汽车空气动力噪声
汽车污染途径及控制措毕业论文

汽车污染途径及控制措毕业论文底盘噪声包括变速器、分动器、传动轴、差速器和减速器等传动系产生的噪声和轮胎产生的噪声等。
具体表现:①传动系噪声②轮胎噪声轮胎噪声可以分为直接噪声(或车外噪声)和间接噪声(或车内噪声)两种。
即直接噪声或车外噪声是轮胎直接辐射出来的噪声;而间接噪声(或车内噪声)是轮胎直接或间接地成为激源源,振动通过悬架和车架传至车身,成为车厢内的噪声。
对轮胎噪声来说,一般反映的就是直接噪声。
对大、中型载重车的轮胎而言,由于其所产生的直接噪声在汽车总体噪声中所占比重很大,因此,直接噪声已成为噪声公害。
①轮胎花纹噪声。
由于轮胎滚动,在接地时胎面花纹沟部的容积减小,沟内包含的空气被挤出;而当胎面离地时沟部的容积恢复,外部空气被吸入。
这样空气流入、流出产生的噪声也叫排气噪声。
另外,胎面花纹接地时还产生连续击打路面的噪声,这种噪声也属于轮胎花纹噪声。
②道路凹凸噪声。
轮胎在道路上滚动时,由于路面小的凹凸内空气被压缩,因而产生排气噪声。
一般来说,沥青和水泥路凹凸面小,由此产生的噪声也小。
③轮胎弹性振动噪声。
由于路面的凹凸不平和轮胎的不均匀性,引起胎面和胎侧的弹性振动噪声。
④轮胎自激振动噪声。
当汽车急速起动和急制动、急转向时,轮胎胎面元素相对于道路表面发生的局部自激振动,由此产生刺耳的噪声,称为尖叫噪声。
⑤轮胎空气紊流噪声。
由于轮胎滚动,在轮胎周围产生空气的紊流诱发出的噪声。
1.2.3.电器设备噪声1.2.3.1.冷却风扇噪声冷却风扇是噪声的发生装置,受到护风圈、水泵、散热器及传动装置的影响,但其噪声的产生主要取决于底盘。
1.2.3.2.汽车发电机噪声随着车速的提高,车身的噪声也越来越大,主要起因是空气动力噪声。
1.3.汽车尾气污染汽车尾气的主要污染物是:一氧化碳(CO)、氮氧化物(NO某)、碳氢化合物(HC)、铅(Pb)、苯并芘(BaP)等。
它们对环境的污染主要表现为产生温室效应,破坏臭氧层,产生酸雨、黑雨等现象。
汽车发动机噪声产生的原因及控制对策研究

汽车发动机噪声产生的原因及控制对策研究发动机噪声就是指直接从发动机机体及其主要附件向空间传出的声音,这种噪声随发动机机型和转速等情况的不同而不同。
一、汽车发动机噪声产生的原因分析(一)发动机气缸内的气体燃烧会产生燃烧噪声。
汽车发动机气缸内周期变化的气体压力发生相互作用后就会产生燃烧噪声,气体燃烧的方式和燃烧的速度决定了燃烧噪声的大小。
在汽油发动机中如果发生爆燃或其他不正常燃烧时就会产生较大的燃烧噪声,而如果在柴油发动机燃烧室内气压上升过快,引起发动机各部件振动也会产生噪声。
但是通常来说,柴油发动机机噪声比汽油发动机的噪声要大很多。
(二)汽车发动机机械本身运动产生机械噪声。
机械噪声主要是由于发动机的各运动件之间以及运动件与固定件之间周期性变化而产生的,主要有活塞敲击噪声和气门机械噪声等几大类。
首先是活塞敲击噪声。
汽车发动机运转时,活塞在不停的上下止横向移动形成活塞对缸壁的不断敲击,这个敲击声就是活塞敲击噪声。
其次是传动齿轮噪声。
汽车发动机传动齿轮的噪声是发动机内部的齿轮啮合过程中齿与齿之间的撞击和摩擦产生的。
再次就是曲轴的扭转振动也会破坏齿轮的正常啮合而产生出机械噪声。
最后是配气机构噪声。
汽车发动机的配气机构中零件众多,众多的零件在运动中很容易会引起振动和噪声,包括气门和气门座的撞击,由气门间隙引起的传动撞击和高速时气门不规则运动引起的机械噪声。
(一)对发动机气缸内的气体燃烧产生的燃烧噪声的控制对策。
一是采用隔热活塞装置以便能有效提高燃烧室壁温度,有效缩短滞燃期,从而降低燃烧噪声。
二是通过提高压缩比和采用废气再循环技术可大大降低柴油发动机的燃烧噪声。
