高中数学----平面几何之直线与圆习题精解

合集下载

2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系(附答案解析)

2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系(附答案解析)

2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【考点梳理】考点一:直线Ax +By +C =0与圆(x -a )2+(y -b )2=r 2的位置关系位置关系相交相切相离公共点个数2个1个0个判断方法几何法:设圆心到直线的距离为d =|Aa +Bb +C |A 2+B 2d <r d =r d >r代数法:由Ax +By +C =0,(x -a )2+(y -b )2=r 2,消元得到一元二次方程,可得方程的判别式ΔΔ>0Δ=0Δ<0考点二:直线与圆的方程解决实际问题审题→建立数学模型→解答数学模型→检验,给出实际问题的答案.【题型归纳】题型一:判断直线与圆的位置关系1.(2021·全国高二单元测试)直线10mx y -+=与圆22(2)(1)5x y -+-=的位置关系是()A .相交B .相切C .相离D .与m 的值有关2.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是()A .相交B .相切C .相离D .与a 的大小有关3.(2021·北京房山·高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为()A .相交B .相切C .相离D .不能确定题型二:由直线与圆的位置关系求参数4.(2021·云南省云天化中学高二期末(文))直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =()A .1-B .1C .3-D .35.(2021·内蒙古赤峰市·)若直线()200,0ax by a b --=>>被圆22 2210x y x y +-++=截得的弦长为2,则11a b+的最小值为()A .14B .4C .12D .26.(2020·大连市红旗高级中学)若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是()A .相交B .相切C .相离D .不确定题型三:圆的弦长问题7.(2021·汕头市澄海中学高二月考)若圆22:160C x x y m +++=被直线3440x y ++=截得的弦长为6,则m =()A .26B .31C .39D .438.(2021·湖南长沙市·长郡中学高二期中)圆22:(2)4C x y -+=与直线40x y --=相交所得弦长为()A .1B .2C .2D .229.(2021·湖北十堰市·高二期末)直线3410x y ++=被圆220x y x y +-+=所截得的弦长为()A .710B .57C .75D .145题型四:圆的弦长求参数或者切线方程10.(2021·上海闵行中学高二期末)圆()()22134x y -+-=截直线10ax y +-=所得的弦长为23,则a =()A .43-B .34-C .3D .211.(2021·广西河池市·高二期末(文))已知斜率为1-的直线l 被圆C :222430x y x y ++-+=截得的弦长为6,则直线l 的方程为()A .2210x y ++=或2230x y +-=B .0x y +=或20x y +-=C .2220x y +-=或22320x y ++=D .20x y +-=或220x y ++=12.(2021·长春市第二十九中学高二期末(理))直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是()A .9B .4C .12D .14题型五:直线与圆的应用13.(2021·广东深圳市·高三月考)一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度最接近()A .13.1米B .13.7米C .13.2米D .13.6米14.(2021·渝中区·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A .230米B .202米C .430米D .125米15.(2020·重庆市万州沙河中学高二月考)一艘海监船上配有雷达,其监测范围是半径为26km 的圆形区域,一艘外籍轮船从位于海监船正东40km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10km/h 这艘外籍轮船能被海监船监测到且持续时间长约为()小时A .1B .2C .3D .4题型六:直线与圆的位置关系的综合应用16.(2021·贵州遵义市·高二期末(理))已知O 圆心在直线2y x =+上,且过点()1,0A 、()2,1B .(1)求O 的标准方程;(2)已知过点()3,1的直线l 被所截得的弦长为4,求直线l 的方程.17.(2020·永丰县永丰中学高二期中(文))已知圆C 经过点()()1,0,2,1A B ,且圆心在直线:l y x =上.(1)求圆C 的方程;(2)若(,)P x y 为圆C 上的动点,求22y x +-的取值范围.18.(2020·黑龙江哈尔滨·哈九中高二期中(文))已知线段AB 的端点B 的坐标是()6,8,端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点()1,0.(1)求点M 的轨迹方程;(2)记(1)中求得的图形的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,P Q 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【双基达标】一、单选题19.