八上《一次函数》复习练习作业

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

北师大版八年级数学上册第四章一次函数期末复习练习题(有答案)

北师大版八年级数学上册第四章一次函数期末复习练习题(有答案)

第四章一次函数一.选择题1.变量x与y之间的关系是y=2x+1,当y=5时,自变量x的值是()A.13B.5C.2D.3.52.函数y=的定义域是()A.x≠0B.x≥2C.x≥2且x≠0D.x>2且x≠0 3.根据如图所示的计算程序,若输入x=﹣2,则输出结果y的值为()A.﹣3B.3C.﹣7D.74.下列图形中,不能代表y是x函数的是()A.B.C.D.5.若函数y=(k﹣3)x+k2﹣9是正比例函数,则()A.k≠3B.k=±3C.k=3D.k=﹣36.如图,直线y=ax+b过点A(0,3)和点B(﹣7,0),则方程ax+b=0的解是()A.x=0B.x=3C.x=﹣7D.x=﹣47.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=2的解为()A.x=1B.x=2C.x=3D.无法判断8.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是()A.B.C.D.9.对于函数y=2x﹣3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象不经过第二象限C.当x>0时,y>0D.y的值随x值的增大而减小10.若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=﹣bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.已知A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y112.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接P A、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD=6;④当P A+PC的值最小时,点P的坐标为(0,1).其中正确的说法是()A.①②③B.①②④C.①③④D.①②③④二.填空题13.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是.14.如图,在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A′OB′,其中点A′与点A对应,点B′与点B对应.若点A(﹣1,2),B(﹣3,0),则直线A′B′的解析式为.15.y=(m﹣1)x|m|+3是关于x的一次函数,则m=.16.已知y与x成正比例,且x=1时,y=﹣2,则当x=﹣1时,y=.17.函数y=(2m﹣2)x+3﹣m的图象经过第一、二、三象限,m的取值范围是.18.如图,直线CD与x轴、y轴正半轴分别交于C、D两点,∠OCD=45°,第四象限的点P(m,n)在直线CD上,且mn=﹣6,则OP2﹣OC2的值为.19.甲、乙两人同时从A、B两地出发相向而行,甲先步行到达B地后原地休息,甲、乙两人的距离y(km)与乙步行的时间x(h)之间的函数关系的图象如图,则步行全程甲比乙少用小时.20.在某条街道上依次有图书馆、小明家、学校,某日小明从家出发先去学校,然后返回去图书馆,与此同时小亮从学校出发去图书馆,两人均匀速行走.经过一段时间后两人同时到达图书馆,设两人步行的时间为x分,两人之间的距离为y米,y与x之间的函数关系如图所示,则学校与图书馆的距离是米.三.解答题21.“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.22.一次函数y=kx+b(k≠0)的图象经过点(﹣2,0)和(0,2),求k,b的值.23.根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.24.如图,边长为4的等边△ABC,请建立适当的直角坐标系,使得点B的坐标为(4,0),并求出直线AC 的关系式.25.已知,直线L经过点A(4,0),B(0,2).(1)画出直线L的图象,并求出直线L的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△P AB=3?若存在,求出点P的坐标,若不存在,请说明理由.26.如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣12,0),B(0,6)两点.(1)求一次函数的解析式;(2)若C为x轴上任意一点,使得△ABC的面积为6,求点C的坐标.27.在如图的直角坐标系中,画出函数y=﹣2x+3的图象,并结合图象回答下列问题:(1)y的值随x值的增大而(填“增大”或“减小”);(2)图象与x轴的交点坐标是;图象与y轴的交点坐标是;(3)当x时,y<3.28.已知一次函数y=kx﹣2,当x=2时,y=0.(1)求该一次函数的表达式;(2)将该函数的图象向上平移3个单位长度,求平移后的图象与x轴的交点的坐标.29.如图,在平面直角坐标系中,已知直线与y轴,x轴分别交于点A和点B,点E在直线AB 上.将线段AO沿OE翻折,使点A落在线段AB上的点D处;再将线段OB沿OF翻折,使点B落在OD的延长线上的点B'处,两条折痕与线段AB分别交于点E、F.(1)分别求出点A和点B的坐标;(2)请直接写出线段B'F的长度为;(3)若点P坐标为(﹣4,n),且△ABP的面积为8,则n=.30.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?31.从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)32.小明和爸爸进行登山锻炼,两人从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距离出发地280米,小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图,根据图象信息解答下列问题,(1)图中a=;b=;c=.(2)小明上山速度为米/分;爸爸上山速度为米/分,(3)直接写出小明与爸爸何时相距30米.33.某学校的教学楼,校门口和公园恰好依次分布在一条笔直的公路上,周五下午初二年级组织学生从校门口出发匀速步行到公园野餐,学生队伍(学生队伍长度忽略不计)出发同时林林发现未带餐垫,便立即匀速跑向教学楼,到教学楼后用6分钟找到了餐垫,他即刻将速度提高至原速度的倍匀速向公园跑去,最后林林比学生队伍提前分钟到达公园.在整个过程中,林林和学生队伍分别到教学楼的距离y (米)与学生队伍的步行时间t(分钟)之间的关系如图所示.根据图象解决下列问题:(1)林林最初从校门口跑向教学楼为米/分钟,学生队伍的速度为米/分钟;(2)学生队伍出发多少分钟后与林林相距360米?34.如图,直线y=与坐标轴分别交于点A、B,与直线y=x交于点C,在如图线段OA上,动点Q 以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P,Q其中一点停止运动时,另一点也停止运动.分别过点P、Q做x轴的垂线,交直线AB、OC 于点E,F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.35.为深入推进“健康沈阳”建设,倡导全民参与健身,我市举行“健康沈阳,重阳登高”活动,广大市民踊跃参加.甲乙两人同时登山,2分钟后乙开始提速,且提速后乙登高速度是甲登山速度的3倍,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米,乙在距地而高度为300米时对应的时间t是分钟;(2)请分别求出线段AB、CD所对应的函数关系式(需写出自变量的取值范围);(3)登山分时,甲、乙两人距地面的高度差为70米?36.从甲地到乙地,先是一段上坡路,然后是一段平路,小冲骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小冲骑车在上坡、平路、下坡时分别保持匀速前进,已知小冲骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小冲出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)求小冲在平路上骑车的平均速度以及他在乙地的休息时间;(2)分别求线段AB、EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小冲两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.37.某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.设每天安排x人生产乙产品.(1)根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.写出乙每件产品可获利润y(元)与x之间的函数关系式.(2)若乙产品每件利润为100元,且每天生产件数不少于2件且不多于10件,该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.38.我市全民健身中心面向学生推出假期游泳优惠活动,活动方案如下.方案一:购买一张学生卡,每次游泳费用按六折优惠;方案二:不购买学生卡,每次游泳费用按八折优惠.