一次函数

合集下载

《一次函数》课件

《一次函数》课件

REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。

一次函数公式

一次函数公式

一次函数公式一次函数,又称线性函数,是函数的一种基本形式。

它的公式可以表示为y = kx + b,其中k和b是实数常数,x和y分别表示自变量和因变量。

本文将围绕一次函数公式展开讨论,介绍其基本概念、性质以及应用。

一、一次函数的基本概念一次函数是数学中最简单的函数类型之一,其公式形式为y = kx + b。

其中,k表示斜率,决定了直线的倾斜程度;b表示截距,决定了直线与y轴的交点位置。

一次函数的图像通常为一条直线。

二、一次函数的性质1. 斜率的意义:斜率k代表了变化率,即y值对x值的增量比。

当k为正数时,随着x的增加,y也增加;当k为负数时,随着x的增加,y减小;当k为0时,表明y值保持恒定,即直线平行于x轴。

2. 截距的意义:截距b表示了当x为0时,函数图像与y轴的交点位置。

若b为正数,则图像在y轴上方与之相交;若b为负数,则图像在y轴下方与之相交。

3. 零点的求解:一次函数的零点是指函数取值为0的点,即y = 0时对应的x值。

要求解零点,可以令y = 0,并代入一次函数的公式求解。

三、一次函数的应用1. 直线方程:一次函数的公式可以用来表示直线的方程。

通过给定的斜率和截距,可以方便地确定直线的方程式,进而研究直线的性质和特征。

2. 经济学模型:在经济学领域,一次函数常常用来描述供求关系、价格变动和市场需求等问题。

通过建立一次函数模型,可以从数学角度分析和解决经济学中的实际问题。

3. 运动模型:在物理学和机械工程中,一次函数可以用来描述运动的速度、加速度以及位置与时间的关系。

通过解析一次函数的图像,可以获得物体的运动规律和特征。

4. 统计学应用:在统计学中,一次函数可以用来拟合实验数据,从而得到最佳拟合直线。

拟合直线可以通过最小二乘法得到,进而用于描述和分析数据的相关性及预测。

总结:一次函数公式y = kx + b是一种基本的数学表示形式。

它具有一些重要的性质和应用,如斜率的意义、截距的概念以及零点的求解。

一次函数所有知识点

一次函数所有知识点

一次函数所有知识点
一次函数是数学中一个重要的函数类型,它只包含一个自变量,并且函数值只与自变量的取值有关。

在一次函数中,函数值与自变量的取值之间是线性关系。

以下是一次函数的所有知识点:
1. 一次函数的定义:一次函数是一次方程的特解,它表示一个
自变量只对应一个函数值。

2. 一次函数的符号特征:一次函数的导数为零,即
$frac{d}{dx}(f(x))=0$,同时自变量的取值范围是使得函数值不为
零的取值。

3. 一次函数的性质:一次函数是线性函数,因此它具有以下几
个性质:
- 一次函数的斜率为零,即 $frac{dy}{dx}=0$。

- 一次函数的截距为零,即 $y=x$ 是一个一次函数的特解。

- 一次函数的图像是一条直线。

- 一次函数的导数为零,即 $frac{d}{dx}(f(x))=0$。

4. 一次函数的求解:一次函数可以通过求解一次方程来求解。

一次方程的特解是 $x=0$ 或 $x=infty$。

5. 一次函数的应用:一次函数在数学中有许多应用,例如在几
何中可以用来求解三角形的面积,在代数中可以用来求解方程的解等。

6. 一次函数的拓展:一次函数是数学中一个重要的函数类型,
它在物理、工程、经济等领域中都有广泛的应用。

在物理学中,一次函数可以用来描述物理量之间的关系,例如在电路中可以用来描述电
流和电压之间的关系。

在工程中,一次函数可以用来描述材料的应力和应变之间的关系。

在经济中,一次函数可以用来描述商品价格和需求量之间的关系。

一次函数的知识点

一次函数的知识点

一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。

二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。

当k < 0时,函数图像从左到右下降,即函数是减函数。

斜率k表示函数图像与x轴正方向的夹角大小。

2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。

3、图象:一次函数的图象是一条直线。

当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。

三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。

2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。

3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。

四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。

2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。

五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。

3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。

4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。

一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。

一次函数及其应用

一次函数及其应用

一次函数及其应用一次函数是数学中的一种基本函数形式,也称为线性函数。

它的形式可以表示为 y = ax + b,其中 a 和 b 为常数,x 和 y 分别表示自变量和因变量。

一次函数在数学和实际生活中都有广泛的应用,本文将探讨一次函数的定义、性质以及它在经济学和物理学中的应用。

一、一次函数的定义和性质一次函数是一种简单的函数形式,它的图像是一条直线。

在一次函数中,自变量 x 的一次幂为 1,因此它的图像是一条斜率为常数的直线。

一次函数的定义域和值域都是实数集。

一次函数的性质主要包括斜率和截距。

斜率表示了直线的倾斜程度,它等于函数的系数 a。

当 a 大于 0 时,函数图像从左下方向右上方倾斜;当 a 小于 0 时,函数图像从左上方向右下方倾斜;当 a 等于 0 时,函数图像为水平直线。

截距表示了直线与 y 轴的交点位置,它等于函数的常数项 b。

当 b 大于 0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b 小于 0 时,函数图像与 y 轴的交点在 y 轴的负半轴上;当 b 等于 0 时,函数图像与 y 轴相交于原点。

