111()22222m m n m n m mn n ---=-+10,19m n mn +== 2222()21021962m n m n mn ∴+=+-=-⨯=则阴影部分的面积为222211111()22222m mn n m n mn-+=+-11621922=⨯-⨯432=答:阴影部分的面积为432.。

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试题含答案

苏科版八年级上册数学期中考试试卷一、单选题1.现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,下列汉字不是轴对称图形的是()A .一B .中C .王D .语2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A .2,3,4B .6,8,10C .5,12,14D .1,1,23.如图,ABC ADE △≌△,若80B ∠=︒,30C ∠=︒,则E ∠的度数为()A .80°B .35°C .70°D .30°4.如图,在△ABC 中,∠B=36°,AB =AC ,AD 是△ABC 的中线,则∠BAD 的度数是()A .36°B .54°C .72°D .108°5.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .8B .12C .18D .206.如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为()A.2.5km B.4.5km C.5km D.3km7.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形∠+∠+∠=)8.如图为6个边长相等的正方形的组合图形,则123(A.90 B.135 C.150 D.180二、填空题9.用一根长12cm的铁丝围成一个等边三角形,那么这个等边三角形的边长为___cm.10.在△ABC中,AB=AC,∠A=40°,则∠B的度数为_____°.11.木工师傅要做一扇长方形纱窗,做好后量得长为6分米,宽为4分米,对角线为7分米,则这扇纱窗________(填“合格”或“不合格”)12.若(a-4)2+|b-2|=0,则有两边长为a、b的等腰三角形的周长为________.13.如图,A、F、C、D在同一条直线上,△ABC≌△DEF,AF=1,FD=3.则线段FC 的长为_____.14.如图,△ABC中,边AB的垂直平分线分别交AB,BC于点D,E,连接AE,若AC =2cm,BC=5cm,则△AEC的周长是_____cm.15.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字______的格子内.16.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为_____cm2.17.如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.三、解答题18.如图,△ABC中,AB=AC,∠1=∠2,BC=6cm,那么BD的长_____cm.19.如图,网格中的△ABC与△DEF为轴对称图形.(1)利用网格线作出△ABC与△DEF的对称轴l;(2)如果每一个小正方形的边长为1,请直接写出△ABC的面积=.20.已知:如图,若AB∥CD,AB=CD且BE=CF.求证:AE=DF.21.已知:如图,∠A=∠D=90°,点E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:△OEF是等腰三角形.22.如图,厂房屋顶的人字架是等腰三角形,AB=AC,AD⊥BC,若跨度BC=16m,上弦长AB=10m,求中柱AD的长.23.如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.24.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.25.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.(1)求证:AD垂直平分EF;=15,求DE的长.(2)若AB+AC=10,S△ABC26.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.27.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.(1)当t为何值时,M、N两点重合;(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.①当t为何值时,△AMN是等边三角形;②当t为何值时,△AMN是直角三角形;(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.