设某学生假期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求y1关于x的函数关系式,并直接写出单独购买一张学生卡的费用和购买学生卡后每次游泳的费用;(2)求打折前的每次游泳费用和k2的值;(3)八年级学生小明计划假期前往全民健身中心游泳8次,应选择哪种方案所需费用更少?说明理由.39.为发展农村经济,修建一批沼气池.某村共264户村民,村里得335200元政府补助款,不足部分由村民集资,修建A型、B型沼气池共20个,两种沼气池每个的修建费用、修建用地、可供使用户数情况如表:沼气池修建费用(万元/个)修建用地(m2/个)可供使用的户数(户/个)A型34820B型263已知政府只批给该村沼气池修建用地708m2,设修建A型沼气池x个;修建两种沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)既不超过政府批给该村沼气池修建用地,又要使该村每户村民都用上沼气的修建方案有哪几种?(3)若选择(2)中费用最少的修建方案,平均每户村民应自筹资金多少元?40.如图,直线l1:y=kx+1与x轴交于点D,直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),直线l1与l2交于点C(2,m).(1)求k、b和m的值;(2)求△ADC的面积;(3)在x轴上是否存在一点E,使△BCE的周长最短?若存在,请求出点E的坐标;若不存在,请说明理由;(4)若动点P在线段DA上从点D开始以每秒1个单位的速度向点A运动,设点P的运动时间为t秒.是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,清说明理由.参考答案一.选择题1.【解答】解:当y=5时,5=2x+1,解得:x=2,故选:C.2.【解答】解:由题可得,,解得x≥2,∴函数y=的定义域是x≥2,故选:B.3.【解答】解:x=﹣2时,y=2x2﹣1=7,故选:D.4.【解答】解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;C、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项符合题意;D、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故此选项不符合题意;故选:C.5.【解答】解:∵y=(k﹣3)x+k2﹣9是正比例函数,∴k2﹣9=0,且k﹣3≠0,解得:k=﹣3,故选:D.6.【解答】解:∵直线y=ax+b过点B(﹣7,0),∴方程ax+b=0的解是x=﹣7,故选:C.7.【解答】解:观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(1,2),所以关于x的方程kx+b=2的解为x=1,故选:A.8.【解答】解:A、一条直线反映k>0,b>0,一条直线反映k>0,b<0,故本选项错误;B、一条直线反映出k>0,b<0,一条直线反映k>0,b<0,一致,故本选项正确;C、一条直线反映k<0,b>0,一条直线反映k>0,b<0,故本选项错误;D、一条直线反映k>0,b<0,一条直线反映k<0,b<0,故本选项错误.故选:B.9.【解答】解:A、当x=1,y=2x﹣3=2﹣3=﹣1,点(1,1)不在函数y=2x﹣3的图象上,所以A选项错误;B、函数y=2x﹣3经过第一、三、四象限,所以B选项正确;C、当x=0时,y=﹣﹣3,则x>0,y>﹣3,所以C选项错误;D、因为k=2>0,则y的值随x值的增大而增大,所以D选项错误.故选:B.10.【解答】解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因此一次函数y=﹣bx+k的一次项系数﹣b<0,y随x的增大而减小,经过二四象限,常数项k<0,则函数与y轴负半轴相交,因此一定经过二三四象限,因此函数不经过第一象限.故选:A.11.【解答】解:∵A(﹣,y1)、B(﹣,y2)、C(1,y3)是一次函数y=﹣3x+b的图象上三点,∴y1=1+b,y2=+b,y3=﹣3+b.∵﹣3+b<1+b<+b,∴y3<y1<y2.故选:C.12.【解答】解:①∵直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),∴方程组的解为,故①正确,符合题意;②把B(0,4),C(﹣,)代入直线l1:y=kx+b,可得,解得,∴直线l1:y=2x+4,又∵直线l2:y=﹣x+m,∴直线l1与直线l2互相垂直,即∠BCD=90°,∴△BCD为直角三角形,故②正确,符合题意;③把C(﹣,)代入直线l2:y=﹣x+m,可得m=1,y=﹣x+1中,令x=0,则y=1,∴D(0,1),∴BD=4﹣1=3,在直线l1:y=2x+4中,令y=0,则x=﹣2,∴A(﹣2,0),∴AO=2,∴S△ABD=×3×2=3,故③错误,不符合题意;④点A关于y轴对称的点为A'(2,0),由点C、A′的坐标得,直线CA′的表达式为:y=﹣x+1,令x=0,则y=1,∴当P A+PC的值最小时,点P的坐标为(0,1),故④正确,符合题意;故选:B.二.填空题13.【解答】解:由题意得,y=8+0.2x(x>0),故答案为:y=8+0.2x(x>0).14.【解答】解:∵△AOB顺时针旋转90°得到△A′OB′,其中点A′与点A对应,点B′与点B对应,而点A(﹣1,2),B(﹣3,0),∴点A′(2,1),B′(0,3),设直线A′B′的解析式为y=kx+b,把A′(2,1),B′(0,3)代入得,解得,∴直线A′B′的解析式为y=﹣x+3.故答案为y=﹣x+3.15.【解答】解:∵y=(m﹣1)x|m|+3是关于x的一次函数,∴|m|=1且m﹣1≠0,解得m=﹣1,故答案为:﹣1.16.【解答】解:因为y与x成正比例,所以设正比例函数的解析式为y=kx(k≠0),把x=1时,y=﹣2代入得:k=﹣2,故此正比例函数的解析式为:y=﹣2x,当x=﹣1时,y=﹣2×(﹣1)=2.故答案为:2.17.【解答】解:∵函数y=(2m﹣2)x+3﹣m的图象经过第一、二、三象限,∴,∴1<m<3.故答案为:1<m<3.18.【解答】解:如图,过P作PE⊥y轴于E,则OC∥PE,∴∠OCD=∠DPE=45°,∵∠DOC=∠DEP=90°,∴OD=OC,DE=EP,∵P(m,n),∴m=OD﹣n,∴OD=m+n,两边同时平方得:OD2=m2+n2+2mn,∵mn=﹣6,∴m2+n2=OD2+12,由勾股定理得:OP2﹣OC2=m2+(﹣n)2﹣OD2=OD2+12﹣OD2=12,故答案为12.19.【解答】解:由图象可得,乙的速度为21×7=3(km/h),则甲的速度为:21÷3﹣3=7﹣3=4(km/h),a=21÷4=5.25,则步行全程甲比乙少用7﹣5.25=1.75(小时),故答案为:1.75.20.【解答】解:由图象可得,小明的速度为:300÷5=60(米/分钟),小亮的速度为:(300﹣60×3)÷3=(300﹣180)÷3=120÷3=40(米/分钟),设学校与图书馆的距离是x米,,解得x=600,即学校与图书馆的距离是600米,故答案为:600.三.解答题21.【解答】解:(1)该车平均每千米的耗油量为(45﹣30)÷150=0.1(升/千米),行驶路程x(千米)与剩余油量Q(升)的关系式为Q=45﹣0.1x;(2)当x=280时,Q=45﹣0.1×280=17(L).答:当x=280(千米)时,剩余油量Q的值为17L.(3)(45﹣3)÷0.1=420(千米),∵420>400,∴他们能在汽车报警前回到家.22.【解答】解:将(﹣2,0),(0,2)代入y=k+b得:,∴.23.【解答】解:(1)当x=2时,y=0,所以方程kx+b=0的解为x=2;(2)当x=1时,y=﹣1,所以代数式k+b的值为﹣1;(3)当x=﹣1时,y=﹣3,所以方程kx+b=﹣3的解为x=﹣1.24.【解答】解:以A为原点,AB所在直线为x轴建立直角坐标系,此时A、B点的坐标分别为(0,0)、(4,0),作CD⊥AB于D,则AD=BD=AB=2.∴CD===2,∴C(2,2),设直线AC的解析式为y=kx,把C(2,2)代入得,2=2k,解得k=,∴直线AC的关系式为y=x.25.【解答】解:(1)画出函数图象如图:设直线l的解析式为y=kx+b,把A(4,0)、点B(0,2)分别代入得,解得,∴一次函数解析式为y=﹣x+2;(2)∵点A(4,0),B(0,2).∴OA=4,OB=2,∴S△AOB==4;(3)在x轴上存在一点P,使S△P AB=3,理由如下:设P(x,0),∵A(4,0)、B(0,2),∴P A=|x﹣4|,∵S△P AB=3,∴P A•OB=3,即|x﹣4|×2=3,∴x﹣4=±3,∴x=7或1,∴P的坐标为(7,0)或(1,0).26.【解答】解:(1)把A(﹣12,0),B(0,6)代入y=kx+b得:,解得:,则一次函数解析式为y=x+6;(2)设C(x,0),则有AC=|x+12|,∵S△ABC=AC•OB=6,即|x+12|×6=6,∴|x+12|=2,解得:x=﹣10或x=﹣14,则C的坐标为(﹣10,0)或(﹣14,0).27.【解答】解:∵y=﹣2x+3,∴当x=0时,y=3,当y=0时,x=,∴函数y=﹣2x+3过点(0,3)、(,0),函数图象如右图所示;(1)由图象可得,y的值随x值的增大而减小,故答案为:减小;(2)由图象可得,图象与x轴的交点坐标是(,0),图象与y轴的交点坐标是(0,3),故答案为:(,0),(0,3);(3)由图象可得,当x>3时,y<3,故答案为:>3.28.