2018年最新中考数学分式方程及其应用 专项训练及答案

合集下载

2.8分式方程的应用(第1部分)-2018年中考数学试题分类汇编(word解析版)

2.8分式方程的应用(第1部分)-2018年中考数学试题分类汇编(word解析版)

第二部分方程与不等式2.8 分式方程的应用【一】知识点清单1、实际问题与分式方程由实际问题抽象出分式方程;分式方程的应用【二】分类试题及参考答案与解析一、选择题1.(2018年青海省-第16题-3分)某班举行趣味项目运动会,从商场购买了一定数量的乒乓球拍和羽毛球拍作为奖品.若每副羽毛球拍的价格比乒乓球拍的价格贵6元,且用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同.设每副乒乓球拍的价格为x元,则下列方程正确的是()A.4005506x x=-B.4005506x x=+C.4005506x x=+D.4005506x x=-【知识考点】由实际问题抽象出分式方程.【思路分析】设每副乒乓球拍的价格为x元,则每副羽毛球拍的价格(x+6)元,根据用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同列出方程.【解答过程】解:设每副乒乓球拍的价格为x元,则每副羽毛球拍的价格(x+6)元,依题意得:=故选:B.【总结归纳】此题考查了分式方程的应用,关键是读懂题意,找出题目中的数量关系,根据数量关系列出方程.二、填空题1.(2018年新疆-第14题-5分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.【知识考点】分式方程的应用.【思路分析】设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答过程】解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.三、解答题1.(2018年山西-第20题-8分)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.【知识考点】分式方程的应用.【思路分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答过程】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2.(2018年宁夏-第22题-6分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?【知识考点】分式方程的应用;一元一次不等式的应用.【思路分析】(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答过程】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【总结归纳】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.3.(2018年云南省-第18题-6分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【知识考点】分式方程的应用.【思路分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答过程】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:﹣=3,解得:x=50,。