参考答案1.D【解析】【分析】直接利用轴对称图形的定义得出答案,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、“一”是轴对称图形,故本选项不合题意;B、“中”是轴对称图形,故本选项不合题意;C、“王”是轴对称图形,故本选项不合题意;D、“语”不是轴对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【解析】【分析】先求出较小两边的平方和,再求出最长边的平方,判断是否相等即可.【详解】解:A.∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项不符合题意;B.∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项符合题意;C.∵52+122≠142,∴5,12,14为边不能组成直角三角形,故本选项不符合题意;D.∵12+12≠22,∴以1,1,2为边不能组成直角三角形,故本选项不符合题意;故选:B.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理逆定理的内容是解题关键,注意:如果一个三角形的两边,a b的平方和等于第三边的平方,即222a b c,那么这个三角形是直角三角+=形.3.D【解析】【分析】根据全等三角形的性质即可求出∠E.【详解】解:∵△ABC≌△ADE,∠C=30°,∴∠E=∠C=30°,故选:D.【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.4.B【解析】【分析】利用等腰三角形的三线合一和直角三角形的两个锐角互余解决问题即可.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD ⊥BC ,∵∠B=36°,∴∠BAD=90°-∠B=90°-36°=54°,故选:B .【点睛】本题考查等腰三角形的性质和直角三角形的性质,解题的关键是掌握等腰三角形的三线合一的性质,属于中考常考题型.5.D【解析】【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键.6.D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC ,BC 互相垂直,∴∠ACB =90°,∵M 为AB 的中点,∴CM =12AB ,∵AB =6km ,∴CM =3km ,即M ,C 两点间的距离为3km ,故选:D .7.B【解析】利用全等的定义分别判断后即可得到正确答案.【详解】解:A 、两个等边三角形不一定全等,例如两个等边三角形的边长分别为3和4,这两个三角形就不全等,故此选项错误;B 、两个全等的图形面积是一定相等的,故此选项正确;C 、形状相等的两个图形不一定全等,例如边长为3和4的正方形,故此选项错误;D 、两个正方形不一定全等,例如边长为3和4的正方形,故此选项错误.故选B.8.B【分析】标注字母,利用“边角边”判断出△ABC 和△DEA 全等,根据全等三角形对应角相等可得∠1=∠4,然后求出∠1+∠3=90°,再判断出∠2=45°,然后计算即可得解.【详解】解:如图,在△ABC 和△DEA中,90AB DE ABC DEA BC AE ⎧⎪∠∠︒⎨⎪⎩====,∴△ABC ≌△DEA (SAS ),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选B.【点睛】本题考查了全等图形,网格结构,准确识图判断出全等的三角形是解题的关键.9.4【解析】【分析】根据等边三角形的定义“三条边都相等的三角形”即可求出答案.【详解】=÷=cm.根据等边三角形的三条边相等可知其边长1234故答案为:4.【点睛】本题考查等边三角形的定义.掌握其定义是解答本题的关键.10.70【解析】【分析】根据等腰三角形的性质可得到∠B=∠C,已知顶角的度数,根据三角形内角和定理即可求解.【详解】解:∵AB=AC,∴∠B=∠C,∵∠A=40°,∴∠B=(180°﹣40°)÷2=70°.故答案为:70.【点睛】本题主要是考查了等腰三角形的性质,熟练地利用等边找到底角,然后利用三角形内角和定理求解角度,这是解决本题的关键.11.不合格【分析】根据勾股定理的逆定理,若一个三角形的两边的平方和等于第三边的平方,则这个三角形为直角三角形,即可解答.【详解】解:根据矩形的性质得:矩形的长、宽、对角线三边能构成直角三角形,∵长为6分米,宽为4分米,对角线为7分米,∴22264527+=≠,∴长为6分米,宽为4分米,对角线为7分米的三边不能构成直角三角形,即这扇纱窗不合格.故答案为:不合格.【点睛】本题主要考查了矩形的性质,勾股定理的逆定理,能根据勾股定理的逆定理判断三条边长能否构成直角三角形是解题的关键.12.10【解析】【分析】先根据非负数的性质列式求出a、b,再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-2=0,解得a=4,b=2,①若2是腰长,则底边为4,三角形的三边分别为2、2、4,不能组成三角形,②若4是腰长,则底边为2,三角形的三边分别为4、4、2,能组成三角形,周长=4+4+2=10.故答案为:10.