二、一次函数在经济学中的应用一次函数在经济学中有着广泛的应用,特别是在供求关系和成本收益分析中。

以下将以供求关系为例,介绍一次函数在经济学中的应用。

供求关系是经济学中的重要概念,它描述了商品市场上供给量和需求量之间的关系。

一次函数可以很好地描述供求关系。

假设某种商品的供给量和价格之间存在线性关系,可以表示为 S = aP + b,其中 S 表示供给量,P 表示价格,a 和 b 表示常数。

同样,需求量和价格之间的关系也可以用一次函数来表示,表示为 D = cP + d,其中 D 表示需求量,c 和 d 表示常数。

通过求解供给函数和需求函数的交点,可以得到市场均衡的价格和数量。

假设市场均衡的价格为 P*,数量为 Q*,则有 S = D,即 aP* + b = cP* + d。

通过解这个方程可以求得 P* 的值,进而可以计算出 Q* 的值。

一次函数的知识点

一次函数的知识点

一次函数的知识点数学中,一次函数是指形如 y = kx + b 的函数,其中 k 和 b 均为常数。

当 k 不等于零时,一次函数呈现出线性关系,即直线图像。

因此,一次函数也称为线性函数。

一次函数是初中数学和高中数学中最基本的内容之一,本文将介绍一些有关一次函数的知识点。

一、一次函数的基本形式一次函数的基本形式为 y = kx + b,其中 k 表示斜率,b 表示截距。

当 x 从 0 开始增加时,y 的变化率为 k,即 y 的变化量与 x 的变化量之比为 k。

当 x = 0 时,y 的值为 b,即 y 轴截距。

二、一次函数的图像一次函数的图像是一条直线,它可以用各种方法来绘制。

其中最简单的方法是使用 y 轴截距 b 和斜率 k。

首先,在坐标系中绘制y 轴和 x 轴,然后将点 (0, b) 标记在 y 轴上。

接下来,使用斜率 k 确定直线的倾斜程度,并用这个斜率来绘制直线。

在绘制直线之前,我们还需要找到一条直线上的另一个点。

最常用的方法是使用该直线与另一条坐标轴的交点。

当斜率为正时,可以在 x 轴上选择一个较小的正数,然后根据斜率 k 和 (0, b) 来计算出直线上的第二个点。

当斜率为负时,可以在 x 轴上选择一个负数,然后按相同的方法计算第二个点。

确定了直线上的两个点之后,我们就可以在它们之间画出直线了。

三、斜率和截距的关系斜率和截距是一次函数的两个核心概念。

它们之间的关系是 y= kx + b 的基础。

直观上来说,截距代表了一条直线与 y 轴的交点,斜率代表了这条直线的倾斜程度。

斜率越大,这条直线就越陡峭。

斜率为 0 时,直线呈现出水平,斜率为正时,直线向右倾斜,斜率为负时则向左倾斜。

当斜率为 1 时,直线与 x 轴夹角的正切值一定为 1,也就是说它与 x 轴交成 45 度角。

当斜率为 -1 时同理。

四、斜率的计算方法斜率 k 的计算公式为 k = (y2 - y1) / (x2 - x1),其中 (x1, y1) 和(x2, y2) 是直线上的两个点。

第12讲一次函数

第12讲一次函数

考点知识精讲
考点三 一次函数图象的性质
一次函数y=kx+b,当k>0时,y随x的增大而 增大 ,图象一定经 过第 一、三 象限;当k<0时,y随x的 增大 而减小,图象一定经过第 二、四 __________象限. 考点四 一次函数的应用
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量 ;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解 决问题;⑤答.
第12讲 一次函数
考点知识精讲
考点一 一次函数的定义
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b= 0 时,一次函数y=kx+b就成为 y=kx(k是常数,