【解答】解:把当x=2时,y=0代入一次函数y=kx﹣2,则得到2k﹣2=0,解得k=1,∴该一次函数的表达式为y=x﹣2;(2)由“上加下减”的原则可知,将函数y=x﹣2的图象向上平移3个单位长度后所得函数的解析式为y=x+1,令y=0,则x+1=0,解得x=﹣1,∴平移后的图象与x轴的交点的坐标为(﹣1,0).29.【解答】解:(1)直线中,令x=0,则y=6,∴A(0,6),令y=0,则﹣x+6=0,解得x=8,∴B(8,0);(2)∵OA=6,OB=8,∴AB==10,∵点E在直线AB上.将线段AO沿OE翻折,使点A落在线段AB上的点D处,∴OE⊥AB,AE=DE,∴AB•OE=OA•OB,∴OE===4.8,∴AE==3.6,∵∠AOB=90°,∠EOD=∠AOD,∠B′OF=BOD,∴∠EOF=45°,∴△EOF是等腰直角三角形,∴EF=OE=4.8,∴AF=AE+EF=3.6+4.8=8.4,∴B′F=BF=10﹣8.4=1.6,故答案为1.6.(3)设直线PB与y轴的交点为Q,∵△ABP的面积为8,∴S△ABP=S△APQ+S△ABQ=8,∵点P坐标为(﹣4,n),∴AQ•|x P|+AQ•OB=8,即AQ•4+AQ×8=8,∴AQ=,∴Q(0,)或(0,),设直线BP为y=kx+,把B(8,0)代入得,0=8k+,解得k=﹣,∴y=﹣x+,当x=﹣4时,y=7,设直线BP为y=kx+,把B(8,0)代入得,0=8k+,解得k=﹣,∴y=﹣x+,当x=﹣4时,y=11,∴n=7或11,故答案为7或11.30.【解答】解:(1)由题意可得,当0≤x≤6时,y=1.1x,当x>6时,y=1.1×6+(x﹣6)×1.6=1.6x﹣3,即y与x之间的函数表达式是y=;(2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m3,将y=5.5代入y=1.1x,解得x=5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m3,将y=9.8代入y=1.6x﹣3,解得x=8;答:这两户家庭这个月的用水量分别是5m3,8m3.31.【解答】解:(1)设v与t之间的函数关系式为v=kt+b,由题意,得,解得:.故v与t之间的函数关系式为v=﹣10t+25.(2)物体达到最高点,说明物体向上的速度为0,则0=﹣10t+25,解得t=2.5.答:经过2.5秒,物体将达到最高点.32.【解答】(1)根据题意,可知a=8,b=280,小明下山用的时间为:24﹣8=16(分钟),下山的速度为:400÷16=25(米/分钟),设小明与爸爸相遇的时间为x分,(280÷8)x=400﹣25(x﹣8),解得,x=10,故c=10,故答案为:8;280;10;(2)小明上山速度为400÷8=50(米/分);爸爸上山速280÷8=35(米/分);故答案为:50;35;(3)根据题意得:(50﹣35)x=30或25(x﹣8)+35x=400﹣30,解得x=2或,答:2分或分时两人相距30米.33.【解答】解:(1)由图可得,林林最初从校门口跑向教学楼的速度为:360÷3=120(米/分钟),林林提速后的速度为:120×=200(米/分钟),学生队伍的速度为:[200×(25﹣﹣3﹣6)﹣360]÷25=80(米/分钟),故答案为:120,80;(2)设学生队伍出发x分钟后与林林相距360米,|80x﹣[200(x﹣3﹣6)﹣360]|=360,解得x1=15,x2=21,∵25﹣=20.8(分钟),∴在学生队伍出发20.8分钟时,林林到达公园,此时林林和学生队伍相距80×=336(米),∴x=21舍去,即学生队伍出发15分钟后与林林相距360米.34.【解答】解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴点A(8,0),点B(0,4),∴BO=4,AO=8,∴,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴=,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,∵OQ=FQ=t,P A=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,P A=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4,综上所述:当t=2或4时,矩形PEFQ为正方形;(3)如图1,当Q在P点的左边时,∵OQ=t,P A=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值==,如图2,当Q在P点的右边时,∵OQ=t,P A=2t,∴2t>8﹣t,∴t>,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,∴t=4时,S矩形PEFQ的最大值=3×42﹣8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值=16.35.【解答】解:(1)由题意可得,甲登山的速度是每分钟(300﹣100)÷20=10(米),乙在A地提速时距地面的高度b=(15÷1)×2=30,乙在距地而高度为300米时对应的时间t=2+(300﹣30)÷(10×3)=11,故答案为:10,30,11;(2)由(1)可得,点A的坐标为(2,30),点B的坐标为(11,300),设线段AB对应的函数解析式为y=kx+a,,解得,即线段AB对应的函数解析式为y=30x﹣30(2≤x≤11);设线段CD所对应的函数关系式是y=mx+n,∵点C的坐标为(0,100),点D的坐标为(20,300),∴,解得,即线段CD所对应的函数关系式是y=10x+100(0≤x≤20);(3)登山前2分钟,甲乙两人的最近距离是100+10×2﹣30=90(米),当2≤x≤11时,|(30x﹣30)﹣(10x+100)|=70,解得x1=3,x2=10,当11<x≤20时,令10x+100=300﹣70解得x=13,由上可得,登山3、10或13分钟时,甲、乙两人距地面的高度差为70米,故答案为:3、10或13.36.【解答】解:(1)小冲骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),平路上的速度为:10+5=15(km/h);下坡的速度为:15+5=20(km/h),平路上所用的时间为:2(4.5÷15)=0.6h,下坡所用的时间为:(6.5﹣4.5)÷20=0.1h所以小冲在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h);(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5﹣10x,即y AB=﹣10x+6.5(0≤x≤0.2).线段EF所对应的函数关系式为y EF=4.5+20(x﹣0.9).即y EF=20x﹣13.5(0.9≤x≤1);(3)由题意可知:小冲第一次经过丙地在AB段,第二次经过丙地在EF段,设小冲出发a小时第一次经过丙地,则小冲出发后(a+0.85)小时第二次经过丙地,6.5﹣10a=20(a+0.85)﹣13.5,解得:a=.×10=1(千米).答:丙地与甲地之间的距离为1千米.37.【解答】解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)=130﹣2x件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.∴y=130﹣2x(x≥5);(2)设生产甲产品m人,根据题意得:W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200,∵2m=65﹣x﹣m,∴m=,∵x、m都是非负整数,∴取x=26时,m=13,65﹣x﹣m=26,即当x=26时,W最大值=3198,答:安排26人生产乙产品时,可获得的最大利润为3198元.38.【解答】解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.39.【解答】解:(1)y=3x+2(20﹣x)=x+40;(2)由题意可得:,∴不等式组的解集为:12≤x≤14,∵x为正整数,∴x的取值为12、13、14,有3种修建方案:①A型12个,B型8个②A型13个,B型7个③A型14个,B型6个;(3)∵y=x+40中,y随x的增大而增大,当x=12时,最少费用y=x+40=52(万元),(520000﹣335200)÷264=700(元).答:平均每户村民应自筹资金为700元.40.【解答】解:(1)∵直线l2:y=﹣x+b与x轴交于点A,且经过定点B(﹣1,5),∴5=1+b,∴b=4,∴直线l2:y=﹣x+4,∵直线l2:y=﹣x+4经过点C(2,m),∴m=﹣2+4=2,∴C(2,2),把C(2,2)代入y=kx+1,得到k=.∴k=,b=4,m=2.(2)对于直线l1:y=x+1,令y=0,得到x=﹣2,∴D(﹣2,0),∴OD=2,对于直线l2:y=﹣x+4,令y=0,得到x=4,∴A(4,0),∴OA=4,AD=6,∵C(2,2),∴S△ADC=×6×2=6.(3)作点C关于x轴的对称点C′,连接BC′交x轴于E,连接EC,则△BCE的周长最小.∵B(﹣1,5),C(2,2),∴直线BC的解析式为y=﹣x+,令y=0,得到x=,∴E(,0).(4)如图,由题意AC==2,当AC=AP=2时,t=6﹣2,当P′C=P′A时,∠AP′C=90°,AP′=2,∴t=6﹣2=4,当AC=CP时,P(0,0),此时t=2.综上所述,满足条件的t的值为6﹣2或4或2.。