三是可以采用双弹簧喷油阀实现预喷功能,也就是说将原需要一个循环一次喷完的燃油分两次来喷,这样可大大减少滞燃期内积聚的可燃混合气数量,有效抑制空气和燃料混合气的形成,从而可以有效抑制燃烧噪声。
四是采用增压措施。
如果是柴油发动机,在增压后可以有效改善混合气的着火条件,可以使着火延迟期缩短,从而使柴发动机油机运转平稳,最终实现噪声降低的目的。
汽车通过噪声标准

汽车通过噪声标准一概述汽车工业在过去的几十年中飞速发展。
汽车改变了人们的生活,带动了社会生产力的发展。
在很多国家,汽车已经是支柱产业。
但是汽车的发展也给社会带来了一些负面的影响,汽车排气污染和噪声污染就是其中的两个典型例子。
汽车的能源来自石油、天然气等化工原料。
这些化工原料在汽车发动机内燃烧后产生一氧化碳和氮氧化合物等对人和环境有害的物质。
这些废气就形成了大气污染。
发动机工作的时候,要吸收空气,然后与燃油混合爆炸,产生巨大的推力推动曲轴运动,再通过动力传递轴系带动车轮。
这样发动机会发出强烈的噪声。
这些噪声透过汽车壳体、进排气管道传出来,就形成了噪声污染。
在过去的几十年时间内,汽车的拥有量和街道上汽车的流量急剧增加。
这样人们对控制汽车产生的污染日益关注。
随著生活水平的提高,人们对环境的要求更加高。
噪声污染已经提高到与其他污染一样的高度。
於是很多国家纷纷制定了汽车噪声污染的标准。
虽然汽车只有一百多年的历史,但是早在古罗马时代,就制定了交通噪声污染的标准。
当时是控制马车通过医院时马蹄发出的噪声。
不过现代社会真正对汽车噪声立法是在二十世纪六十年代。
汽车噪声污染是汽车通过住宅区、街道等地方对居民和行人听觉产生的伤害,因此在测量和制定标准的时候就要模仿这样的环境。
为了确定汽车通过街道上噪声的大小,通常是在专门的试验场来测试。
在试验道路两边安放麦克风来测量汽车通过麦克风时的噪声,所以这类测量叫“通过噪声测量”,相对应的噪声叫著“通过噪声”(pass-by noise)。
麦克风测量到的最大dB(A)噪声就是通过噪声的量值。
ISO在1964年时就推出了ISO R362的通过噪声标准。
之后很多国家在这个标准基础上根据本国国情制定了相应的标准。
欧洲在这方面做的工作最多。
欧共体在ISO R362之后推出了70/157/EEC 标准。
这个标准是针对M1类型的汽车,通过噪声标准为82dB(A)。
在随后的三十多年中,这个标准不断修改,噪声指标越来越严。
轿车外流场及气动噪声的建模与仿真

c u d b p l d t h u o t e a t c l s n s se a d o e e d o d l o c e s d a p ia in o l e a p i o t e a t mo i n i o l i y t m n p n t o rwi ey fri r a e p l t . e v - io h n c o
Ab t a tAs a uo b l r v l d w te r a arlw i t r cs w t h u fc f t e v h ce b d t e e a e sr c : n a tmo i t e s o n h o d, i o n ea t i t e s r e o h e i l o y o g n r t e a f h a a r d n mi n ie W i d n ie c n b u t u w ih c n a n y p se g r a d ma e i df c l t o v re wi t e e o y a c o s . n os a e q i l d, h c a n o a s n e s n k t i ut o c n e s t oh r eo i h p s e g r . i E n ih h l te r t i p p r c l u ae h i d n ie o e il . h e u t e e lt a h a s n e s W t L S a d L g t i h o y, s a e ac l ts t e w n os fa v h ce T e r s l r v a h tt e h l h s
