函数不等式恒成立问题经典总结
第10讲 恒成立能成立3种常见题型(解析版)

第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!

开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
不等式恒成立问题的十种解法

一、判别式法若能把所给不等式转化为某个一元二次不等式,并且该一元二次不等式是对于一切实数x都恒成立,则可优先考虑判别式法.例l 设不等式,对于一切实数x都恒成立,求实数m的取值范围.解:因为所以原不等式可变为:因为该不等式对一切实数x都成立,必有整理得说明:若所给的区间并非一切实数时,切记不能使用判别式法.二、三角换元法通过适当的三角换元,把所给问题转化为含有的形式,再利用正弦函数的有界性来求出它的最值,从而使问题得到解决.例2 已知实数x、y满足时恒成立,则实数d的取值范围是( ))],则y的最大值为,要使x+y+d≥O恒成立,必须有d大于等于y的最大值,即d≥,故选择答案(A).三、分离参数对于含有参数的不等式,若能把所求的参数分离出来,应优先考虑实行参数分离,然后再在不等式的另一边进行其它变换,如使用均值不等式,或通过函数的单调性来求出它的最值,最后再通过参数与这个最值的关系来使问题得到解决.例3 对于任意恒成立,求实数m的取值范围.四、图象法如果所给不等式能够化为一边是我们熟悉的函数,那么我们可以通过它的图象,结合函数的单调性来求出它在所给区间上的最值,从而使问题得到解决.例4 若关于x的不等式对任意x∈[0,1]恒成立,则m的取值范围是( )(A)m≤一3 (B)m≥一3 (C)一3≤m≤0 (D)m≥一4解:考察函数的图象,当x∈[0,1]时,其函数的值域为y∈[一3,0],若使不等式对任意x∈[0,1]恒成立,则m必须小于等于它的最小值3,即m≤一3,故选择答案(A).五、变更主元法主元的选择要因题而异,在有些问题中一旦克服心理定势,标新立异地另选主元,那么问题的解决就会有峰回路转、柳暗花明的效果.例5 对于任意a∈[一l,1],函数的函数值恒为正数,则实数x的取值范围是( ) (A) (B) (C)分析:由a的取值范围恒成立,可采用分类讨论去寻找 x 的的取值范围,但是这是比较麻烦的,再看a 的取值范围已经知道了,变a为主元,x为参数,反其道而行之.六、几何法含有绝对值的不等式,可利用绝对值的几何意义这一直观使问题加以解决.例6 若不等式恒成立,求实数d的取值范围.解:设由绝对值的几何意义可知,d表示数轴上的点到实数l、4所对应两点距离的和,所以d≥3,要使恒成立,必须有a于等于d的最小值,即a≤3.七、均值不等式法运用均值不等式求出所给代数式的最值,然后再用所给的值与这个最值进行比较.例7 (第l1届希望杯试题)设a>b>c,恒成立,则自然数n的最大值为( ) (A)2 (B)3 (C)4 (D)5八、数学归纳法当不等式中含有自然数凡时,应优先考虑用数学归纳法来探求.由上可得:存在最大的自然数m=13.使不意大于等于2的自然数n都恒成立.九、放缩法把所给不等式进行适当的放缩,从而使问题得到解决.对所有的正整数恒成立.十、二项式定理展开法当不等式中含有所给数的凡次方时,可试着考虑使用二项式定理,通过二项式定理的展开式有选择地选取几项进行放缩,从而使问题得到解决.例l0 求证.对于任意大于等于2的自然数不等式恒成立.。
高中数学丨解题技巧「不等式恒成立」问题的8种解决策略分享

高中数学丨解题技巧「不等式恒成立」问题的8种解决策略分
享
不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.纵观历年高考数学压轴题,无一不是涉及有关不等式恒成立、求参数取值范围的问题。
这类题型意在考查考生的逻辑思维能力、运算求解能力,考察的核心素养是逻辑推理、数学运算考生对于这类问题感到难以寻求问题解决的切入点和突破口.
恒成立与有解问题的解决策略大致分四类:
①构造函数,分类讨论;
②部分分离,化为切线;
③完全分离,函数最值;
④换元分离,简化运算;
这里对这一类问题整理了八种方法解决不等式恒成立问题,同学们可以收藏或打印一份,word打印版在文末获取。
需要打印版的同学可私信关键字“恒成立8种解法”。
来免费领取。
很多时候,我们认为努力是好的,对么?显然不对,努力的方向,如果与你的目标背道而驰,其实就是在做负功清北总结出高中《一体化学习法》课程,
这个方法能够使学生摆脱已经固化的思维方式,直击高中生在高考复习时错误的学习方法、容易忽视的知识点、容易忽视的学习技巧,给出了不同的对策,帮助高考生在备考过程中有效提高成绩。
需要的同学也可通过私信来免费领取。
不等式恒成立问题的大全