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试题(有答案解析)(4)

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试题(有答案解析)(4)

一、选择题1.一次函数()0y kx b k =+≠在平面直角坐标系内的图像如图所示,则k 和b 的取值范围是( )A .0k >,0b >B .0k <,0b <C .0k <,0b >D .0k >,0b < 2.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( )A .B .C .D . 3.如图①,点P 为矩形ABCD 边上一个动点,运动路线是A →B →C →D →A ,设点P 运动的路径长为x ,S △ABP =y ,图②是y 随x 变化的函数图象,则矩形对角线AC 的长是( )A .25B .6C .12D .24 4.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 5.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 6.在平面直角坐标系中,解析式为31y x =+的直线a ,解析式为3y x =的直线b ,如图所示,直线a 交y 轴于点A ,以OA 为边作一个等边三角形OAB ∆,过点B 作y 轴的平行线交直线a 于点1A ,以1A B 为第二个等边三角形11A BB ∆,…顺次这样做下去,第2020个等边三角形的边长是( )A .20192B .20202C .4038D .40407.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限8.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 9.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .10.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =- B .21y x =+ C .21y x =-+ D .21y x =-- 11.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④ 12.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( )A .2B .0C .-1D .-2二、填空题13.已知平面直角坐标系中A .B 两点坐标如图,若PQ 是一条在x 轴上活动的线段,且PQ=1,求当BP+PQ+QA 最小时,点Q 的坐标___.14.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________.15.函数y =2x x-中,自变量x 的取值范围是_____. 16.将直线y =2x 向下平移3个单位长度得到的直线解析式为_____.17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s 与t 之间的函数关系如图所示.下列四种说法:①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正确的是________(填序号).19.某网约车的收费标准为:起步价为15元,里程费为2.5元/千米,若该网约车行驶距离为x 千米,总费用y 与x 之间的函数关系式为_____________(总费用=起步价+里程费 ) 20.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.三、解答题21.如图,等腰Rt AOB △在平面直角坐标系xOy 上,90,4B OA ∠=︒=.点C 从原点O 出发,以每秒1个单位的速度沿x 轴的正方向运动,过点C 作直线l OA ⊥,直线l 与射线OB 相交于点N .(1)点B 的坐标为____________;(2)点C 的运动时间是t 秒.①当24t 时,AOB 在直线l 右侧部分的图形的面积为S ,求S (用含t 的式子表示);②当0t >时,点M 在直线l 上且ABM 是以AB 为底的等腰三角形,若32CN CM =,求t 的值.22.纺织厂生产某种产品,每件出厂价定为80元,每件的成本是60元,由于在生产过程中平均每生产一件此种产品,就会有0.5立方米的污水排出,为了保护环境,工厂需要对污水净化处理后才能排出.已知处理1立方米污水的费用为2元,另外每月排污设备物资损耗为8000元.设该厂每月生产此产品x 件(0x >且x 是整数),每月获得纯利润y 元.(纯利润=总收人-总支出)(1)求出y 与x 之间的函数表达式;(2)如果该厂本月获得的纯利润是106000元,请求出该厂在本月生产此产品的件数. 23.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y (元)与销售量x (千克)之间的关系如图所示.(1)求降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?24.甲船从A 港出发顺流匀速驶向B 港,乙船从B 港出发逆流匀速驶向A 港,甲船后面拖拽着一艘无动力小艇,行驶一段时间后,甲船发现拖拽小艇缆绳松了,小艇不知去向,立刻原路返回寻找,找到小艇后,继续拖拽小艇顺流驶向B 港.已知小艇漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船与A 港的距离、与行驶时间之间的函数图象如图1所示.(1)求乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A 港的距离y 与行驶时间x 之间的函数关系式;(4)甲船拖拽的小艇与A 港的距离和经历的时间之间的函数图像如图2所示,求点C 的坐标.25.如图,在平面直角坐标系中,已知点A 的坐标为(12,0)-,点B 的坐标为(3,0),点C 在y 轴的正半轴上,连接,AC BC ,有90ACB ︒∠=.(1)求点C 的坐标;(2)求ACB ∠的平分线所在直线l 的表达式;(3)若P 为直线l 上的点,连接,PB PC ,若12PBC ACB S S ∆=,求点P 的坐标.26.如图,已知直线2y kx =+与直线3y x =交于点(1,)A m ,与y 轴交于点B .(1)求k 和m 的值;(2)求AOB 的周长;(3)设直线y n =与直线2y kx =+,3y x =及y 轴有三个不同的交点,且其中两点关于第三点对称,求出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据一次函数的图象和性质判断即可.【详解】解:∵一次函数y=kx+b (k≠0)在平面直角坐标系内的图象过第一、二、三象限, ∴k >0,b >0,故选:A .【点睛】本题主要考查了一次函数的图象与系数之间的关系,关键是掌握数形结合思想. 2.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.又∵1>0,∴一次函数y=x﹣k的图象经过第一、三、四象限.故选:B.【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.3.A解析:A【分析】根据题意易得AB+BC=6,当点P运动到C点时三角形ABP的面积为4,故而可求出AB、BC 的长,进而求出AC.【详解】解:由图像及题意可得:AB+BC=6,当点P运动到C点时三角形ABP的面积为4,即1=42ABPS AB BC⋅=,∴AB=2,BC=4,在Rt ABC中,AC==;故选A.【点睛】本题主要考查函数与几何,关键是根据图像得到动点的运动路程,然后利用勾股定理求解线段的长即可.4.D解析:D【分析】设直线AB的解析式为y=kx+b,根据平移时k的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB 的解析式为:y=-2x+6,故选:D .【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变. 5.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y 随x 的变化的趋势,从而可以判断哪个选项是正确的.【详解】A 、由图1可知,若线段BE 是y ,则y 随x 的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A 的距离是BA ,在点C 时的距离是BC ,BA <BC ,故选项A 错误;B 、由图1可知,若线段EF 是y ,则y 随x 的增大越来越小,故选项B 错误;C 、由图1可知,若线段CE 是y ,则y 随x 的增大越来越小,故选项C 错误;D 、由图1可知,若线段DE 是y ,则y 随x 的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A 的距离是DA ,在点C 时的距离是DC ,DA >DC ,故选项D 正确;故选D .【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6.A解析:A【分析】延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,根据等边三角形的性质得OA=OD ,A 1B=BB 1,A 2B 1=B 2B 1,直线OB 的解析式为3y x =,得出∠BOD=30°,由直线a :1y =+得出第一个等边三角形边长为1,由30°角的性质得BD=12,由勾股定理得代入求得A 1的纵坐标,即可求得第二个等边三角形的边长,…,按照此规律得到第三个、第四个等边三角形的边长,从而求得第2020个等边三角形的边长.【详解】解:延长A 1B 交x 轴于D ,A 2B 1交x 轴于E ,如图,∵△OAB、△BA1B1、△B1A2B2均为等边三角形,∴OA=OD,A1B=BB1,A2B1=B2B1,∵直线OB的解析式为3,∴∠BOD=30°,由直线a:3可知OA=1,∴OB=1,∴BD=12,∴22112⎛⎫- ⎪⎝⎭=32,把33得y=52,∴A1D=52,∴A1B=2,∴BB1=A1B=2,∴OB1=3,∴B1E=32,∴22332⎛⎫- ⎪⎝⎭33,把333得y=112,∴A2E=112,∴A2B1=4,同理得到A3B2=23,…,按照此规律得到第2020个等边三角形的边长为22019,故选A .【点睛】本题考查了图形类规律探究、一次函数图象上点的坐标特征、等边三角形的性质,含30°角的直角三角形的性质,以及勾股定理等知识,找出第n 个等边三角形的边长为2n-1是解题的关键.7.A解析:A【详解】解:设正比例函数解析式(0)y kx k =≠,∵正比例函数过(2,3)-,∴32k -=, ∴32k =-, ∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的.故选A .8.D解析:D【分析】求出小汽车在AB 、BC 上运动时,MQ 的表达式即可求解.【详解】解:设小汽车所在的点为点Q ,①当点Q 在AB 上运动时,AQ=t ,则MQ 2=MA 2+AQ 2=1+t 2,即MQ 2为开口向上的抛物线,则MQ 为曲线,②当点Q 在BC 上运动时,同理可得:MQ 2=22+(1-t+2)2=4+(3-t )2,MQ 为曲线;故选:D .【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.10.B解析:B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.11.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 12.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.二、填空题13.(0);【分析】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此时的值最小求出直线的解析式即可解决问题【详解】如图把点向右平移1个单位得到作点关于轴的对称点连接与轴的交点即为点此解析:(197,0); 【分析】 如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,求出直线AF 的解析式,即可解决问题.【详解】如图把点B 向右平移1个单位得到()1,3E ,作点E 关于x 轴的对称点()1,3F -,连接AF ,AF 与x 轴的交点即为点Q ,此时BP PQ QA ++的值最小,设最小AF 的解析式为y kx b =+,则有354k b k b +=-⎧⎨+=⎩,解得74194k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AF 的解析式为71944y x =-, 令0y =,得到197x =, ∴19,07Q ⎛⎫ ⎪⎝⎭. 故答案为19,07⎛⎫⎪⎝⎭. 【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型. 14.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.15.x≥2【分析】根据被开方数大于等于0分母不等于0列式进行计算即可得解【详解】解:根据题意得x ﹣2≥0且x≠0解得x≥2且x≠0所以自变量x 的取值范围是x≥2故答案为x ≥2【点睛】本题考查的知识点为:解析:x ≥2.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x 的取值范围是x ≥2.故答案为x ≥2.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 16.