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.13.2【分析】根据全等三角形的性质得出AC=FD=3,再求出FC即可.【详解】解:∵△ABC≌△DEF,FD=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案为:2.【点睛】本题主要是考查了全等三角形的性质,熟练应用全等三角形的性质,找到对应相等的边,是求解该问题的关键.14.7【解析】【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【详解】解:∵DE是线段AB的垂直平分线,∴EA=EB,∴△AEC的周长=AC+EC+EA=AC+EC+EB=AC+BC=7(cm),故答案为:7.【点睛】本题主要是考查了垂直平分线的性质,熟练地应用垂直平分线的性质,找到相等边,是求解该类问题的关键.15.3【解析】【分析】根据轴对称的定义,沿着虚线进行翻折后能够重合,所以阴影应该涂在标有数字3的格子内.【详解】解:根据轴对称的定义,沿着虚线进行翻折后能够重合,根据题意,阴影应该涂在标有数字3的格子内;故答案为3.【点睛】本题考查了轴对称图形的性质,沿着虚线进行翻折后能够重合,进而求出答案.16.120【解析】【分析】设三边的长是5x,12x,13x,根据周长列方程求出x的长,则三角形的三边的长即可求得,然后利用勾股定理的逆定理判断三角形是直角三角形,然后利用面积公式求解.【详解】解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.【点睛】本题考查三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积,比较基础,掌握三角形周长,一元一次方程,直角三角形的判定以及勾股定理逆定理的理解与运用,三角形面积是解题关键.17.8【解析】【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC•B′H即可求得答案.AC=B'H=4,则有S△AB'C=12【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A =90°,∠BAC+∠CAB'=90°,∴∠HB'A =∠CAB ,在△ACB 和△B'HA 中,ACB AHB CAB AB H AB AB ∠=∠'⎧⎪∠=∠'⎨⎪='⎩,∴△ACB ≌△B'HA (AAS ),∴AC =B'H ,∵∠ACB =90°,AB =5,BC =3,∴AC 22BA BC -2253-4,∴AC =B'H =4,∴S △AB 'C =12AC•B′H =12×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB ≌△B'HA 是解决问题的关键.18.3【解析】【分析】由AB =AC ,得出△ABC 是等腰三角形,由∠1=∠2,得出AD 是顶角平分线,再由等腰三角形底边上的中线与顶角平分线重合求解即可.【详解】解:∵AB=AC,∴△ABC是等腰三角形,∵∠1=∠2,∴12BD CD BC==,∵BC=6cm,∴1632BD=⨯=(cm).故答案为:3.【点睛】本题考查了等腰三角形,比较简单,解题的关键是掌握等腰三角形的性质.19.(1)见解析;(2)3【解析】【分析】(1)对应点连线段的垂直平分线即为对称轴;(2)根据三角形的面积等于矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,直线l即为所求;(2)S△ABC =2×4﹣12×1×2﹣12×2×2﹣12×1×4=3.20.见解析【解析】由AB∥CD,得∠B=∠C,再利用SAS证明△ABE≌△DCF,从而得出AE=DF.证明:∵AB ∥CD ,∴∠B =∠C ,在△ABE 与△DCF 中,AB CD B C BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (SAS ),∴AE =DF .【点睛】本题考查了全等三角形的性质与判定,平行线的性质,掌握SAS 证明三角形全等是解题的关键.21.见解析【分析】证明Rt △ABF ≌Rt △DCE ,根据全等三角形的性质得到∠AFB =∠DEC ,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE ,在Rt △ABF 和Rt △DCE 中,AB DC BF CE =⎧⎨=⎩,∴Rt △ABF ≌Rt △DCE (HL )∴∠AFB =∠DEC ,∴OE =OF ,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.22.6mAD =【分析】由等腰三角形的性质得BC=CD=12BC=8(m),再由勾股定理求解即可.【详解】解:∵AB=AC,AD⊥BC,BC=16m,∴BC=CD=12BC=8(m),∠ADB=90°,∴AD6(m),即中柱AD的长为6m.23.(1)见解析;(2)4AC=【解析】(1)利用线段垂直平分线的性质可得CD=BD,然后利用勾股定理逆定理可得结论;(2)首先确定BD的长,进而可得CD的长,再利用勾股定理进行计算即可.