正比例函数. k≠0),这时,y叫做x的______________. 1.由定义知:y是x的一次函数⇔它的解析式是 y=kx+b ,其中k 、b是常数,且k≠0. 2.一次函数解析式y=kx+b(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是1;(3)常数项b可为任意实数. 3.正比例函数解析式y=kx(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是 1 ;(3)没有常数项或者说常数项为 0 .
6.如右图所示,直线l过A、B两点,A(0,-1),
B(1,0),则直线l的解析式为
y=x-1 .




7.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山 顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路
长的2倍.小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180
b =5 , 2 解得 k=1, 4
1 5 所以 y 乙= x+ . 4 2

一次函数的概念

一次函数的概念

一次函数的概念一次函数是一类在数学中常见的函数形式,其定义可以被表达为f(x) = ax + b的形式,其中a和b是常数,且a不等于零。

一次函数也被称为线性函数或一次多项式。

一次函数的图像是一条直线,因此其特点包括斜率和截距。

斜率a 决定了直线的倾斜程度,其值为正时直线上升,为负时直线下降,而斜率为零则表示水平直线。

截距b表示直线与y轴的交点,即当x等于零时,函数的值为b。

同时,斜率通过其大小可以判断函数在x轴方向上的变化速率。

一次函数可以用来描述许多实际问题,比如直线运动、成本与收入关系等。

在直线运动中,位置与时间的关系可以由一次函数表示。

假设一个物体在时刻t=0时的位置为x=0,以恒定速度v运动,则可以用一次函数x(t) = vt来描述其位置与时间的关系。

在这个例子中,斜率v 表示物体在单位时间内移动的距离,截距0表示起始位置。

在经济学中,成本与收入之间的关系通常可以用一次函数来描述。

假设销售产品的成本是每个单位产品的固定成本加上每个单位的变动成本,且每个单位产品的售价是固定的。

则成本C和销售数量x之间的关系可以用一次函数表示为C(x) = a + bx,其中a代表固定成本,b 代表每个单位产品的变动成本。

这个函数告诉我们在不同销售数量下的总成本是多少。

一次函数也可以通过图像来帮助理解。

当斜率不等于零时,直线的斜率决定了直线的倾斜程度。

斜率越大,直线越陡峭;斜率越小,直线越平缓。

同时,直线与y轴的交点称为截距,它决定了直线在y轴上的位置。

不同的斜率和截距组合形成了一次函数的不同图像,帮助我们直观地理解函数的特性。

总结起来,一次函数是一种常见的数学模型,用来描述直线关系。

它的定义形式为f(x) = ax + b,并具有斜率和截距两个重要特征。

一次函数在实际问题中具有广泛的应用,能够帮助我们理解和解决各种与直线关系相关的情况。

通过对一次函数的研究和应用,我们可以更好地理解数学与现实世界的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点讲解
五、复习要点
一次函数的图象和性质
正比例函数的图象和性质
六、考点讲析1.一次函数的意义及其图象和性质
⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是
x的一
次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.
⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0 )的一条直线,正比例函数y=kx的