【分析】根据直线的平移规律上加下减左加右减求解即可【详解】解:直线y 2x 向下平移3个单位长度得到的直线解析式为【点睛】本题考查了直线的平移变换直线平移变换的规律是:对直线y=kx+b 而言:上下移动解析:23y x =-.【分析】根据直线的平移规律“上加下减,左加右减”求解即可.【详解】解:直线y =2x 向下平移3个单位长度得到的直线解析式为23y x =-.【点睛】本题考查了直线的平移变换. 直线平移变换的规律是:对直线y=kx+b 而言:上下移动,上加下减;左右移动,左加右减.例如,直线y=kx+b 如上移3个单位,得y=kx+b +3;如下移3个单位,得y=kx+b -3;如左移3个单位,得y=k (x +3)+b ;如右移3个单位,得y=k (x -3)+b .掌握其中变与不变的规律是解决直线平移变换问题的基本方法.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x +2,根据题意,将(1,a ﹣2)代入,得:1+2=a ﹣2,解得:a =5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.①②④【分析】根据函数图象可知小明40分钟爬山2800米40~60分钟休息60~100分钟爬山(3800-2800)米爬山的总路程为3800米根据路程速度时间之间的关系进行解答即可【详解】解:①小明解析:①②④【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800-2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可.【详解】解:①小明中途休息的时间是:60-40=20分钟,故本选项正确;②小明休息前爬山的速度为28007040=(米/分钟),故本选项正确;③小明在上述过程中所走路程为3800米,故本选项错误;’④因为小明休息后爬山的速度是380028002510060-=-(米/分钟),所以小明休息前爬山的平均速度大于小明休息前后爬山的平均速度,故本选项正确;故答案为①②④.【点睛】本题考查的知识点是函数图象,解题关键是从图象中获取必要的信息.19.【分析】根据乘车费用=起步价+里程费得出【详解】解:依题意有:故答案为:【点睛】根据题意找到所求量的等量关系是解决问题的关键本题乘车费用=起步价+里程费解析:15 2.5xy=+【分析】根据乘车费用=起步价+里程费得出.【详解】解:依题意有:15 2.5xy=+.故答案为:15 2.5xy=+.【点睛】根据题意,找到所求量的等量关系是解决问题的关键.本题乘车费用=起步价+里程费.20.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm其中一边长为xcm∴另一边长为:(12-x)cm∵长方形面积为∴y与x的关系式为y=解析:212x x -+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm ,其中一边长为xcm ,∴另一边长为:(12-x )cm ,∵长方形面积为2cm y ,∴y 与x 的关系式为y=x(12−x)=-x 2+12x .故答案为:y=-x 2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.三、解答题21.(1)(2,2);(2)①21(4)2S t =-;②t =6或65t =. 【分析】(1)过B 点作BD ⊥OA 于点D ,根据等腰直角三角形的性质即可求得OD 与BD 的长度,从而可求得B 点的坐标;(2)①证明△ACM 为等腰直角三角形,再由三角形的面积公式求得结果;②过AB 的中点D ,作线段AB 的垂直平分线DE ,求出直线OB 与DE 的解析式,再用t 表示C 、M 、N 的坐标,进而用t 表示CN 与CM ,根据已知条件32CN CM =,列出t 的方程进行解答便可.【详解】解:(1)过B 点作BD ⊥OA 于点D ,如图1,∵∠OBA =90°,OB =AB ,OA =4.∴122BD OD AD OA ====, ∴B (2,2),故答案为(2,2);(2)①当2≤t ≤4时,如图2,则AC =OA -OC =4-t ,∵∠OBA =90°,OB =AB ,∴∠OAB =45°,∵直线l ⊥OA ,∴∠ACM =90°,∴∠AMC =45°=∠CAM ,∴AC =CM =4-t , ∴21(4)2ACM S S t ∆==-; ②过AB 的中点D ,作线段AB 的垂直平分线DE ,如图3,∵△ABM 是以AB 为底的等腰三角形,∴MA =MB ,∴点M 在直线DE 上,∵点M 在直线l 上,∴点M 为直线l 与直线DE 的交点,设直线OB 的解析式为y =kx (k ≠0),由(1)知,B (2,2),∴2=2k ,∴k =1,∴直线OB 的解析式为:y =x ,∵∠ABO =∠ADM =90°,∴DE ∥OB ,∴设直线DE 的解析式为y =x +n ,∵A (4,0),B (2,2),D 为AB 的中点,∴D (3,1),把D (3,1)代入y =x +n 中,得1=3+n ,∴n =-2,∴直线DE 的解析式为:y =x -2,∵OC =t ,∴C (t ,0),N (t ,t ),M (t ,t -2), ∵32CN CM =,t >0 ∴3|2|2t t =-, ∴3(2)2t t =-,或3(2)2t t =-, 解得,t =6,或65t =. 【点睛】 本题主要考查了点的坐标,待定系数法,求函数的解析式,等腰直角三角形的性质,三角形的面积公式,难度不大,第(3)题关键是求出AB 的垂直平分线的解析式和正确列出t 的方程.22.(1)y =19x−8000(x >0且x 是整数);(2)这个月该厂生产产品6000件.【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量−产品的成本价×产品的数量−生产过程中的污水处理费−排污设备的损耗.可根据此等量关系来列出总利润与产品数量之间的函数关系式.(2)根据(1)中得出的式子,将y 的值代入其中,求出x 即可.【详解】解:(1)依题意得:y =80x−60x−2×0.5x−8000,化简得:y =19x−8000.∴函数关系式为y =19x−8000(x >0且x 是整数);(2)当y =106000时,代入得:106000=19x−8000,解得:x =6000.答:这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.23.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.24.(1)6/km h ;(2)3km ;(3)19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩;(4)3(2,27)2 【分析】(1)由速度=路程÷时间列式求解;(2)因为甲船、乙船在逆流中行驶的速度相同,只需由图示得出甲船在逆流中行驶的时间.(3)观察图形,要分成3段讨论,每一段中已知两点,可用待定系数法确定一次函数的解析式.(4)根据等量关系:小艇脱离船中后,船顺流行驶的路程=船逆流行驶的路程+小艇漂流的路程,据此即可解答.【详解】解:(1)乙船在逆流中行驶的速度为6/km h .(2)甲船在逆流中行驶的路程为6(2.52)3()km ⨯-=.(3)设甲船顺流的速度为/akm h , 由图象得23(3.5 2.5)24a a -+-=,解得9a =.当02x 时,19y x =,当2 2.5x 时,设116y x b =-+,把2x =,118y =代入,得130b =,1630y x ∴=-+,当2.5 3.5x 时,设129y x b =+,把 3.5x =,124y =代入,得27.5b =-,197.5y x ∴=-. 综上所述,19(02)5630(2)215579()222x x y x x x x ⎧⎪⎪⎪=-+<⎨⎪⎪-<⎪⎩; (4)水流速度为(96)2 1.5(/)km h -÷=,设甲船从A 港航行x 小时小艇缆绳松了. 根据题意,得9(2) 1.5(2.5)3x x -=-+,解得 1.5x =,1.5913.5⨯=,即小艇缆绳松了时甲船到A 港的距离为13.5km .∴点C 坐标3(2,27)2. 【点睛】 此题为一次函数的应用,渗透了函数与方程的思想,要求学生要提高阅读理解水平,从中挖掘有用信息,记住船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.25.(1)C (0,6);(2)36y x =+;(3)(3,3)P --或(3,15)P【分析】(1)设点C 的坐标为(0,)(0)c c >,根据勾股定理分别用c 表示出,,AC BC AB ,列出关于c 的方程即可求解;(2)设l 与x 轴交于点D ,过点D 作DE BC ⊥于点E ,设BD m =,在等腰直角三角形CDE 中,CE DE =,通过1122BCD S BD CO BC DE =⋅=⋅△将,CE DE 用m 的代数式表示出来,在Rt DBE 中,根据勾股定理将BE 表示出来,最后根据CE BE BC +=列方程求解;(3)分两种情况:点P 在CD 的延长线上或DC 的延长线上,①取AB 的中点F ,连接CF ,过点F 作1//FP BC 交CD 于点1P ,点1P 就是所要求作的点,利用待定系数法求出点1P 的坐标;②在线段DC 的延长线上取点2P ,使得点21P C PC =,2P 即是所求作的点,写出2P 的坐标,据此答案为1P ,2P 的坐标即为所求.【详解】解:(1)设点C 的坐标为(0,)(0)c c >(12,0),(3,0)A B -12,3,15OA OB AB ∴===在Rt AOC 中,222AC AO CO =+在Rt BOC 中,222BC BO CO =+在Rt ABC △中,222AB AC BC =+22222AO CO BO CO AB ∴+++=,即2222212315,6c c c +++=∴=∴点C 的坐标是(0,6)(2)如图,设直线l 交x 轴于点D ,过点D 作DE BC ⊥于点E ,设DB 的长为m 12,3,6,OA OB OC ===15,65,35AB AC BC ∴===1122BCD S BD CO BC DE =⋅=⋅ 25635,5m DE DE ∴=∴= 又在Rt DBE 中,222BD DE BE =+,即222255,55m m BE BE m ⎛⎫=+∴= ⎪ ⎪⎝⎭由题意,在Rt DEC △中,45DCE ︒∠=,于是25CE DE ==由CE BE BC +=,即2553555m m +=5m = 又由||||OA OB >,知点D 在线段OA 上,||3OB =||2OD ∴=,故点(2,0)D -设直线l 的解析式为y kx b =+,把(0,6)C 和(2,0)D -代入得620b k b =⎧⎨-+=⎩ 解得:36k b =⎧⎨=⎩故直线l 的表达式为36y x =+(3)①取AB 的中点( 4.5,0)F -,过点F 作BC 的平行线交直线l 于点1P ,连接CF易知112P BC FBC ACB S S S ==∴点1P 为符合题意的点()()3,0,0,6B C∴ 直线BC 的表达式为26y x =-+直线1P F 可由直线BC 向左平移152个单位得到 ∴直线1P F 的表达式为15262y x ⎛⎫=-++ ⎪⎝⎭,即29y x =-+ 由2936y x y x =-+⎧⎨=+⎩解得33x y =-⎧⎨=-⎩ ∴点1(3,3)P --②在直线l 上取点2P ,使21P C PC =此时有1212P BC P BC ACB S S S ==∴点2P 符合题意由21P C PC =,可得点2P 的坐标为(3,15) ∴点(3,3)P --或(3,15)P 可使12PBC ACB S S =【点睛】本题考查了坐标系内点的坐标问题,用待定系数法求一次函数的解析式,一次函数的平移,勾股定理及三角形面积问题等知识,用待定系数法,勾股定理是解此题的关键. 26.(1)1k =,3m =;(2)AOB 的周长是2210++3)n 的值是125或6或32. 【分析】(1)把A(1,m)代入3y x =求得m 的值,再把m 的值代入2y kx =+求得k 的值即可; (2)先求得点B 的坐标,过点A 作AC y ⊥轴于点C ,利用勾股定理分别求得OB 、OA 、AB 的长,即可求解;(3)设直线y n =与直线2y x =+,3y x =及y 轴分别交于点1P ,2P ,3P ,分三种情况讨论即可求解.【详解】(1)∵直线2y kx =+与直线3y x =交于点A(1,m),∴3m =,2m kx =+,∴1k =;(2)∵直线2y x =+与y 轴交于点B ,∴B (0,2),∴OB=2,过点A 作AC y ⊥轴于点C .(1,3)A ,1AC ∴=,3OC =,321BC ∴=-=,在Rt ABC △中,222AB AC BC ∴=+= 在Rt AOC 中,22221310OA AC OC =+=+=.AOB ∴的周长是2210++(3)设直线y n =与直线2y x =+,3y x =及y 轴分别交于点1P ,2P ,3P ,则有1(2,)n P n -,2,3nP n ⎫⎛ ⎪⎝⎭,3(0,)P n . ①当1P 在2P ,3P 中间时,则有2131P P P P =,(2)23n n n ∴--=-.解得125n =. ②当2P 在1P ,3P 中间时,则有1232PP P P =,(2)33n n n ∴--=.解得6n =.③当3P 在1P ,2P 中间时,则有1323PP P P =,0(2)3n n ∴--=.解得32n =. n ∴的值是125或6或32. 【点睛】 本题考查了两条直线相交的问题,解题的关键是利用图象求解,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系,学会用分类讨论的思想思考并解决问题.。