中考数学《分式方程》专项练习题及答案

中考数学《分式方程》专项练习题及答案

中考数学《分式方程》专项练习题及答案一、单选题1.某工程队要对一条长3千米的人行道进行改造,为尽量减少施工对交通造成的影响,施工时,每天比原计划多改造10米,结果所用时间比原计划少十分之一,求实际每天改造多少米?设实际每天改造x米,则可列方程为()A.3000x=3000x−10(1−110)B.3000x=3000x+10×10C.3000x=3000x−10×110D.3000x×(1−110)=3000x+102.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则下列方程正确的是()A.120x+6=180x B.120x=180x−6C.120x=180x+6D.120x−6=180x3.某工程队在西城路改造一条长3000米的人行道,为尽量减少施工对交通造成的影响,施工时“×××”,设实际每天改造人行道x米,则可得方程3000x−10=3000x+15,根据已有信息,题中用“×××”表示的缺失的条件应补充为()A.每天比原计划少铺设10米,结果延迟15天完成B.每天比原计划多铺设10米,结果延迟15天完成C.每天比原计划少铺设10米,结果提前15天完成D.每天比原计划多铺设10米,结果提前15天完成4.分式方程2x−3=3x的解是()A.x=﹣9B.x=9C.x=3D.x=955.解分式方程2x−1+ x+21−x=3时,去分母后变形正确的为()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3D.2-(x+2)=3(x-1)6.工地调来76人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样分配劳动力才能使挖出的土能及时运走?解决此问题,可设派x人挖土,其它的人运土,以下方程正确的是()A.76−xx=13B.x76−x=13C.76-x=3x D.x+3x=767.某工厂现在平均每天比原计划多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.800x+50=600x B.800x−50=600xC.800x=600x+50D.800x=600x−508.关于x的分式方程mx+1=−1的解是负数,则m的取值范围是()A.m>﹣1B.m>﹣1且m≠0C.m≥﹣1D.m≥﹣1且m≠09.A,B两地相距340千米,甲、乙两车分别从A,B两地同时出发,相向而行,匀速行驶.在距离A,B两地的中点10千米处两车相遇,设甲车速度为V1千米/时,乙车的速度为V2千米/时,则V1:V2等于()A.8:7B.8:9C.8:7或7:8D.8:9或9:810.在应对新冠肺炎疫情过程中,5G为山西疫情防控,复工复产,停课不停学提供了便利条件.已知5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输1000兆数据,5G网络比4G网络快9秒.若设4G网络的峰值速率为每秒传输x兆数据.则根据题意所列方程正确的是()A.1000x﹣100010x=9B.100010x﹣1000x=9C.1000x﹣10000x=9D.10000x﹣1000x=911.关于x的方程2x+ax−1=1的解是正数,则a的取值范围是()A.a>-1B.a>-1且a≠0C.a<-1D.a<-1且a≠-212.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是()A.720x﹣720(1+20%)x=2B.720(1−20%)x﹣720x=2C.720(1+20%)x﹣720x=2D.720x+2=720(1+20%)x二、填空题13.方程1x−2=1−x2−x−3的解为.14.若分式方程mx−2+22−x=3无解,则m的值是.15.一艘轮船在静水中的最大航速为30km/ℎ,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/ℎ.16.若关于x的方程axx−2=6x−2+1无解,则a=.17.若分式方程1x−3−1=axx−3的无解,则a=.18.分式方程2x=1x−1的解是.三、综合题19.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程2−3x3﹣x−52=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得2−3x3×6﹣x−52×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥(1)上述小明的解题过程从第步开始出现错误,错误的原因是.(2)请帮小明改正错误,写出完整的解题过程.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?22.(1)解方程.2x+1+51−x=−10x2−1.(2)先化简分式(a2−4a2−4a+4−1a−2)÷a+1a2−2a,然后在0,1,2中选一个你认为合适的a值,代入求值.23.为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?24.5月份某厂甲乙两个车间生产同一型号的汽车零件1800个,已知甲车间比乙车间人均多做4个,甲车间的人数比乙车间的人数少10%(1)甲乙两个车间各有多少人?(2)该月甲乙两个车间人均生产多少个零件?参考答案1.【答案】A2.【答案】C3.【答案】D4.【答案】B5.【答案】D6.【答案】B7.【答案】A8.【答案】B9.【答案】D10.【答案】A11.【答案】D12.【答案】A13.【答案】无解14.【答案】215.【答案】1016.【答案】317.【答案】−1或1318.【答案】x=219.【答案】(1)①;利用等式的性质漏乘(2)解:正确的解题过程为:方程两边同时乘以6,得:2−3x3×6﹣x−52×6=6去分母,得:2(2﹣3x)﹣3(x﹣5)=6去括号,得:4﹣6x﹣3x+15=6移项,得:﹣6x﹣3x=6﹣4﹣15合并同类项,得:﹣9x=﹣13系数化1,得:x=13 9.20.【答案】(1)解:设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得360 x−360 1.6x=4解得:x=33.75经检验x=33.75是原分式方程的解则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米(2)解:设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米21.【答案】(1)解: 设降价后每枝玫瑰的售价是x元,依题意有30x=30x+1×1.5.解得x=2.经检验,x=2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)解: 设购进玫瑰y枝,依题意有2(500-y)+1.5y≤900.解得y≥200.答:至少购进玫瑰200枝22.【答案】(1)解:方程的两边都乘以(x+1)(x﹣1)得∴2x-2-5x-5=-10解得x=1检验,当x =1时,(x+1)(x ﹣1)=0 ∴x =1是原方程的增根. ∴原分式方程无解(2)解:原式= [(a−2)(a+2)(a−2)2−1a−2]⋅a(a−2)a+1 = a+1a−2⋅a(a−2)a+1=a当a =0,2分式无意义 故当a =1时,原式=123.【答案】(1)2000(2)解:设该公司原计划安排x 名工人生产帐篷依题意得,(10-2-2)×2000x ×1.25×(x+50)=20000-2×2000即16000x=15000(x+50) 1000x=750000 解得x=750经检验x=750是方程的解答:该公司原计划安排750名工人生产帐篷.24.【答案】(1)解:设乙车间有x 人,则甲车间有x-10%x 人,由题意得 1800x−10%x - 1800x=4解得:x=50经检验x=50是原方程的解 x-10%x=45.答:甲车间有45人,乙车间有50人. (2)解:1800÷50=36(个) 1800÷45=40(个).答:该月甲车间人均生产40个零件,该月乙车间人均生产36个零件.。