本 文 针 对一 款 自主 品 牌轿 车采 用 C D 方法 计 F
算汽 车 外流场 , 进行声 学 分析 , 并 找到 了导 致风 噪偏
车内噪声机理、测量及其评价标准汇总

车内噪声的产生机理、测量方法及其评价标准汽车噪声与振动是一门非常复杂的学科,涉及很多方面。
在汽车产品开发过程中,噪声与振动控制也是一门关键技术。
汽车噪声与振动可以用很多方法来分类:按频率来分,可以分成低频问题、中频问题和高频问题;按专题来分可以分成摩擦噪声、风激励噪声、机械噪声等等;按源—传递途径—接受体来分,可以分成振动噪声源、传递通道和人体对噪声与振动的响应。
本文就汽车噪声与振动问题中的一个方面——车内噪声的产生机理、测量方法及其评价标准作一个简单的论述。
1车内噪声的产生机理一般噪声与振动系统可以用源- 传递路径- 接受体模型来表示。
车辆的主要噪声源有: 发动机辐射噪声、进排气噪声、冷却风扇噪声、底盘噪声、轮胎噪声、风噪声等; 主要振动源有: 发动机自身振动、排气系统振动、传动轴振动、悬架振动、路面激励等。
振动的传递路径主要有: 发动机悬置、车身、悬架、排气系统悬置等; 噪声传递路径主要有: 车身孔隙、车身。
接受体主要指驾驶员和乘客, 噪声和振动通过传递路径传递到人体。
对于噪声与振动的控制包括对噪声源和振动源的控制、对传递路径的控制和对接受体的控制, 降噪的根本是要控制噪声源和振动源, 其次在传播路径上加以控制。
车内噪声产生的机理如图1 所示。
车辆噪声源, 如轮胎- 路面噪声和发动机噪声向外辐射, 通过车身孔隙透射到乘坐室内, 车内这部分噪声被称为空气传播噪声, 其频率一般在几百赫兹到几千赫兹。
车辆振动源, 如路面激励、发动机振动等直接或者间接作用到车身, 引起车身振动; 另外车辆噪声源向外辐射噪声作用到车身, 也会引起车身振动,车身的振动产生结构辐射噪声, 车内这部分噪声被称为结构噪声, 结构噪声的频率一般在几十赫兹到几百赫兹。
结构噪声和空气传播噪声相互叠加形成车内噪声。
噪声源振动源车身孔隙车身振动噪声叠加车内噪声图11.1 发动机的噪声发动机热力过程中的周期性及部分受力机件的往复运动构成为汽车主要的振动噪声源,主要分为三种:燃烧噪声、机械噪声和空气动力噪声。
浅谈汽车噪声的控制

浅谈汽车噪声的控制作者:阴如刚来源:《青年时代》2016年第31期随着汽车工业的迅速发展,人们对于汽车的舒适性和振动噪声控制的要求越来越严格。
然而一切噪声又源于振动,振动能够引起某些部件的早期疲劳损坏,从而降低汽车的使用寿命;过高的噪声既会损害驾驶员的听力,又会使驾驶员在不经意间陷入疲劳、困顿的状态,从而对汽车行驶安全性构成了极大的威胁。
一、汽车噪声的产生究其原因,汽车噪声产生的主要因素有:空气动力、机械传动以及电磁。
具体来说,汽车发动机等机械构件运动噪声(发动机噪声)、轮胎与地面的摩擦声(路噪)、汽车冲破空气幕产生的碰撞及摩擦声(风噪)、外环境传入车内的声音(如大货柜车呼啸而过的声音)、驾驶舱内饰板等部件发生震动产生的内部噪音等诸多因素都可能引发汽车噪声。
二、噪声的种类汽车是一个包括各种不同性质噪声的综合噪声源,其产生的噪声具体可分为发动机噪声,底盘噪声,电器设备噪声以及车身噪声,其中发动机噪声占汽车噪声的二分之一以上。