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)

一、选择题1.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到 2.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 3.在平面直角坐标系中,一次函数1y x =-的图象是( ) A . B . C . D . 4.如图,已知直线3:3l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,4 5.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D . 6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .8.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 9.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1 2 3 4 … 水池中水量/3m 48 46 44 42 … A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m12.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是( )A .①②③B .①②④C .②③④D .①③④二、填空题13.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.14.在平面直角坐标系xOy 中,直线y =﹣34x +3分别与x 轴、y 轴交于点A 、B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴的负半轴上,记作点C ,折痕与y 轴交于点D ,则直线AD 的解析式为_____.15.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 16.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________. 17.已知函数2(1)3k y k x =-+是一次函数,则k =_________.18.若式子23x x +-有意义,则x 的取值范围为______. 19.甲、乙两车分别从,A B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 地的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,设两车行驶的时间为()x h ,两车之间的距离为()y km ,y 与x 之间的函数关系如图所示,则,A C 两地相距________千米.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C .(1)求点C 的坐标;(2)求△OBC 的面积.22.一辆汽车的油箱中现有汽油60升,汽车行驶时正常的耗油量为0.1升/千米.油箱中的油量y (升)随行驶里程x (千米)的变化而变化.(假定该汽车不加油,能工作至油量为零)(1)求y 关于x 的函数表达式(2)利用图象说明,当行驶里程超过400千米后油箱内的汽油量23.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第一象限,斜靠在两条坐标轴上,且点A (0,3),点C (1,0),BE ⊥x 轴于点E ,一次函数y x b =+经过点B ,交y 轴于点D .(1)求证△AOC ≌△CEB ;(2)求B 点坐标;(3)求ABD S ∆24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?(2)当100x ≥时,求y 与x 之间的函数关系式;(3)月用电量为150度时,应交电费多少元?25.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.26.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.2.A解析:A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.3.A解析:A【分析】先确定一次函数解析式中k 与b 的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键. 4.D解析:D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为y =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A .故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键. 5.D解析:D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是:y=kt+b ,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x<6),∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.8.B解析:B【分析】由图象经过第一,二,三象限,可得k>0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k>0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.9.B解析:B【分析】分析:根据一次函数y=kx+b (k≠0,b 为常数)的性质可知,k>0时,y 随x 的增大而增大;b <0时,直线与y 轴相交于负半轴,据此即可判断一次函数所过象限.详解:∵一次函数y=3x−6中,3>0,−6<0,∴一次函数图象过一、三、四象限,故函数图象不过第二象限,故选B.点睛:此题考查一次函数的性质,直线y=kx+b (k≠0,b 为常数)图象时一条经过(-b k ,0)和(0,b )的直线.k 的正负决定直线的倾斜方向,k>0时,y 随x 的增大而增大,k<0时,y 随x 的增大而减小;b 的正负决定直线与y 轴交点的位置:b <0时,直线与y 轴相交于负半轴,b>0时,直线与y 轴相交于正半轴,b=0时,直线过原点.由此即可判断直线经过的象限,【详解】请在此输入详解!10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可; 【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.12.D解析:D【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=, DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米, ∴乙车的速度为7506090km/h 5-=,故①正确; 此时两车距A 地的距离为606360⨯=,故④正确; ∴甲车到达B 地时对应时间为810=13.5h 60, 乙车到达A 地时对应时间为81011090+=, ∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.二、填空题13.【分析】由一次函数经过第二三四象限可得:m -1<0m -2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.14.y =﹣【分析】分别将x=0y=0代入直线y=-x+3中求出与之对应的yx 值由此即可得出点BA 的坐标根据折叠的性质结合勾股定理可求出AC 的长度进而可得出点C 的坐标设OD=m 则CD=BD=3-m 在Rt △解析:y =﹣1433x +【分析】分别将x=0、y=0代入直线y=-34x+3中求出与之对应的y 、x 值,由此即可得出点B 、A 的坐标,根据折叠的性质结合勾股定理可求出AC 的长度,进而可得出点C 的坐标,设OD=m ,则CD=BD=3-m ,在Rt △COD 中利用勾股定理可求出m 的值,进而可得出点D 的坐标,则可求出答案.【详解】解:如图,当x =0时,y =﹣34x +3=3, ∴点B 的坐标为(0,3), 当y =0时,有﹣34x +3=0, 解得:x =4,∴点A 的坐标为(4,0).由折叠性质可知,△ABD ≌△ACD ,∴AC =AB ,BD =CD .在Rt △AOB 中,AB 22OA OB +5,∴AC =5,∴OC =AC ﹣OA =5﹣4=1,∴点C 的坐标为(﹣1,0).设OD =m ,则CD =BD =3﹣m ,在Rt △COD 中,OC 2+OD 2=CD 2,即12+m 2=(3﹣m )2,解得:m =43, ∴OD =43, ∴点D 的坐标为(0,43). 设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0)、D (0,43)代入y =kx +b , 4043k b b +=⎧⎪⎨=⎪⎩, 解得:1343k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为y =1433x -+. 故答案为:y =1433x -+. 【点睛】 本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及翻折变换,解题的关键是熟练掌握折叠的性质.15.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C (7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S 的最小值为2,最大值为3,解S =12|t ﹣3|×2﹣12|t ﹣3|×1=3,得t =9或﹣3,∵当S =2时,得t =7或﹣1,∴若S 的最小值为2,最大值为3,点C 的横坐标t 的取值范围为7≤t≤9或﹣3≤t≤﹣1; 故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.16.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.17.-1【分析】根据一次函数的定义即可求出k 的值【详解】解:∵是一次函数∴解得:;故答案为:【点睛】本题考查了一次函数的定义解题的关键是熟练掌握一次函数的定义进行解题解析:-1【分析】根据一次函数的定义,即可求出k 的值.【详解】解:∵2(1)3k y k x =-+是一次函数, ∴2110k k ⎧=⎨-≠⎩, 解得:1k =-;故答案为:1-.【点睛】本题考查了一次函数的定义,解题的关键是熟练掌握一次函数的定义进行解题. 18.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.19.300【分析】当x=0时y=300故此可得到AB两地的距离为3003小时后两车相遇从而可求得两车的速度之和然后依据5小时后两车的距离最大可知甲车到达B地用5小时从而可乙车的速度设甲乙两车出发后经过t解析:300【分析】当x=0时,y=300,故此可得到AB两地的距离为300,3小时后两车相遇,从而可求得两车的速度之和,然后依据5小时后两车的距离最大,可知甲车到达B地用5小时,从而可乙车的速度,设甲、乙两车出发后经过t小时同时到达C地,根据甲乙两车的路程相差300千米,列方程可求得t的值,最后根据乙的路程得到B、C之间的距离,则可得出A、C之间的距离.【详解】解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100-60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得60t-40t=300,解得t=15,∴B,C两地的距离=40×15=600千米,∴A,C两地的距离=600-300=300千米.故答案为:300.【点睛】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象理解题意,求得两车的速度,并根据两车行驶路程的数量关系列出方程.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x的图象经过第一三象限可得:k-1>0则k>1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)16010=-+y x(2)小于20升【分析】(1)根据题意,可以写出y与x的函数关系式,并写出x的取值范围;(2)根据(1)中的函数解析式和画函数图象的方法,可以画出相应的函数图象,结合图象进行解答即可.【详解】解:(1)由题意可得,y=60-0.1x,当y=0时,0=60-0.1x,得x=600,即y与x的函数关系式为y=60-0.1x(0≤x≤600);(2)y=60-0.1x,列表:x0600y600所以,当行驶里程超过400千米后油箱内的汽油量小于20升.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)B(4,1);(3)12【分析】(1)根据等腰直角三角形的性质,可得AC=BC,∠ACB=90°,根据余角的性质,可得∠OAC=∠BCE,根据AAS,可得答案;(2)根据全等三角形的性质,可得B点坐标;(3)先求得b的值,再根据三角形的面积公式,可得答案.【详解】(1)(1)证明:∵BE⊥CE∴∠BEC=90°∵△ABC是等腰直角三角形∴AC=BC,∠ACB=90°∴∠AOC=∠BEC=90°∵∠OAC + ∠ACO = 90°,∠ACO +∠BCE =90°,∴∠OAC =∠BCE .在Rt △AOC 和Rt △CEB 中,∠AOC =∠CEB∠OAC =∠BCEAC =BC∴△AOC ≌△CEB (AAS ).(2)∵△AOC ≌△CEB∴CE =AO =3,EB =OC =1∴B 点坐标(4,1)(3)将B 点坐标代入y =x +b 中可求b =-3∴D (0,-3)∴AD =6∴S △ABD =12AD•B x =12×6×4=12 【点睛】本题考查了一次函数综合题,利用余角的性质得出∠OAC=∠BCE 以及利用待定系数法求出b 值是解答本题的关键.24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】 解:()10100x <≤时,35y x =月用电量为50度时,应交电费30元; ()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入, 152520b k b =⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y1-y2=0.5x-12(x≥4),①当y1-y2=0时,得0.5x-12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多;②当y1-y2<0时,得0.5x-12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案1付款较少.③当y1-y2>0时,得0.5x-12>0,解得x>24,∴当x>24时,y1>y2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.。