(2021·嘉兴市第五高级中学高二期中)直线:1l y x =-截圆22:1O x y +=所得的弦长是()A .2B .3C .2D .120.(2021·陆良县中枢镇第二中学高二月考)经过点()2,3P -作圆22:224C x y x ++=的弦AB ,使得点P 平分弦AB ,则弦AB 所在直线的方程为()A .50x y --=B .50x y +-=C .50x y -+=D .50x y ++=21.(2021·云南保山市·高二期末(文))若直线m :0kx y +=被圆()2224x y -+=所截得的弦长为2,则点()0,23A 与直线m 上任意一点P 的距离的最小值为()A .1B .3C .2D .2322.(2021·四川省乐至中学高二期末)圆222410x y x y ++-+=关于直线220ax by -+=(),a b R ∈对称,则ab 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .10,4⎛⎤⎥⎝⎦C .1,04⎛⎤- ⎥⎝⎦D .1,4⎛⎫-∞ ⎪⎝⎭23.(2021·全国高二专题练习)直线3y kx =+与圆()()22324x y -+-=相交于M ,N 两点,若23MN =,则k 的值是()A .34-B .0C .0或34-D .3424.(2021·广西桂林市·(理))圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有()A .1个B .2个C .3个D .0个25.(2021·全国)已知圆C 的方程为22(3)(4)1x y -+-=,过直线:350l x ay +-=上任意一点作圆C 的切线.若切线长的最小值为15,则直线l 的斜率为()A .4B .-4C .34-D .43-26.(2021·全国高二期中)在平面直角坐标系中,动圆222:(1)(1)C x y r -+-=与直线1(2)()y m x m R +=-∈相切,则面积最大的圆的标准方程为()A .22(1)(1)4x y -+-=B .22(1)(1)5x y -+-=C .22(1)(1)6x y -+-=D .22(1)(1)8x y -+-=27.(2021·山西晋中·高二期末(理))已知圆22:20C x y x +-=,直线:10l x y ++=,P 为l 上的动点,过点P 作圆C 的两条切线PA 、PB ,切点分别A 、B ,当·PC AB 最小时,直线AB 的方程为()A .0x y +=B .0x y -=C .2210x y -+=D .2210x y ++=28.(2021·克拉玛依市第一中学高二月考)已知圆22:4210C x y x y +--+=及直线():2l y kx k k R =-+∈,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为()A .42B .22C .8D .82【高分突破】一:单选题29.(2021·全国高二专题练习)已知圆()()22224244100x y mx m y m m m +--++++=≠的圆心在直线70x y +-=上,则该圆的面积为()A .4πB .2πC .πD .2π30.(2021·南昌市豫章中学(文))若圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,则实数a 的取值范围是()A .2921,44⎡⎤-⎢⎥⎣⎦B .91,44⎡⎤-⎢⎥⎣⎦C .91,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭D .2921,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭31.(2021·浙江丽水·高二期中)已知圆22:1O x y +=,直线:20l x y ++=,点P 为l 上一动点,过点P 作圆O 的切线PA ,PB (切点为A ,B ),当四边形PAOB 的面积最小时,直线AB的方程为()A .10x y -+=B .20x y -+=C .10x y ++=D .20x y +-=32.(2021·云南师大附中(理))已知在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,则r =()A .23B .26C .42D .833.(2021·四川(理))已知圆221x y +=与直线310ax by ++=(a ,b 为非零实数)相切,则2213a b+的最小值为()A .10B .12C .13D .1634.(2021·黑龙江哈尔滨市·哈尔滨三中高二其他模拟(理))若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .3,3⎡⎤-⎣⎦B .()3,3-C .33,33⎡⎤-⎢⎥⎣⎦D .33,33⎛⎫- ⎪ ⎪⎝⎭35.(2021·全国高二专题练习)已知三条直线1:0l mx ny +=,2:30l nx my m n -+-=,3:0l ax by c ++=,其中m ,n ,a ,b ,c 为实数,m ,n 不同时为零,a ,b ,c 不同时为零,且2a c b +=.设直线1l ,2l 交于点P ,则点P 到直线3l 的距离的最大值是()A .52102+B .105822+C .58102+D .105222+二、多选题36.(2021·全国高二专题练习)已知直线:20l kx y k -+=和圆22:16O x y +=,则()A .直线l 恒过定点()2,0B .存在k 使得直线l 与直线0:220l x y -+=垂直C .直线l 与圆O 相交D .若1k =-,直线l 被圆O 截得的弦长为437.(2020·河北武强中学高二月考)直线l 经过点()5,5P ,且与圆22:25C x y +=相交,截得弦长为45,则直线l 的方程为()A .250x y --=B .250x y -+=C .250x y -+=D .250x y --=38.