因此,发动机的减振、降噪成为汽车噪声控制的关键。
此外,汽车轮胎在高速行驶时,也会引起较大的噪声。
这是由于轮胎在地面滚动时,位于花纹槽中的空气被地面挤出与重新吸入过程所引起的响声,以及轮胎花纹与路面的撞击声。
三、噪声的控制对照汽车噪音的成因,我们可把噪声控制分为以下三类:一是对噪声源的控制,二是对噪声传播途径的控制,三是对噪声接受者的保护。
其中对噪声源的控制是最根本、最直接的措施,即改造振源和声源。
但是对噪声源难以进行控制时,就需要在噪声的传播途径中采取措施,例如吸声、隔声、消声、减振及隔振等措施。
四、发动机噪声降低发动机噪声是汽车噪声控制的重点。
发动机是产生振动和噪声的根源。
发动机的噪声是由燃料燃烧,机械运动,正时齿轮及活塞的敲击噪声等合成的。
降低发动机本体噪声就要改造振源和声源,设计发动机时,选用柔和的燃烧工作过程,提高机体的结构刚度,采用严密的配合间隙,降低配气机构噪声。
例如在油底壳上增设加强筋和横隔板,以提高油底壳的刚度,减少振动噪声。
汽车噪声分类

汽车是一个包括各种不同性质噪声的综合噪声源。
由于汽车噪声源中没有一个是完全密封的(有的仅是部分的被密封起来),因此汽车整车所辐射的噪声就决定于各声源的声级、特性和它们的相互作用。
汽车噪声源大致可分为发动机噪声和底盘噪声,主要与发动机转速、汽车车速有关。
发动机的噪声
发动机噪声是汽车的主要噪声源。
发动机噪声又可分为空气动力性噪声、机械噪声和燃烧噪声。
空气动力性噪声主要包括进、排气和风扇噪声。
这是由于进气、排气和风扇旋转时引起了空气的振动而产生的噪声,这部分噪声直接向周围的空气中辐射。
在没有进排气消声器时,排气噪声是发动机的最大噪声源,进气噪声次之。
风扇噪声特别在风冷内燃机上也往往是主要的噪声源之一。
燃烧机械噪声
燃烧噪声和机械噪声很难严格区分。
为了研究方便起见,将由于气缸内燃烧所形成的压力振动通过缸盖、活塞一连杆一曲轴一机体向外辐射的噪声叫燃烧噪声。
将活塞对缸套的撞击、正时齿轮、配气机构、喷油系统等运动件之间机械撞击所产生的振动激发的噪声叫做机械噪声。
一般直喷式柴油机燃烧躁声高于机械噪声,非直喷式则机械噪声高于燃烧噪声,但低速运转时燃烧噪声都高于机械噪声。
汽油机燃烧柔和,零件受力也小,燃烧噪声和机械噪声都较柴油机低。
汽车底盘噪声
包括传动噪声(变速箱、传动轴等)、轮胎噪声、制动噪声、车体产生的空气动力噪声等.
噪声源识别,就是对机器上存在的各种声源进行分析,了解其产生振动和噪声的机理,确定振源、声源的部位,分析声源的特性(包括声源的类别、声级的大小、频率特性、声音变化和传播的规律等),然后按噪声的大小排列出顺序,从而确定出主要噪声源。
客车内外噪声控制关键技术及工程应用研究

客车内外噪声控制关键技术及工程应用研究一、本文概述随着交通运输行业的快速发展,客车作为人们日常出行的重要交通工具,其乘坐舒适性越来越受到关注。
其中,客车内外噪声控制是提升乘坐舒适性的关键要素之一。
本文旨在深入探讨客车内外噪声控制的关键技术及其在工程应用中的实际效果,以期为客车制造行业提供理论支持和实际应用指导。
本文首先介绍了客车噪声的来源及其对人类健康和生活环境的影响,阐述了客车噪声控制的必要性和紧迫性。
随后,文章重点分析了客车内外噪声控制的关键技术,包括噪声源识别与定位、噪声传播途径的阻断、吸声与隔声材料的应用、主动噪声控制技术等。
在理论分析的基础上,本文还结合具体的工程应用案例,详细阐述了这些关键技术在客车噪声控制中的实际应用及其效果评估。
通过本文的研究,旨在帮助客车制造企业和相关噪声控制领域的研究人员更好地理解和掌握客车内外噪声控制的关键技术,推动这些技术在工程实践中的广泛应用,从而有效提升客车的乘坐舒适性和市场竞争力。