不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
本文就结合实例谈谈这类问题的一般求解策略。
一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,数a 的取值围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值围为),31()1,(+∞--∞ 。
若二次不等式中x 的取值围有限制,则可利用根的分布解决问题。
例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,数m 的取值围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值围为)1,3[-。
二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值围; (2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值围. (3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值围.【分析及解】 (1) 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .(2)由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x .∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f . 由04106)(2'=++=x x x g 得321-=-=x x 或, ∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .(3) 若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由(2)可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+,32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤2.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,数a 的取值围。
不等式恒成立问题解题方法汇总(含答案)

不等式恒成立问题解题方法汇总(含答案)不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.例7.若不等式对于恒成立,求的取值范围.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.例10.关于的不等式在上恒成立,求实数的取值范围.答案部分1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为解:(I)(过程略).(II)(过程略)函数的单调减区间为,函数的单调增区间为.(III)由(II)可知,函数在处取得极小值,此极小值也是最小值.要使()恒成立,只需,解得或.所以的取值范围为.评注:最值法是我们这里最常用的方法.恒成立;恒成立.2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.解:(I)(过程略)函数的单调增区间为,的单调减区间为(II)不等式等价于不等式,由于,知;设,则.由(I)知,,即;于是,,即在区间上为减函数.故在上的最小值为.所以的最大值为.评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.解:在同一平面直角坐标系内作出函数与函数在上的图象(如右),从图象中容易知道:当且时,函数的图象恒在函数上方,不合题意;当且时,欲使函数的图象恒在函数下方或部分点重合,就必须满足,即.故所求的的取值范围为.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.解:设,,则原问题转化为恒成立的问题.故应该有,解得或.所以实数的取值范围是.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I)递推式可以化归为,,所以数列是等比数列,可以求得对于任意,.(II)假设对于任意有,取就有解得;下面只要证明当时,就有对任意有由通项公式得当()时,当()时,,可见总有.故的取值范围是评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.解:(i)当时,显然<0成立,此时,(ii)当时,由<0,可得<<,令则>0,∴是单调递增,可知<0,∴是单调递减,可知此时的范围是(—1,3)综合i、ii得:的范围是(—1,3).例7.若不等式对于恒成立,求的取值范围.解:(只考虑与本案有关的一种方法)解:对进行分段讨论,当时,不等式恒成立,所以,此时;当时,不等式就化为,此时的最小值为,所以;当时,不等式就化为,此时的最大值为,所以;由于对上面的三个范围要求同时满足,则所求的的范围应该是上三个的范围的交集即区间说明:这里对变量进行分段来处理,那么所求的对三段的要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.解:设,则,有.这样,,则,函数在为减函数.因此;而(当且仅当时取等号),又,所以的取值范围是.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.解:当时,不等式化为,显然对一切实数恒成立;当时,要使不等式一切实数恒成立,须有,解得.综上可知,所求的实数的取值范围是.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于的不等式在上恒成立,求实数的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵,∴不等式可以化为;下面只要求在时的最小值即可,分段处理如下.当时,,,再令,,它的根为;所以在区间上有,递增,在区间上有,递减,则就有在的最大值是,这样就有,即在区间是递减.同理可以证明在区间是递增;所以,在时的最小值为,即.技巧解:由于,所以,,两个等号成立都是在时;从而有(时取等号),即.评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
函数中不等式恒成立问题

函数中不等式恒成立问题————————————————————————————————作者:————————————————————————————————日期:函数中不等式恒成立问题-中学数学论文函数中不等式恒成立问题瑞昌市第二中学廖谨函数是高中数学课程的主干知识之一,而函数中不等式恒成立问题可以综合地考查函数、导数、不等式等高中数学的重点知识,历来是高考的重点、难点和热点,一般都出现在后面的解答题中,且难度一般较大,致使很多学生都望而却步。
本文针对函数中带不等式问题的常见类型加以归纳,并总结出了各种常见类型问题的基本解题方法及思路。
一、利用二次函数的图象及性质二次函数f(x)=ax2+bx+c(a≠0),当x∈[m,n]时,例1:设f(x)=x2+2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围。
解:因为f(x)≥a要恒成立,即f(x)≥a在[-1,+∞)上的最小值都大于或等于a,根据题意知,a≤x2-2ax+2在[-1,+∞)上恒成立,即a≤f(x)min 恒成立.由二次函数的性质知:①当a<-1时,f(x)min=f(-1)=1+2a+2=3+2a;即-3≤a≤-1②当a≥-1时,f(x)min=f(a)=2-a2,即-1≤a≤1所以a的取值范围是-3≤a≤1归纳总结:有关二次函数中的“恒成立”问题,经常采用转化的方法,将其转化为求函数的最值问题进行解决,然后利用二次函数的图象及性质求出它的最值,从而得到所求参数的取值范围,这种方法非常重要,需要在平时学习函数的时候多练习、多体会。
二、利用导数及函数的单调性已知函数f(x),其导函数为f′(x),若在区间I上有f′(x)>0(f′(x)<0),则f(x)在区间I上为增(减)函数.然后利用函数的单调性可以求出f(x)在区间I上的最大(小)值,最终求出相关参数的范围。
利用函数的导数及函数的单调性解决不等式中恒成立问题,主要有以下几种常见类型:类型1:f(x)≥g(a)恒成立等价于f(x)min≥g(a)恒成立;f(x)≤g(a)恒成立等价于f(x)min≤g(a)恒成立。
高三专题复习不等式恒成立问题