(2021·全国高二专题练习)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为()A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为322D .l 被C 截得的最短弦长为439.(2021·山东菏泽·高二期末)已知直线:(2)10l mx m y m --+-=,圆22:20C x y x +-=,则下列结论正确的是()A .直线l 与圆C 恒有两个公共点B .圆心C 到直线l 的最大距离是2C .存在一个m 值,使直线l 经过圆心CD .当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称三、填空题40.(2021·合肥百花中学高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于,A B 两点,则AB =__________.41.(2021·绵阳市·四川省绵阳江油中学(文))已知点(),x y 在圆22(2)(3)1x y -++=上,则x y +的最大值是________.42.(2021·上海高二期中)在平面直角坐标系中,过点()2,2M 且与圆2220x y x +-=相切的直线方程为__________.43.(2021·江苏南京市·南京一中高二期末)已知直线1l :()0kx y k R +=∈与直线2l :220x ky k -+-=相交于点A ,点B 是圆()()22232x y +++=上的动点,则AB 的最大值为___________.四、解答题44.(2021·合肥百花中学高二期末(理))已知圆22:20C x y x my +-+=,其圆心C 在直线y x =上.(1)求m 的值;(2)若过点(1,1)-的直线l 与圆C 相切,求直线l 的方程.45.(2021·荆州市沙市第五中学高二期中)已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程.46.(2021·台州市书生中学高二期中)已知圆()22:15C x y +-=,直线:10l mx y m -+-=.(1)求证:对m R ∈,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交与不同两点,A B ,求弦AB 的中点M 的轨迹方程;(3)若直线过点()1,1P ,且P 点分弦AB 为12AP PB =,求此时直线l 的方程.47.(2020·安徽六安市·立人中学高二期中(理))已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交;(3)求直线l 被圆C 截得的弦长的取值范围.48.(2020·吉安县立中学(文))已知两个定点(0,4)A ,(0,1)B ,动点P 满足||2||PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【答案详解】1.A 【详解】10mx y -+=过定点()0,1,且()22(214501)+-=<-,故()0,1在圆内,故直线和圆相交.故选:A 2.A 【详解】直线l :1=-+y ax a ,即()11y a x =-+恒过()1,1,而221124+=<,故()1,1点在圆内,故直线与圆必然相交.故选:A .3.A 【详解】直线方程整理为(1)10k x y --+=,即直线过定点(1,1)P ,而22114120+-⨯=-<,P 在圆C 内,∴直线l 与圆C 相交.故选:A .4.B 【详解】由22240x y x y ++-=,得22(1)(2)5x y ++-=,则圆心坐标为(12)-,,又直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,由圆的对称性可知,该圆的圆心(12)-,在直线30x y a ++=上,则3(1)121a =-⨯--⨯=,故选:B .5.D 【详解】由圆的方程22 2210x y x y +-++=,可得圆心坐标为(1,1)-,半径为1r =,因为直线20ax by --=被圆截得的弦长为2,可直线20ax by --=必过圆心(1,1)-,代入可得2a b +=,又因为0,0a b >>,则1111111()()(2)(22)2222b a b aa b a b a b a b a b+=⋅++=⋅++≥⋅+⋅=,当且仅当b aab=时,即1a b ==时,等号成立,所以11a b+的最小值为2.故选:D.6.A 【详解】由圆C 方程知其圆心()2,1C ,半径为2,直线l 与圆C 相切,221121k k --∴=+,解得:23k =±,由圆D 方程知其圆心()2,0D ,半径3r =,∴圆心D 到直线l 距离2211k d k -=+;当23k =+时,()()2222323330843231d r +-=-=-<+++,即d r <,此时圆D 与直线l 相交;当23k =-时,()()2222323330843231d r --=-=-<--+,即d r <,此时圆D 与直线l 相交;综上所述:圆D 与直线l 相交.故选:A.7.C 【详解】将圆化为22(8)64(64)x y m m ++=-<,所以圆心到直线3440x y ++=的距离d =24445-+=,该距离与弦长的一半及半径组成直角三角形,所以224364m +=-,解得39.m =8.D 【详解】圆22:(2)4C x y -+=的圆心坐标为()20,,半径为2,圆心到直线40x y --=的距离为204211d --==+,故弦长为:24222-=,故选:D.9.C 【详解】由220x y x y +-+=可得22111222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则圆心坐标为11,22⎛⎫- ⎪⎝⎭,半径22r =,所以圆心到直线3410x y ++=的距离为22113412211034d ⎛⎫⨯+⨯-+ ⎪⎝⎭==+,所以所求弦长为22725r d -=.