八年级分式方程练习题(2018版含答案)(K12教育文档)

八年级分式方程练习题(2018版含答案)(K12教育文档)

八年级分式方程练习题(2018版含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级分式方程练习题(2018版含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级分式方程练习题(2018版含答案)(word版可编辑修改)的全部内容。

八年级分式方程练习题(2018版含答案)基础巩固一、选择题1.下列关于x 的方程是分式方程的为( )A .23356x x++-=B .137x x a +=-+C .x a bxa b a b -=-D .2(1)11x x -=-2.解分式方程2236111x x x +=+--,下列四步中,错误的一步是() A .方程两边分式的最简公分母是x 2-1B .方程两边同乘(x 2-1),得整式方程2(x -1)+3(x +1)=6C .解这个整式方程得x =1D .原方程的解为x =13.当x =__________时,25x x --与1x x +互为相反数.4.把分式方程1222xx x +=--化为整式方程为__________.5.解下列分式方程:(1)32322x x x +=+-; (2)81877x x x --=--。

6.甲、乙两个火车站相距1 280 km ,采用“和谐"号动车组提速后,列车行驶速度是原来速度的3。

2倍,从甲站到乙站的时间缩短了11 h ,求列车提速后的速度.能力提升7.若分式方程22ax x =+的解是2,则a 的值是( ) A .1 B .2 C .3 D .48.已知关于x 的分式方程211a x +=+的解是非正数,则a 的取值范围是( ) A .a ≤-1B .a ≤-2C .a ≤1且a ≠-2D .a ≤-1且a ≠-29.方程24410x x -+=,则2x 的值为( ) A .-2 B .-1 C .1 D .210.某工地调72人挖土和运土,已知3人挖出的土1人恰好能全部运走,调配劳动力使挖出来的土能及时运走且不窝工,解决此问题可设派x 人挖土,其他人运土,列方程①7213x x -=;②723x x -=;③x +3x =72;④372x x =-,上述方程中,正确的有( ) A .1个 B .2个C.3个 D.4个11.定义一种运算11a ba b=+☆,根据这个规定,则322x=☆的解为__________.12.某校九年级两个班各为灾区捐款1 800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%。

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

【精品】全国各地2018年中考数学真题汇编 分式【含答案】

【精品】全国各地2018年中考数学真题汇编 分式【含答案】

分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B . 2 C.3 D.4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2 B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1 C. x>1 D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B.0 C. -2 D. -5 【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