【详解】(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC4=.【点睛】本题主要考查勾股定理及其逆定理、线段垂直平分线的性质定理,熟练掌握勾股定理及其逆定理、线段垂直平分线的性质定理是解题的关键.24.该零件的面积为37cm 2.【解析】【分析】首先证明△ADC ≌△CEB ,根据全等三角形的性质可得DC=BE=7cm ,再利用勾股定理计算出AC 长,然后利用三角形的面积公式计算出该零件的面积即可.【详解】解:∵△ABC 是等腰直角三角形,∴AC=BC ,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE ,在△ADC 和△CEB 中,D E DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴DC=BE=7cm ,∴(cm ),∴cm ,∴该零件的面积为:12(cm 2).故答案为37cm 2.【点睛】本题考查全等三角形的应用,等腰直角三角形以及勾股定理的应用,关键是掌握全等三角形的判定方法.25.(1)见解析;(2)3DE =【解析】【分析】(1)由角平分线的性质得DE =DF ,再根据HL 证明Rt △AED ≌Rt △AFD ,得AE =AF ,从而证明结论;(2)根据DE =DF ,得111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,代入计算即可.【详解】(1)证明:∵AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高,∴DE =DF ,在Rt △AED 与Rt △AFD 中,AD AD DE DF=⎧⎨=⎩,∴Rt △AED ≌Rt △AFD (HL ),∴AE =AF ,∵DE =DF ,∴AD 垂直平分EF ;(2)解:∵DE =DF ,∴111++()15222ABD ACD S S AB ED AC DF DE AB AC ==+= ,∵AB+AC =10,∴DE =3.26.(1)见解析;(2)AC 的长为17.【解析】(1)首先根据垂线的意义得出∠CFD=∠CEB=90°,然后根据角平分线的性质得出CE=CF ,即可判定Rt △BCE ≌Rt △DCF ;(2)首先由(1)中全等三角形的性质得出DF=EB ,然后判定Rt △AFC ≌Rt △AEC ,得出AF=AE ,构建方程得出CF ,再利用勾股定理即可得出AC.【详解】(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,∴∠CFD=90°,∠CEB=90°(垂线的意义)∴CE=CF (角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=x∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=17答:AC的长为17.27.(1)当M、N运动6秒时,点N追上点M;(2)①2t=,△AMN是等边三角形;②当32t=或125时,△AMN是直角三角形;(3)8t=【解析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;(2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN 的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;②分别就∠AMN=90°和∠ANM=90°列方程求解可得;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+6=2x,解得:x=6,即当M、N运动6秒时,点N追上点M;(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,AM=t,AN=6﹣2t,∵AB=AC=BC=6cm,∴∠A=60°,当AM=AN时,△AMN是等边三角形,∴t=6﹣2t,解得t=2,∴点M、N运动2秒后,可得到等边三角形△AMN.②当点N在AB上运动时,如图2,若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得32 t ;如图3,若∠ANM=90°,由2AN=AM得2(6﹣2t)=t,解得125t .综上所述,当t为32或125s时,△AMN是直角三角形;(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知6秒时M、N两点重合,恰好在C处,如图4,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,∴t﹣6=18﹣2t,解得t=8,符合题意.所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学期中复习练习
一、填空(每空2分,共28分)
1、写出一个3到4之间的无理数 。