高三数学 第一讲 不等式恒成立问题在近些年的数学高考题及高考模拟题中经常出现不等式恒成立问题,此类问题一般综合性强,既含参数又含变量,往往与函数、数列、方程、几何等有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点.高考往往通过此类问题考查学生分析问题、解决问题、综合驾驭知识的能力。
此类问题常见解法:一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.例2:在R 上定义运算⊗:x ⊗y =x(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D) 3122a -<< 例3:若不等式x 2-2mx+2m+1>0对满足0≤x ≤1的所有实数x 都成立,求m 的取值范围。
二、分离参数法在题目中分离出参数,化成a>f(x) (a<f(x))型恒成立问题,再利用a>f max (x) (a<f min (x))求出参数范围。
例4.(2012•杭州一模)不等式x 2﹣3>ax ﹣a 对一切3≤x ≤4恒成立,则实数a 的取值范围是 .例5:设a 0为常数,数列{a n }的通项公式为a n =51[3n +(-1)n-1·2n ]+(-1)n ·2n ·a 0(n ∈N * )若对任意n ≥1,n ∈N *,不等式a n >a n-1恒成立,求a 0的取值范围。
例6.(2012•安徽模拟)若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 . 例7.(2011•深圳二模)如果对于任意的正实数x ,不等式恒成立,则a 的取值范围是 .例8.(2013•闵行区一模)已知不等式|x ﹣a|>x ﹣1对任意x ∈[0,2]恒成立,则实数a 的取值范围是 .三、数型结合法例9:如果对任意实数x ,不等式kx 1x ≥+恒成立,则实数k 的取值范围是例10:已知a>0且a ≠1,当x ∈(-1,1)时,不等式x 2-a x <21恒成立,则a 的取值范围 例11、 已知函数若不等式恒成立,则实数的取值范围是 .例12、(2009•上海)当时,不等式sin πx ≥kx 恒成立.则实数k 的取值范围是 .例13、若不等式log a x >sin2x (a >0,a ≠1)对任意都成立,则a 的取值范围是( )A .B .C .D . (0,1)四、利用函数的最值(或值域)求解(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数、不等式恒成立问题解法(老师用)恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f (给定某个区间上恒成立)(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切 αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。
二、利用一元二次函数的判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。
(1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。
三、利用函数的最值(或值域)(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。
简单计作:“大的大于最大的,小的小于最小的”。
由此看出,本类问题实质上是一类求函数的最值问题。
例3:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B BB B f 且π恒成立,求实数m 的范围。
解析:由]1,0(sin ,0,1sin 22cos )24(sin sin 4)(2∈∴<<+=++=B B B B BB B f ππΘ,]3,1()(∈B f ,2|)(|<-m B f Θ恒成立,2)(2<-<-∴m B f ,即⎩⎨⎧+<->2)(2)(B f m B f m 恒成立,]3,1(∈∴m 例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。
解析:由于函]43,4[4),4sin(2cos sin ππππ-∈--=->x x x x a ,显然函数有最大值2,2>∴a 。
如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2,0(4,cos sin ππ∈-->x x x a 恒成立的实数a 的范围。
解析:我们首先要认真对比上面两个例题的区别,主要在于自变量的取值范围的变化,这样使得x x y cos sin -=的最大值取不到2,即a 取2也满足条件,所以2≥a 。
所以,我们对这类题要注意看看函数能否取得最值,因为这直接关系到最后所求参数a 的取值。
利用这种方法时,一般要求把参数单独放在一侧,所以也叫分离参数法。