本文的研究也有助于推动交通运输行业的可持续发展,为构建绿色、环保、舒适的出行环境贡献力量。
二、客车噪声源分析客车噪声是一个复杂且多元的问题,其噪声源多种多样,主要可以归结为机械噪声、空气动力噪声和车厢内噪声三类。
首先是机械噪声,它主要由客车的发动机、传动系统、冷却风扇、车轮与轨道接触等产生。
其中,发动机是主要的噪声源,其运转时的振动和冲击会产生强烈的噪声。
传动系统的噪声主要来自于齿轮的啮合和轴承的摩擦。
冷却风扇在高速旋转时,也会产生空气动力噪声。
车轮与轨道的接触噪声则是由于车轮在轨道上的滚动和冲击产生的。
其次是空气动力噪声,它是由客车在行驶过程中,车辆外部的空气流动以及车辆内部的空气流动产生的。
外部空气动力噪声主要来自于车头、车尾和车身侧面的空气流动,而内部空气动力噪声则主要来自于车厢内的空气流动,如空调、通风系统等。
最后是车厢内噪声,它主要由乘客活动、车厢内设备运转等产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1:单极子声源 2:双极子声源 3:四极子声源 4:实际存在的声源 5:壁面( 软、硬) 上的湍流边界层的声源
一、流场中声源的分类
1、单极子声源:可以看做点源,其由纯放射的运动压缩周围的流体,而 成的声源(媒质中流入质量和热量不均匀时形成声源)。如沸腾的开水,水 雷的爆炸,由于排气管很短,而声音在固体中波长远大于排气管长度,可看 成单极子声源。
(1)流场中实际存在的声源为以上各种声源的集合体,由于三维分离 流动在汽车车速范围内(60→350km/h),气流分离点、面位置基本固定在 某特定的小范围内,气动阻力系数变化量很小!广带域音的声源几乎不受 车速变化影响。
(2)改善广带域音的方法可以是减小高速行车时,气流或能量的吸出, (车身局部形成较高负压力区,造成内流的吸出)减小车身缝隙,采用吸 音材料。
气动噪声特征 (广带,三维分离具有音域广的特性)
(1)汽车表面的脉动压力:当汽车高速行驶,车身和周围的空气相对 作用,产生气流分离,涡流,涡流湍流相互作用,形成强大的脉动压力。
(2)汽车表面的脉动压力传递途径: 1)渗漏噪声:通过车身缝隙传播的噪声 2)穿透噪声:脉动压力作用与车身壁面诱发钣金、其他构件振动向
车内辐射的噪声 (3)渗漏噪声分两部分:1)以车身外部脉动流通过密封件形成的质量
流(单极子声源)其在渗漏噪声中占主导作用;2)缝隙气流分离(二维, 三维)产生双极子和四极子声源
对二维流动的干预
在天线上缠绕螺旋线
在天窗上装置合适材料 特性的双层密封条
对三维流动的干预
细节造型设计有助于降低后视镜区域的噪声。在一些轿车后视镜的设计上, 采用了凹槽、凸缘用以影响后视镜尾流,如图
2、进气噪声产生机理
(1)进排气噪声均属于空气动力噪声,由于气体扰动 以及气体和其他物体相互作用而产生的噪声称为空气动力 噪声 。直接向大气辐射的空气动力噪声包括:进气噪声、 排气噪声、冷却风扇噪声。
(2)发动机进气噪声是由进气阀周期性开闭而产生的 压力波动所形成的。
(3)进气噪声主要包括:周期性压力脉动噪声、涡流 噪声、气缸的玄姆霍兹共振噪声和进气管的气柱共振噪声。
2、双极子声源与流场的平均速度6次方成正比
流场:呈振荡状
-
+
声场:两级相反
一、流场中声源的分类
1、四极子声源:可以看做两个相位不同的双极子声源构成了四极子声源, 其距离近但相位相反(媒体没有质量热量注入,由气体的粘性作用产生的辐
射声波)。气流的三维分离的情况可看做双极子声源。在高排气速度下,排
气管声源为4极子声源,高速情况下四极子声源比例大。 -
计算结果-风阻系数
第一轮外后视镜
后视镜表面风阻 Cd=0.01238
第二轮外后视镜