2018全国各地中考数学试题分类汇编考点10分式方程及应用含答案 精品

2018全国各地中考数学试题分类汇编考点10分式方程及应用含答案 精品

分式方程及应用A一、选择题1. (2018安徽芜湖,5,4分) 分式方程25322x x x-=--的解是( ). A .2x =- B .2x =C .1x =D .12x x ==或【答案】C2. (2018江苏宿迁,5,3分)方程11112+=-+x x x 的解是(▲) A .-1 B .2 C .1 D .0 【答案】B3. (2018四川宜宾,5,3分)分式方程2112=-x 的解是( ) A .3 B .4 C .5 D .无解 【答案】C4. (2018重庆綦江,8,4分)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .10501000010000=+-x xB .10100005010000=--x x C .10501000010000=--x x D .10100005010000=-+xx 【答案】:B5. (2018四川凉山州,10,4分)方程24321x xx x x ++=++的解为( )A .124,1x x ==B .121166x x ==C .4x =D .124,1x x ==- 【答案】C6. (2018安徽芜湖,5,4分)分式方程25322x x x-=--的解是( ).A .2x =-B .2x =C .1x =D .12x x ==或【答案】C7. (2018湖南衡阳,10,3分)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )A .360036001.8x x =B .36003600201.8x x -= C .36003600201.8x x -= D .36003600201.8x x+= 【答案】C8. (2018山东东营,6,3分)分式方程312422x x x -=--的解为( ) A .52x =B .53x =C .5x =D .无解【答案】B二、填空题1. (2018广东广州市,13,3分)方程1x = 3x+2的解是 .【答案】x =12. (2018湖南益阳,12,4分)分式方程231-=x x 的解为 . 【答案】1x =-3. (2018四川成都,13,4分) 已知1=x 是分式方程xkx 311=+的根,则实数k =___________.【答案】61. 4. (2018四川广安,18,3分)分式方程2212525x x x -=-+的解x =_____________【答案】3565. (2018湖南怀化,15,3分)方程21011x x -=+-的解是___________. 【答案】x=36. (2018山东临沂,16,3分)方程3x x --6x 21-=21的解是 . 【答案】x =-27. (2018湖北襄阳,16,3分)关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是 . 【答案】m >2且m≠38. (2018贵州安顺,14,4分)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为 . 【答案】826%)201(50=-+xx三、解答题1. (2018广东东莞,16,7分)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?【答案】设该品牌饮料一箱有x 瓶,由题意,得26260.63x x -=+ 解这个方程,得1213,10x x =-=经检验,1213,10x x =-=都是原方程的根,但113x =-不符合题意,舍去. 答:该品牌饮料一箱有10瓶.2. (2018山东菏泽,16(1),6分)解方程:1123x x x ++=解:原方程两边同乘以 6x 得 3(x +1)=2x ·(x +1) 整理得2x 2-x -3=0 解得x =-1或x =32经验证知它们都是原方程的解,故原方程的解为x =-1或x =32(若开始两边约去x +1 ……… 由此得解x =32………可得3分) 3. (2018山东济宁,21,8分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. (1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.【答案】(1)设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-. ··························································· 2分 解得70x =.检验: 70x =是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ····································· 4分 (2)设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤. ······························ 6分所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.………………8分4. (2018山东泰安,25 ,8分)某工厂承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务,已知乙车间的工作效率是甲车间的1.5倍。

中考数学《分式及分式方程》计算题(附答案)

中考数学《分式及分式方程》计算题(附答案)

[键入文字]=+1..解方程:.解分式方程:15.(1)解方程:(2)解不等式组.16.解方程:.17.①解分式方程;②解不等式组.18.解方程:.19.(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.解方程:21.解方程:+=122.解方程:.23.解分式方程:24.解方程:25.解方程:26.解方程:+=127.解方程:28.解方程:29.解方程:30.解分式方程:.答案与评分标准一.解答题(共30小题)1.解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.解关于的方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3.解方程.考点:解分式方程。