四:数形结合法对一些不能把数放在一侧的,可以利用对应函数的图象法求解。
例5:已知恒成立有时当21)(,)1,1(,)(,1,02<-∈-=≠>x f x a x x f a a x,求实数a 的取值范围。
解析:由x xa x a x x f <-<-=2121)(22,得,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由12221)1(211-=--=-a a 及得到a 分别等于2和0.5,并作出函数x x y y )21(2==及的图象,所以,要想使函数x a x <-212在区间)1,1(-∈x 中恒成立,只须x y 2=在区间)1,1(-∈x 对应的图象在212-=x y 在区间)1,1(-∈x 对应图象的上面即可。
当2,1≤>a a 只有时才能保证,而2110≥<<a a 时,只有才可以,所以]2,1()1,21[Y ∈a 。
例6:若当P(m,n)为圆1)1(22=-+y x 上任意一点时,不等式0≥++c n m 恒成立,则c 的取值范围是( ) A 、1221-≤≤--c B 、1212+≤≤-cC 、12--≤cD 、12-≥c解析:由0≥++c n m ,可以看作是点P(m,n)在直线0=++c y x 的右侧,而点P(m,n)在圆1)1(22=-+y x 上,实质相当于是1)1(22=-+y x 在直线的右侧并与它相离或相切。
12111|10|01022-≥∴⎪⎩⎪⎨⎧≥+++>++∴c c c ,故选D 。
同步练习1、设124()lg ,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
分析:如果(.1)x ∈-∞时,()f x 恒有意义,则可转化为1240x x a ++>恒成立,即参数分离后212(22)4xx x x a --+>-=-+,(.1)x ∈-∞恒成立,接下来可转化为二次函数区间最值求解。
解:如果(.1)x ∈-∞时,()f x 恒有意义1240x x a ⇔++>,对(,1)x ∈-∞恒成立.212(22)4xx x x a --+⇔>-=-+(.1)x ∈-∞恒成立。
令2x t -=,2()()g t t t =-+又(.1)x ∈-∞则1(,)2t ∈+∞()a g t ∴>对1(,)2t ∈+∞恒成立,又()g t Q 在1[,)2t ∈+∞上为减函数,max 13()()24t g ==-g ,34a ∴≥-。
2、设函数是定义在(,)-∞+∞上的增函数,如果不等式2(1)(2)f ax x f a --<-对于任意[0,1]x ∈恒成立,求实数a 的取值范围。
分析:本题可利用函数的单调性把原不等式问题转化为212ax x a --<-对于任意[0,1]x ∈恒成立,从而转化为二次函数区间最值求解。
解:()f x Q 是增函数2(1)(2)f ax x f a ∴--<-对于任意[0,1]x ∈恒成立212ax x a ⇔--<-对于任意[0,1]x ∈恒成立210x ax a ⇔++->对于任意[0,1]x ∈恒成立,令2()1g x x ax a =++-,[0,1]x ∈,所以原问题min ()0g x ⇔>,又min(0),0()(),2022,2g a a g x g a a >⎧⎪⎪=--≤≤⎨⎪ <-⎪⎩即2min 1,0()1,2042,2a a ag x a a a - >⎧⎪⎪=--+-≤≤⎨⎪ <-⎪⎩ 易求得1a <。
3、 已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。
方法一)分析:在不等式中含有两个变量a 及x ,本题必须由x 的范围(x ∈R )来求另一变量a 的范围,故可考虑将a 及x 分离构造函数利用函数定义域上的最值求解a 的取值范围。
解:原不等式4sinx+cos2x<-a+5⇔当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立max -a+5>(4sinx+cos2x)⇔ 设f(x)=4sinx+cos2x 则22f(x)= 4sinx+cos2x=-2sin x+4sinx+1=-2(sinx-1)+3 3≤ ∴-a+5>3a<2∴方法二)题目中出现了sinx 及cos2x ,而cos2x=1-2sin 2x,故若采用换元法把sinx 换元成t,则可把原不等式转化成关于t 的二次不等式,从而可利用二次函数区间最值求解。
解:不等式a+cos2x<5-4sinx 可化为a+1-2sin 2x<5-4sinx,令sinx=t,则t ∈[-1,1],∴不等式a+cos2x<5-4sinx 恒成立⇔2t 2-4t+4-a>0,t ∈[-1,1]恒成立。
设f(t)= 2t 2-4t+4-a ,显然f(x)在[-1,1]内单调递减,f(t)min =f(1)=2-a,∴2-a>0∴a<24、 设f(x)=x 2-2ax+2,当x ∈[-1,+∞)时,都有f(x)≥a 恒成立,求a 的取值范围。
分析:在f(x)≥a 不等式中,若把a 移到等号的左边,则原问题可转化为二次函数区间恒成立问题。