Cd=0.01292
第二轮外后视镜表面的风阻略大于第一轮外后视镜,增加了约4.4%; 通常情况下,整车风阻在0.28~0.32之间,后视镜的增加量0.0006对于整车 风阻而言是个极小的量,可以忽略不计;
16
计算结果-表面宽频噪声分布云图
a U
b
气动噪声特征 (广带,三维分离具有音域广的特性)
流场中实际存在的声源为以上各种声源的集合体,大部分是双极子 和四极子声源的集合体。根据相关研究,总结:汽车气动噪声声源的分 类,产生气动噪声的原因大体上包括三种,即密封不良、二维分离流动 以及三维分离流动,见表
气动噪声特征 (广带,三维分离具有音域广的特性)
第一轮外后视镜
第二轮外后视镜
? 第二轮后视镜外形在靠近车体的一侧圆角更大,使得该处气体流动更为
顺畅,从而减小了后视镜表面的气动噪声;
? 计算第二轮后视镜表面最大宽频噪声;
17
流动迹线
迹线 外后视镜
(1)从迹线分布情况来看,为减小气动噪声,气流流经后视镜的气体从车体 侧面经过,不要再吹向玻璃,再附着在玻璃上。
(2)迹线要求流线明显,反映较低的风阻系数
18
截面速度矢量图
涡流
截面的速度矢量图来看:减小气流的涡流区域,减小气流分离面
19
进气噪声
1、进气系统 发动机是汽车的心脏,而进气系统则是发动机的动脉,也有人将进气系 统比喻为汽车的呼吸系统。进气系统的合理性直接影响发动机的性能、寿命, 从而影响整机的性能、寿命及环保性。 进气系统包含了进气歧管、进气门机构、空气滤清器。 空气滤清器一般由进气导流管、空气滤清器盖、空气滤清器外壳和滤芯 等组成。空气滤清器的功用主要是滤除空气中的杂质或灰尘,让洁净的空气 进入气缸。实践证明,发动机不安装空气滤清器,其寿命将缩短2/3。另外, 空气滤清器也有降低进气噪声的作用。
2、单极子声源与流场的平均速度4次方成正比。
+
流场:呈放射状 声场:在球面上的均匀
一、流场中声源的分类
1、双极子声源:可以看做两个点源,其距离近但相位相反。(流场中有 障碍物,流体和物体产生不稳定的反作用力,双极子为力声源)。气流的准 二维分离的情况可看做双极子声源,如风吹电线,低速风过车身顶盖缝隙等。
2、进气噪声产生机理
(4)进气阀门开启时,活塞由于上止点下行吸气,临近 活塞的气体分子以同样的速度运动,这样在进气管内产生一 个压力脉冲,随着活塞的继续运动,它受到阻尼;当进气门 关闭时,同样产生一个有一定持续时间的压力脉冲,于是产 生了周期性的噪声——脉冲噪声,其噪声频率成分主要 集中在200H以z 下的低频范围。
开口部如车顶天窗,侧窗附近涡流产生频率 和驾驶室空间噪声频率大致相等,产生最大窗漏 噪声,多为车速在40→80km/h开始产生
气动噪声特征 (狭带)
5、振动噪声
f
?
Sr
v D
Sr:斯特劳哈尔数
v:气流流速
D:特征长度
流动通过圆柱时在下流产生规则的涡, 有该涡产生的噪声称为振动噪声,处于 b/a=0.2806稳定状态下的涡称为卡门涡
2、四极子声源与流场的平均速度8次方成正比
+
+
-
流场:呈双振荡状
+
+
声场:两极或四极
气动噪声特征(狭带,特定频率域产生的狭带域音)
1、边缘音
f ? 1 (i ? 0.25) U
4
L
i ? 0,1,2,???
U:流速
L
2、气动噪声特征(狭带)
2、空腔谐振声
f ? 0.6(i ? 0.25)度
i ? 0,1,2,3
L
气动噪声特征(狭带)
3、亥姆霍兹共鸣
f? C
s
2? v(H ? 0.8D)
C:音速
S:断口面积
D:断口直径
V:断口容积
H:断口的长度
气动噪声特征 (狭带)
4、窗漏音
f? C
s
2? v(H ? 0.96 S)
C:音速
S:开口面积
V:驾驶室或车舱容积
H:开口口的长度