初二上一次函数专项练习题

初二上一次函数专项练习题

初二上一次函数专项练习题一、选择题1. 函数y=2x-3与y=-x+4的交点坐标为:A. (3, 3)B. (1, 1)C. (2, 3)D. (3, 1)2. 若函数y=ax^2+bx+c的图象经过点(1, 4),则a、b、c满足的方程是:A. a+b+c=4B. a-b+c=4C. a+b-c=4D. a-b-c=43. 若函数y=f(x)在点(2, 3)处有切线,且切线的斜率为-2,则f(x)的导数f'(x)的值为:A. 1B. 2C. -1D. -24. 已知函数y=2x^2+bx+3的图像通过点(1, 4)和点(-2, -1),则b的值为:A. 2B. 4C. -2D. -45. 若函数y=ax^2+bx+c的图象开口向上,则a和b的符号分别为:A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<0二、填空题1. 若f(x)=x^3,当x取_________时,f(x)取得最小值。

2. 若函数y=ax^2+bx+c的顶点为(2, -3),则a、b、c的值分别为______、______、______。

3. 函数y=ax+b与y=-ax-2在(1, -3)处相切,则a、b的值分别为______、_______。

4. 若函数y=ax^2+bx+c的图像经过点(1, -4),则a、b、c满足的方程是______、_______、______。

5. 函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(-2, 1),则a、b、c的值分别为______、_______、______。

三、解答题1. 若函数y=f(x)的图形关于y轴对称,且f(x)=2x^2+3,则f(x)的对称轴方程为什么?2. 若函数y=f(x)是一个奇函数,且f(-1)=2,则f(1)的值为多少?3. 若函数y=ax^2+bx+c的图象通过点(1, 4)和(-3, 2),则a、b、c的值分别为多少?4. 若函数y=ax^2+bx+c的图象的顶点坐标为(3, -2),则a、b、c的值分别为多少?5. 已知函数y=ax^2+bx+c的图象经过点(2, 3)且在点(1, 1)处有切线,求函数f(x)的表达式和a、b、c的值。

八年级数学-一次函数练习题(含解析)

八年级数学-一次函数练习题(含解析)

八年级数学-一次函数练习题(含解析)一、单选题1.下列的点在函数y =13x -2上的是( ) A .(0,2) B .(3,-2) C .(-3,3) D .(6,0)2.当2x =时,函数41=-+y x 的值是( )A .-3B .-5C .-7D .-93.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对4.下列不是一次函数关系的是( )A .矩形一条边的长固定,面积与另一条边的长的关系B .矩形一条边的长固定,周长与另一条边的长的关系C .圆的周长与直径的关系D .圆的面积与直径的关系5.已知函数()15my m x m =-+是一次函数,则m 的值为( ) A .1 B .1- C .0或1- D .1或1-6.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4- C .14 D .14- 7.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .38.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >9.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <010.关于函数y =-x -2的图象,有如下说法:①图象过点(0,-2);②图象与x 轴的交点是(-2,0);③从图象知y 随x 增大而增大;④图象不经过第一象限;⑤图象是与y =-x 平行的直线.其中正确的说法有( )A .2种B .3种C .4种D .5种二、填空题 11.将直线12y x =-向上平移一个单位长度得到的一次函数的解析式为_______________. 12.函数y=kx+b 的图象平行于直线y=-2x ,且与y 轴交于点(0,3),则k=______,b=____.13.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.14.在一次实验中小明把一根弹簧的上端固定在其下端悬挂物体,如表所示,为测得的弹簧的长度()y cm 与所挂物体质量()x kg 的一组对应值.若所挂重物为7k g 时(在允许范围内),此时的弹簧长度为________cm .15.若直线y mx n =-+经过第一、二、三象限,则直线y nx m =-+不经过第________象限.三、解答题16.如图,正比例函数的图像经过点()1,2-,求此函数的解析式.17.已知y 与23x -成正比例,且当4x =时,10y =,求y 与x 的函数解析式.18.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.19.已知一次函数的图象经过A(−2,−3),A(1,3)两点. (1)求这个一次函数的表达式;(2)试判断点A(−1,1)是否在这个一次函数的图象上.20.如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足时,y1>y2.21.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.参考答案1.D【解析】A 选项:当x =0时,102223y =⨯-=-≠. 因此,点(0, 2)不在该函数的图象上. 故A 选项不符合题意.B 选项:当x =3时,132123y =⨯-=-≠-. 因此,点(3, -2)不在该函数的图象上. 故B 选项不符合题意.C 选项:当x =-3时,()132333y =⨯--=-≠. 因此,点(-3, 3)不在该函数的图象上. 故C 选项不符合题意.D 选项:当x =6时,16203y =⨯-=. 因此,点(6, 0)在该函数的图象上. 故D 选项符合题意.故本题应选D.2.C【解析】解:当2x =时,函数414217y x =-+=-⨯+=-,故选C.3.A【解析】解:由题目分析可知:在某个地点岩层温度y 随着所处深度x 的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y 随x 的增大而增大.故选:A .4.D【解析】A 项,矩形的面积=一条边长×另一条边长,当矩形一条边的长固定,面积与另一条边的长的关系是一次函数关系,故本选项不符合题意;B 项,矩形的周长=2×一条边长+2×另一条边长,当矩形一条边的长固定,周长与另一条边的长的关系是一次函数关系,故本选项不符合题意;C 项,圆的周长=π×直径,圆的周长与直径的关系是一次函数关系,故本选项不符合题意;D 项,圆的面积=4π×直径2,圆的面积与直径的关系不是一次函数关系,故本选项符合题意.故选D .5.B【解析】 由题意可知:110m m =-≠⎧⎪⎨⎪⎩,解得:m=−1故选:B . 6.D【解析】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=, 解得24x k =, Q 两直线交点在x 轴上,1214k k ∴-=,12k 1k 4∴=-. 故选:D .7.A【解析】把(0,0)代入y=(k+2)x+k 2-4得k 2-4=0,解得k=±2,而k+2≠0,所以k=2.故选A .8.B【解析】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .9.B【解析】∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.10.C【解析】①将(0,−2)代入解析式得,左边=−2,右边=−2,故图象过(0,−2)点,正确;②当y=0时,y=−x−2中,x=−2,故图象过(−2,0),正确;③因为k=−1<0,所以y随x增大而减小,错误;④因为k=−1<0,b=−2<0,所以图象过二、三、四象限,正确;⑤因为y=−x−2与y=−x的k值(斜率)相同,故两图象平行,正确.故选C.11.112y x=-+【解析】由平移的规律知,得到的一次函数的解析式为112y x=-+.12. -23【解析】∵y=kx+b的图象平行于直线y=−2x,∴k=−2,则直线y=kx+b的解析式为y=−2x+b,将点(0,3)代入得:b=3,故答案为:−2,3.【解析】解:∵y 随x 增大而减小,∴k<0,∴2m -6<0,∴m<3.14.32【解析】解:由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,则y=2x+18,当所挂重物为7kg 时,弹簧的长度为:y=14+18=32(cm ).故答案为:32.15.一【解析】由直线y=-mx+n 的图象经过第一、二、三象限,∴-m >0,n >0,∴m<0,-n <0∴直线y=-nx+m 经过第二、三、四象限,∴直线y=-nx+m 不经过第一象限,故答案为:一.16.2y x =-.解:设该正比例函数的解析式为()0y kx k =≠.∵该正比例函数经过点()1,2-,则21k -=⨯,解得:2k =-.∴该正比例函数的解析式为:2y x =-.17.46y x =-【解析】设函数解析式为()()230y k x k =-≠,把4x =,10y =代入()23y k x =-,得:()1083k =-, 解得,2k =,所以,函数解析式为()22346y x x =-=-.18.(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x −2k+6的图象y 随x 的增大而减小, ∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.19.(1)A =2A +1;(2)点A (−1,1)不在这个一次函数的图象上.【解析】解:(1)设这个一次函数的表达式为A =AA +A .由题意得{−2A +A =−3,A +A =3, 解得{A =2,A =1,∴这个一次函数的表达式为A =2A +1.(2)当A =−1时,A =2×(−1)+1=−1≠1.∴点A (−1,1)不在这个一次函数的图象上.20.(1)m=3, n=4;(2)4;(3)x <2.【解析】(1)∵点A (2,n )在正比例函数y=2x 的图象上,∴n=2×2=4,∴A(2,4);∵点A (2,4)在一次函数y 1=(m ﹣2)x+2的图象上,∴4=2(m-2)+2,解得m=3,∴y 1=x+2.(2)当y 1=0时,x+2=0,即x=-2,∴点B 的坐标为(-2,0), ∴12442AOB S ∆=⨯⨯=. (3)观察图象可知,当x 满足x <2时,y 1>y 2.21.(1)y=x+1;(2)C (0,1);(3)1【解析】(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2), ∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩== 解得:11k b ⎧⎨⎩== 则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C (0,1);(3)令y=0,则x=-1.则△AOD 的面积=11212⨯⨯=.。