专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.4.解方程:=+1.考点:解分式方程。

(通用版)2018年中考数学总复习 专题检测6 分式方程及其应用试题

(通用版)2018年中考数学总复习 专题检测6 分式方程及其应用试题

专题检测6 分式方程及其应用(时间60分钟满分100分)一、选择题(每小题3分,共36分)1.在方程=7,-=2,+x=,=+4,=1中,分式方程有(B)A.1个B.2个C.3个D.4个2.已知方程=1的根为x=1,则k=(B)A.4B.-4C.1D.-13.解分式方程+=3时,去分母后变形正确的是(D)A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3D.2-(x+2)=3(x-1)4.解分式方程+=,下列四步中,错误的一步是(D)A.方程两边分式的最简公分母是x2-1B.方程两边都乘(x2-1),得整式方程2(x-1)+3(x+1)=6C.解B项中的整式方程得x=1D.原方程的解为x=15.分式方程=的解为(D)A.x=0B.x=3C.x=5D.x=96.关于x的分式方程=1,下列说法正确的是(C)A.方程的解是x=m+5B.m>-5时,方程的解是正数C.m<-5时,方程的解为负数D.无法确定7.若分式方程=有增根,则增根为(B)A.x=-1B.x=1C.x=±1D.x=08.已知关于x的方程=3的解是正数,则实数m的取值范围为(C)A.m>-6B.m<-6C.m>-6,且m≠-4D.m>-6,且m≠29.对于非零的两个实数a,b,规定a*b=-,若5*(3x-1)=2,则x的值为(B)A. B. C. D.-10.“五一”期间,东方中学“动感数学”活动小组的全体同学租一辆面包车前去某景点游览,面包车的车费为180元.出发时又增加了2名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x人,则所列方程为(B)A.-=3B.-=3C.-=3D.-=311.某市为解决部分市民冬季集中取暖问题需铺设一条长3 000 m的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x m,则可得方程-=15,根据此情景,题中用“…”表示的缺失的条件应补为(C)A.每天比原计划多铺设10 m,结果延期15天才完成B.每天比原计划少铺设10 m,结果延期15天才完成C.每天比原计划多铺设10 m,结果提前15天完成D.每天比原计划少铺设10 m,结果提前15天完成12.如图所示的电路的总电阻为10 Ω,若R1=2R2,则R1,R2的值分别是(A)A.R1=30 Ω,R2=15 ΩB.R1=Ω,R2=ΩC.R1=15 Ω,R2=30 ΩD.R1=Ω,R2=Ω二、填空题(每小题3分,共24分)13.当x=1时,分式的值为-1.14.同学解分式方程=0,得出原方程的解为x=2或x=-2.你认为他的解答对吗?请你作出判断:不对,并说明理由:因为当x=2时,分母为零,无意义,所以x=2是原方程的增根.15.请选择一组a,b的值,写出一个关于x的形如=b的分式方程,使它的解是x=0,这样的分式方程可以是=1(答案不唯一).16.为改善生态环境,防止水土流失,某村准备在荒坡上植树960棵,由于青年志愿者的支持,每天比原计划多植20棵,结果提前4天完成任务,原计划每天植树多少棵?设原计划每天植树x棵,由题意得方程-=4.17.若分式无意义,当-=0时,m=.18.规定a·b=-,若x·(x+2)=,则x为-1.19.研究10,12,15这三个数的倒数发现:-=-,我们称15,12,10这三个数为一组调和数.现有一组调和数:3,5,x(x>5),则x的值是15.20.观察分析下列方程:①x+=3,②x+=5,③x+=7.请利用它们所蕴含的规律,求关于x的方程x+=2n+4(n为正整数)的根,你的答案是:x=n+3或x=n+4.三、解答题(共40分)21.(每小题5分,共10分)解方程:(1)=-3;(2)+=.=-3,两边同乘(x-2),得1=x-1-3(x-2),解得x=2,经检验x=2是增根,所以原方程无解.(2)+=,两边同乘x(x-1),得3(x-1)+6x=7,9x=10,x=,经检验x=是原方程的根,所以原方程的根是x=.解方程=去分母,得4(2x-1)去括号,得8x-=1-3x-x=-(1)小明的解答有错吗?如果有错,请指出错在第几步?(写出序号即可)解方程x-=.小明的解答有错,错在第①步;(2)去分母,得x2+x-2=2x,即(x-2)(x+1)=0,解得x=2或x=-1,经检验x=-1是增根,故分式方程的解为x=2.23.(7分)“”称为二阶行列式,已知它的运算法则为=ad-bc,请你根据上述规定求出下列等式中x的值.=1.=1整理,得2×-=1,即+=1,得x=4.经检验x=4是原方程的解.〚导学号92034152〛24.(8分)某文化用品商店用2 000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6 300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?设第一批购进书包的单价是x元,则第二批购进书包的单价是(x+4)元.由题意得×3=,解得x=80,经检验x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120-80)+×(120-84)=3 700(元).答:商店共盈利3 700元.25.(9分)阅读下面的材料:例:用换元法解分式方程:已知+=7.解:设y=,则原方程可化为y+=7,即y2-7y+10=0,解这个方程得y1=5,y2=2,由y1==5,得方程x2-5x=0,解得x1=0,x2=5;由y2==2,得方程x2-2x-3=0,解得x3=-1,x4=3;经检验x1=0,x2=5,x3=-1,x4=3都是原方程的解.学习例题的方法,请你用换元法解下面的分式方程:-5-6=0.=y,则原方程化为y2-5y-6=0,解得y1=6,y2=-1.当y1=6时,=6,解得x1=;当y2=-1时,=-1,解得x2=;经检验x1=,x2=都是原方程的根,即原方程的根是x1=,x2=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届中考数学分式方程及其应用 专题复习1.分式方程2x -2+3x2-x=1的解为( )A .1B .2 C.13D .02.九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A.10x =102x -13B.10x =102x -20 C.10x =102x +13 D.10x =102x+20 3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8B .7C .6D .54.关于x 的分式方程5x =ax -2有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a≠0 5.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -506.已知关于x 的分式方程m x -1+31-x =1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m≠3D .m >2且m≠3 7.