2、在平行四边形、矩形、菱形、正方形、等腰梯形的五种图形中,既是轴对称、又是中心对称的图形是
3、等腰三角形的一个内角是40°,则等腰三角形的顶角为_____________。

4、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”。

他们仅仅少走了 步路(假设2步为1米),却踩伤了花草。

题4图 题5图
5、如图,由Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm ,则正方形M 与正方形N 的面积之和为 2
cm 。

6、在平行四边形ABCD 中,∠A=120°,AD=4cm ,AB=3cm ,则∠B=____________度,BC=___________cm.
7、平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于O ,且△AOD 的周长比△AOB 的周长
大2cm ,则AB=_______________.
8. 16 的算术平方根是_____________,-27的立方根是_______________。

9.已知,△ABC 中,AB =AC ,AB 的中垂线与AC 所在直线相交得到的锐角为40º,则△ABC 的顶角的度数是 ° 10.小于36-的所有非负整数是 。

11.已知==-x x ,则4)1(2。

12.在R t △ABC 中,有两条边为3cm 、4cm ,则第三条边为 。

二、选择(每题2分,共24分)
13、在所给的数据:2
2,35-,3
1,π,0.5 7,0.585885888588885…(相邻两个5之间的8的个
数逐次增加1个),其中无理数的个数有
A 、2个
B 、3个
C 、4个
D 、5个 ( )
14、折叠矩形一边AD ,使点D 落在BC 边的点E 上,已知AB=8cm ,BC=10cm ,则EC 的长为
A 、5cm
B 、4cm
C 、3cm
D 、2cm ( ) 15、以下列各组数为边长,能构成直角三角形的是 ( ) A .2,3,5 B .3,4,5 C .32
,42
,52
D .1,2,3
16、不能判断四边形ABCD 是平行四边形的是 ( ) A 、AB =CD ,AD =BC B 、AB =CD ,AB ∥CD C 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC
17、下列运动是旋转的是 ( ) A 、神州六号起飞 B 、人从滑梯上滑落C 、拧紧螺丝帽 D 、电梯上升
18、a 是9的平方根,b 是64的立方根,则a+b 的值为 ( ) A 、3 B 、7 C 、3或7 D 、1或7
19.在平行四边形ABCD 中,E 、F 分别是AB 、CD 的中点,连结DE 、BF 、EF ,则平行四边形共有 A 、2个 B 、4个 C 、6个 D 、8个 ( )
20.到三角形的三个顶点距离相等的点是 ( ) A .三条角平分线的交点 B .三条中线的交点
C .三条高的交点
D .三条边的垂直平分线的交点
21.等腰三角形一腰上的高与底边的夹角与顶角的关系是 ( ) A .顶角的2倍
B .与顶角相等
C .顶角的一半
D .没有关系
22.正实数a 的两个平方根的立方和是 ( ) (A)1 (B)0 (C)-1 (D)不能确定
23.在数轴上表示1、2的对应点分别是 A ,B ,点B 关于点A 的对承点为C ,则点C 所表示的数是
( )
A. 2- 1
B. 1-2
C. 2-2
D. 2-2
24.若一个数的算术平方根为a ,则比这个数大2的数是 ( )
A. a + 2
B. a - 2
C. a +2
D. a 2
+ 2
三.求下列各式中的x :(每题3分,共12分)
23.02783
=+x
24。

1)1(3
-=-x
25.
1)32(4
1
2=+x
26。

)(022
22b a b ab a x <=-+-
C
A
B
C
(第33题)
四.画图题:(4分+2分,共6分)
27、如图两条相交的公路a,b,以及两个村
庄A,B,现要在某处建一座大型商场M,要求同时满足:(1)、到两公路的距离相等,(2)、到两村庄的距离相等。

请你用直尺与圆规作出表示此处位置的点M 。

(保留作图痕迹,无痕迹不记分)
28、用四块如图①所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形如图②请你在图③
④中分别设计出不同的轴对称图形.要求: (1)与图②不同,(2)旋转后能重合的情形只能算一种。

五、解答题
29.(本题4分)已知,等腰直角三角形ABC 中,AB=AC ,∠BAC=90°,BF 平分∠ABC ,CD ⊥BD
交BF 的延长线于D 。

试说明 BF=2CD
30、(本题5分)如图,在□ABCD 中,点E 、F 在BD 上,且BF =DE 。

⑴写出图中所有你认为全等的三角形;
⑵延长AE 交BC 的延长线于G ,延长CF 交DA 的延长线于H(请补全图形),证明四边形AGCH 是平行四边形。

31、(本题4分)某同学将一直角三角形(∠CBA=90)纸片折叠,使A 与B 重合,折痕为DE ,点D 。

E
分别在A B 。

AC 上,若已知AC=10cm ,BC=6cm ,求AE 的长。

30、(2分)已知a 、b 、c 为△ABC 的三边,且a 2c 2-b 2c 2 = a 4-b 4 ,则此三角形是何形状,说明理由。

31、(本题5分)如图,一个长为5cm 的梯子斜靠在墙上,梯子的底端距墙4m.
(1) 求梯子的顶端距地面的垂直距离是多少米?
(2) 若将梯子的底端向墙推进1m ,求梯子的顶端升高了多少?
(3) 若使梯子的顶端距地面4.8m ,此时应将梯子再向墙推进多少米?
32、(本题4分)如图:是长方形纸片ABCD 折叠的情况,纸片的宽度AB=8cm ,长AD=10cm ,AD 沿点A 对折,点D 正好落在BC 的D ’处,AE 是折痕。

(1)图中有全等三角形吗?如果有,请写出来; (2)求BD ’的长;
(3)若设CE 的长为x ,请用含x 的代数式表示线段D ’E ; (4)求四边形ABCE 的面积。

33.(本题6分)在梯形ABCD 中,∠B =90°,AB =14cm ,AD =18cm ,BC =21cm ,点P 从点A 开始沿AD 边向点D 以1cm/s 的速度移动,点Q 从点C 开始沿CB 向点B 以2cm/s 的速度移动, ⑴如果点P 、Q 分别从两点同时出发,多少秒后,四边形PBQD 为平行四边形 ⑵如果点P 、Q 分别从两点同时出发,多少秒后,四边形PBQD 是等腰梯形?
A B
C D E
F C D
E。

相关文档
最新文档