一次函数练习题

一次函数练习题

八年级《一次函数》专题训练一、正比例函数:1、下列函数中,图象经过原点的为 ----------------------------------( )A .y=-3x+8B .y =-6x-1C .y =-5xD .y=21-x2、下列函数中,是正比例函数,且y 随x 增大而减小的是----------------( )A. 14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2xy -=3、若函数y=(|m|+1)x 2+(1-m )x 是正比例函数,则m 的值是-----------( ) A .m=-3 B .m=1 C .m=3 D .m>-34、下列关系中的两个量成正比例的是----------------------------------( ) A .从甲地到乙地,所用的时间和速度; B .正方形的面积与边长 C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高二、一次函数的定义:1、下列关于x 的函数中,是一次函数的是----------------------------------------------------( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y2、若函数y=(|m|–2)x 2+(2-m )x+2(m 为常数)是一次函数,则m 值为---( ) A .m>2 B .m=2 C .m ±2 D .m=-23、下列说法正确的是--------------------------------------------------( )A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数4、已知函数121m y mxm -=+-,当m =_____时,表示y 是x 的一次函数,此时函数解析式为______ ____三、一次函数的性质:1、已知一次函数y=6x + 1:① 随着x 的增大,y 将 (填“增大”或“减小” ); ② 它的图象从左到右 (填“上升”或“下降” ); 2、一次函数y=(m-3)x+6+m 的函数值y 随着x 值的增大而减小,那么的取值范围是_____________;3、一次函数y=(m+5)x+6+m 的函数的图像经过第二、四象限,那么的取值范围是_____________;4、一次函数y=(m -3)x+2-m 与y 轴的交点在x 轴的下方,则m_____ ____;5、点A (1x ,1y )和点B (2x ,2y )在一次函数y=2x+5上,若12x x >,则1y ,2y 的关系是-------------------------------------------------------( ) A 、12y y > B 、12y y < C 、12y y = D 、无法确定四、一次函数解析式的求法:(一)、由一次函数定义求一次函数解析式:Ⅰ:已知y 与x 成一次函数,且x=-3时y =6.x=3时y =2.① 求此一次函数的解析式? ② 当y =12时,求x 的值;Ⅱ: 已知y+2与 x 成一次函数,且当x=1时y=2,当x =-1时y =-4.求:(1)此一次函数的解析式?(2)若x 的取值范围是-2<x <6,求y 的取值范围?(二)由一次函数图像上的两点坐标求一次函数解析式:1、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采 取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的 函数图像是一条折线(如图所示),根据图像解答下列问题: (1)分别写出0≤x ≤100和x ≥100时,y 与x 的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准;2、如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A 、B 两地向正北方向匀速直行,他们与A 地的距离S (千米)与所行的时间t (小时)之间的函数关系图象如图所示的AC 和BD 给出: (1)求:直线AC 和BD 的解析式?(2)求:当他们行走多少小时时,他们之间的距离是2千米?(三)、由自变量、函数值的取值范围求一次函数解析式:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,且y 随x 的增大而增大,求该一次函数解析式?变式一:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,且y 随x 的增大而减小,求该一次函数解析式?变式二:已知一次函数y kx b =+的自变量取值范围是31x -≤≤,相应函数的取值范围是19y ≤≤,则该一次函数解析式为 ;(四)、由图象平行求一次函数解析式:①、已知直线m 与直线y=-0.5x+2平行,且与y 轴交点的纵坐标为8,求:直线m 的解析式?②、已知一次函数的图象与直线y= -x+1平行,且过点(8,2),求此一次函数的解析式?(五)、由所围几何图形的面积求一次函数解析式①、已知一次函数的图象在第一、三象限,过点(0,4),且与坐标轴围成的三角形的面积为12,求该一次函数的解析式?②、已知一次函数的图象过点( 3,0 ),且与坐标轴围成的三角形的面积为6, 求该一次函数的解析式?五、一次函数图像与坐标轴交点坐标:(1)、直线y=-x+5与x轴的交点坐标是,与y轴的交点坐标是;(2)、直线y=4x-8与x轴的交点坐标是,与y轴的交点坐标是;六、一次函数图像与两坐标轴围成的三角形面积:(1)已知一次函数y=-2x+4的图象与两坐标轴围成的三角形面积为;(2)若直线y=2x+b与两坐标轴围成的三角形的面积是9,则b= ;七、一次函数图像所经象限的确定方法:(一)知识点归纳:(1)当k>0----------图像经过第一、三象限:① k>0,b>0-----图像经过第一、二、三象限:② k>0,b<0-----图像经过第一、四、三象限:③ k>0,b=0------图像经过第一、三象限:(2)当k<0-----------图像经过第一、三象限:① k<0,b>0------图像经过第一、二、四象限:② k<0,b<0------图像经过第二、三、四象限:③ k<0,b=0-------图像经过第二、四象限:(二)习题演练:(1)一次函数y= -3x+2的图象经过象限为第象限;(2)一次函数y= 3x-8的图象经过象限为第象限;(3)一次函数y=(m+3)x+2-m经过原点,则m__________ _;(4)一次函数y=(m+3)x+2-m经过一、三、四象限,则m_______ _ _ ;(5)一次函数y=(m-3)x+2-m不经过第三象限,则m__________ _;八、一次函数图像的平移:(1)直线y=2x+1向上平移4个单位得到直线;(2)直线y=5x-3向左平移2个单位得到直线;(3)一次函数y=(m+3)x+5-m与y=2x+1的图像平行,则m的值为;此直线方程为;(4)、已知一次函数y=(m+3)x+2- n向上平移一个单位与y=x+1重合,则m =____________;n= ; 九、两个一次函数图像交点坐标的求法:★两条直线 y = x-2与y =-4x+8的交点坐标为;十、一次函数性质的应用:1、如图,直线MB的解析式为y=-x+2与x轴交于B点,直线MA与x轴交于A点,点M(-2,n), 点A(-4,0)(1)求M点的坐标;(2)求△ABM的面积(3)在y轴上找一点P,使S△OMP=S△ABM2、如图,直线1l的解析表达式为33y x=-+,且1l与x轴交于点D,直线2l经过点A B,,直线1l,2l交于点C.(1)求点D的坐标;(2)求直线2l的解析表达式;(3)求ADC△的面积;(4)在直线2l上存在异于点C的另一点P,使得ADP△与ADC△的面积相等,请直接..写出点P3、如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆ 与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不 更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在 哪里.4、如图15,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y =-x +b 也随之移动,设移动时间为t 秒.(1)当t =3时,求l 的解析式;(2)若点M ,N 位于l 的异侧,确定t 的取值范围; (3)当△OPM 的为10时,求t 的值?(4)直接写出t 为何值时,点M 关于l 的对称点落在坐标轴上.5、(2018河北)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.十一、一次函数的简单应用:1、为了保护学生的视力,课桌椅的高度都是按一定的关系配套设计的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数》复习练习作业2
班级____________姓名______________________
一.选择题
1.小张从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,则下列说法中正确的个数是()
①小张家距离单位4千米;
②小张上班所用的时间为12分钟;
③小张上坡的速度是0.5千米/小时;
④小张下班所用时间为15分钟.
A.1个B.2个C.3个D.4个
2.某种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格打折,因此付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如果所示,下列四种说法:
①一次购买种子数量不超过10千克时,销售价格为5元/千克;
②一次购买30千克种子时,付款金额为100元;
③一次购买40千克种子比分两次购买且每次购买
20千克种子少花25元钱.
其中正确的个数是()
A.0 B.1 C.2 D.3
3.某天早上王文上学,先步行一段路,因时间紧,他又改乘出租车,
结果到校时还是迟到了5分钟,其行程情况如图,若他出门时直接
乘出租车(车速不变),则他()
A.仍会迟到2分钟到校B.刚好按时到校
C.可以提前2分钟到校D.可以提前5分钟到校
4.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度
y(m)与挖掘时间x(h)之间的关系如图所示,
根据图象所提供的信息,下列说法正确的是()
A.甲队开挖到30m时,用了2h
B.开挖6 h时甲队比乙队多挖了60m
C.乙队在0≤x≤6的时段,y与x之间的关系式y=5x+20
D.x为4 h时,甲、乙两队所挖的河渠长度相等
5.一辆货车与客车都从A地出发经过B地再到C地,总路程200千米,货车到B地卸货后再去C地,客车到B地部分旅客下车后再到C地,货车比客车晚出发10分钟,则以下4种说法:
①货车与客车同时到达B地;
②货车在卸货前后速度不变;
③客车到B地之前的速度为20千米/时;
④货车比客车早5分钟到达C地;
4种说法中正确的个数是()
A.1个B.2个C.3个D.4个
二.填空题
6.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)
之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种
苹果比分三次每次购买1千克这种苹果可节省元.
7.甲、乙两工程队分别同时开挖两条600米长的管道,
所挖管道长度y(米)与挖掘时间x(天)之间的关系
如图所示,则下列说法中:
①甲队每天挖100米;
②乙队开挖两天后,每天挖50米;
③甲队比乙队提前3天完成任务;
④当x=2或6时,甲乙两队所挖管道长度都相差100米.
正确的有.(在横线上填写正确的序号)
三.解答题
8.某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).
(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;
(2)比较购买同样多的笔时,哪种方式更便宜;
(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.
9.(2015•德州)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.
(1)根据图象求y与x的函数关系式;
(2)商店想在销售成本不超过3000元的情况下,使销售利润
达到2400元,销售单价应定为多少?
10.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.
(1)a=,b=;
(2)直接写出y1、y2与x之间的函数关系式;
(3)导游6月10日(非节假日)带A旅游团,6月20日(端午节) 带B旅游团到红海滩
景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?。

相关文档
最新文档