分式方程2x -3=3x的解是__ __.8.关于x 的分式方程m x 2-4-1x +2=0无解,则m =___.9.某市为处理污水,需要铺设一条长为5000 m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20 m ,结果提前15天完成任务.设原计划每天铺设管道x m ,则可得方程____.10.新定义:[a ,b]为一次函数y =ax +b(a≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为__ __. 11.解分式方程: (1)x -2x +3-3x -3=1;(2)2+x 2-x +16x 2-4=-1. 12.小明解方程1x -x -2x =1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.13.近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?14.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路________米;(2)求原计划每小时抢修道路多少米?15.某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,按该手链的定价2.8元销售,并很快售完.由于该手链深得年轻人喜爱,十分畅销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当这批手链售出45时,出现滞销,便以定价的5折售完剩余的手链.试问该老板第二次售手链是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?2018届中考数学分式方程及其应用 专题复习1.分式方程2x -2+3x2-x=1的解为( A )A .1B .2 C.13D .02.九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( C )A.10x =102x -13B.10x =102x -20 C.10x =102x +13 D.10x =102x+20 3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( A )A .8B .7C .6D .54.关于x 的分式方程5x =ax -2有解,则字母a 的取值范围是( D )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a≠0 5.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( A )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -506.已知关于x 的分式方程m x -1+31-x =1的解是非负数,则m 的取值范围是( C )A .m >2B .m ≥2C .m ≥2且m≠3D .m >2且m≠3 7.分式方程2x -3=3x的解是__x =9__.8.关于x 的分式方程m x 2-4-1x +2=0无解,则m =__0或-4__.9.某市为处理污水,需要铺设一条长为5000 m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20 m ,结果提前15天完成任务.设原计划每天铺设管道x m ,则可得方程__5000x -5000x +20=15__.10.新定义:[a ,b]为一次函数y =ax +b(a≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m -2]的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为__x =3__. 11.解分式方程: (1)x -2x +3-3x -3=1; 解:去分母得:x 2-5x +6-3x -9=x 2-9,解得:x =34,经检验x =34是分式方程的解(2)2+x 2-x +16x 2-4=-1. 解:去分母得:-(x 2+4x +4)+16=4-x 2,去括号得:-x 2-4x -4+16=4-x 2,解得:x =2,经检验x =2是增根,故分式方程无解12.小明解方程1x -x -2x =1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x 得1-(x -2)=1 ……①去括号得1-x -2=1 ……② 合并同类项得-x -1=1 ……③ 移项得-x =2 ……④ 解得x =-2 ……⑤∴原方程的解为:x =-2 ……⑥解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验.正确解法为:方程两边乘以x ,得:1-(x -2)=x ,去括号得:1-x +2=x ,移项得:-x -x =-1-2,合并同类项得:-2x =-3,解得:x =32,经检验x =32是分式方程的解,则方程的解为x =3213.近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?解:设乙每年缴纳养老保险金为x 万元,则甲每年缴纳养老保险金为(x +0.2)万元,根据题意得:15x +0.2=10x ,去分母得:15x =10x +2,解得:x =0.4,经检验x =0.4是分式方程的解,且符合题意,∴x +0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元14.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路________米;(2)求原计划每小时抢修道路多少米?解:(1)1200 (2)设原计划每小时抢修道路x 米,根据题意得:1200x +3600-1200(1+50%)x=10,解得:x =280,经检验:x =280是原方程的解.答:原计划每小时抢修道路280米15.某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,按该手链的定价2.8元销售,并很快售完.由于该手链深得年轻人喜爱,十分畅销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当这批手链售出45时,出现滞销,便以定价的5折售完剩余的手链.试问该老板第二次售手链是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次批发价为x 元/条,则第二次的批发价为(x +0.5)元/条.依题意得(x +0.5)(10+100x )=150,解得x 1=2,x 2=2.5.经检验x 1=2,x 2=2.5都是原方程的根.由于当x =2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为 2.5元/条.第二次共批发手链=1502.5=60(条).第二次的利润=(45×60×2.8+15×60×2.8×0.5)-150=1.2(元).所以老板第二次售手链赚了1.2元。

相关文档
最新文档