象是经过原点(0,0)的一条直线,如下表所示.
⑶.一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k<0
时,y的值随x值的增大而减小.
⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.
①直线经过第一、二、三象限(直线不经过第四象限);
②直线经过第一、三、四象限(直线不经过第二象限);
③直线经过第一、二、四象限(直线不经过第三象限);
④直线经过第二、三、四象限(直线不经过第一象限);
2.一次函数表达式的求法
⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。

七、典型例题讲析
例1 选择题
(1)下面图像中,不可能是关于x的一次函数的图象的是()
(2)已知:,那么的图像一定不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
(3)已知直线与x轴的交点在x轴的正半轴,下列结论:①;②
;③;④,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
(4)正比例函数的图象如图所示,则这个函数的解析式是()
A. B. C. D.
解:(1)由A可得故,∴A可能;
由B可得故,∴B可能;
由C可得此不等式组无解.故C不可能,答案应选C.
(2)由已知得三式相加得:

∴,故直线即为.
此直线不经过第四象限,故应选D.
(3)直线与x轴的交点坐标为:
即异号,
∴②、③正确,故应选B.
(4)∵正比例函数经过点(1,-1),
∴,故应选B.
说明:一次函数中的的符号决定着直线的大致位置,题(3)还可以通过
的符号画草图,来判断各个结论的正确性,这类题型历来都是各地中考中的热点题型,同学们一定要熟练掌握.
例2 求下列一次函数的解析式:
(1)图像过点(1,-1)且与直线平行;
(2)图像和直线在y轴上相交于同一点,且过(2,-3)点.
解:(1)把变形为.
∵所求直线与平行,且过点(1,-1).
∴设所求的直线为,将代入,解得.
∴所求一次函数的解析式为.
(2)∵所求的一次函数的图像与直线在y轴上的交点相同.
∴可设所求的直线为.
把代入,求得.
∴所求一次函数的解析式为.
说明:如果两直线平行,则;如果两直线
在y轴上的交点相同,则.掌握以上两点,在求一次函数解析式时,有时很方便.
例3:已知一次函数.求:(1)m为何值时,y随x的增大而减小;(2)m,n满
足什么条件时,函数图像与y轴的交点在x轴下方;(3)m,n分别取何值时,函数图像经过原点;(4)m,n满足什么条件时,函数图像不经过第二象限.
解:(1)∵y随x的增大而减小.
∴,即.
∴当时,y随x的增大而减小.
(2)令即
∴当时,函数图像与y轴交点在x轴下方.
(3)令即
∴当时,函数图像经过原点.
(4)令即
∴当时,函数图像不经过第二象限.
说明:对于一次函数的问题,重要的是掌握它的概念和性质,并能灵活地运用这些性质.例如,在表
达式中,特别要注意这一条件.
例4 已知一次函数的图象经过点及点(1,6),求此函数图象与坐标轴围成的三角形的面积.
解:由一次函数的图象经过点及点(1,6),得=2,=4.
∴一次函数的解析式为.
∵=0时,=4,=0时,=-2,
∴一次函数的图象与轴的交点、与轴的交点的坐标分别为(0,4)、(-2,0),

∴.
例5 如图,A、B分别是轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交轴于点
C(0,2),直线PB交轴于点D,.
(1) 的面积是多少?
(2)求点A的坐标及p的值.
(3)若,求直线BD的函数解析式.
解:过点作轴于点,轴于点.
(1)由点、点C的坐标分别为(2,p)、(0,2)及点P在第一象限内,得,=2,
=2.

(2)注意到
∴,=4.
∴点A的坐标为(-4,0).

=3.
(3)由题设,可知.
∴.
∴.
∴点D的坐标为(0,6).
∵直线BD(设其解析式为)过点P(2,3)、点D(0,6),
∴,.
∴直线BD的解析式为.
例6我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0.5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0<x<200).
(1)请写出y关于x的函数关系式;
(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y值的范围.
解:(1)因为荔枝为x吨,所以芒果为吨.依题意,得
即所求函数关系式为:
.
(2)芒果产量最小值为:
(吨)
此时,(吨);
最大值为:(吨).
此时,(吨).
由函数关系式知,y随x的增大而减少,所以,y的最大值为:
(万元)
最小值为:
(万元).
∴值的范围为68万元84万元.。

相关文档
最新文档