故选:C.10.B 【详解】由题意圆心到直线的距离为()()2222222222232241111a a a d r d a a a a +++=∴=-=-∴=∴=+++34-故选:B 11.B 【详解】圆C 的标准方程为22(1)(2)2x y ++-=,设直线l 的方程为0x y m ++=,可知圆心到直线l 的距离为2262(2)22⎛⎫-= ⎪ ⎪⎝⎭,有|1|222m +=,有0m =或2-,直线l 的方程为0x y +=或20x y +-=.故选:B【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=,故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D.13.C 【详解】如图建立平面直角坐标系,则圆心在y 轴上,设圆的半径为r ,则圆的方程为222(+)x y r r +=,∵拱顶离水面3米,水面宽12米,∴圆过点(6,3)-,∴2236(3+)r r +-=,∴152r =∴圆的方程为2215225(+)24x y +=,当水面下降1米后,可设水面的端点坐标为(,4)t -,则244t =,∴211t =±,∴当水面下降1米后,水面宽度为411,约为13.2,故选:C.14.C 【详解】以圆拱桥的顶点为坐标原点,建立如图所示的平面直角坐标系,则圆拱所在圆的圆心位于y 轴负半轴上,设该圆的圆心为()0,a -,0a >,则该圆的方程为()222x y a a ++=,记水面下降前与圆的两交点为A ,B ;记水面下降1米后与圆的两交点为C ,D ;由题意可得,()10,4A --,则()()222104a a -+-+=,解得292a =,所以圆的方程为222292922x y ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,水面位下降1米后,可知C 点纵坐标为5y =-,所以2222929522x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,解得2120x =,则此时的桥在水面的跨度为22120430CD x ===米.故选:C.15.B根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴,所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束,所以:14030AB x y l +=,即:341200AB l x y +-=,因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时,故选:B.16.(1)()2225x y +-=;(2)1y =或34130x y +-=.由点()1,0A 、()2,1B 可得AB 中点坐标为31,22⎛⎫⎪⎝⎭,10121AB k -==-,所以直线AB 的垂直平分线的斜率为1-,可得直线AB 的垂直平分线的方程为:1322y x ⎛⎫-=-- ⎪⎝⎭即20x y +-=,由202x y y x +-=⎧⎨=+⎩可得:02x y =⎧⎨=⎩,所以圆心为()0,2O ,()()2210025r OA ==-+-=,所以O 的标准方程为()2225x y +-=,(2)设直线的方程为()13y k x -=-即310kx y k --+=,圆心()0,2O 到直线的距离2131k d k --=+,则()2222134521k k ⎛⎫--⎛⎫=- ⎪ ⎪⎝⎭+⎝⎭可得()222135211k k +=-=+,即2430k k +=,解得:0k =或34k =-,所以直线l 的方程为10y -=或()3134y x -=--,即1y =或34130x y +-=17.(1)22(1)(1)1x y -+-=;(2)4,3⎛⎤-∞- ⎥⎝⎦.【详解】(1)设所求圆的方程为222()()x a y b r -+-=由题意得222222(1)(0)(2)(1)a b r a b r b a ⎧-+-=⎪-+-=⎨⎪=⎩,解得1a b r ===所以,圆的方程为22(1)(1)1x y -+-=(2)由(1)得()()22111x y -+-=,则圆心为()1,1,半径为1;而22y x +-表示圆上的点(,)P x y 与定点()2,2M -连线的斜率,当过点()2,2M -的直线与圆相切时,不妨设直线方程为:()22y k x +=-,即220kx y k ---=,则圆心()1,1到直线220kx y k ---=的距离为212211k k k ---=+,解得43k =-,因此22y x +-的取值范围是4,3⎛⎤-∞- ⎥⎝⎦;18.【详解】(1)设(),M x y ,()00,A x y ,M 是线段AB 中点,006282x x y y+⎧=⎪⎪∴⎨+⎪=⎪⎩,整理可得:002628x x y y =-⎧⎨=-⎩,A 在圆2216x y +=上,()()22262816x y ∴-+-=,整理可得M 点轨迹方程为:()()22344x y -+-=.(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离23421k k d k --==+,解得:34k =,:3430l x y ∴--=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于,P Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离22342411k k k d k k ---==++,()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.19.C圆心(0,0)到直线10x y --=的距离|1|122d -==,因为圆的半径为1,则弦长为2212122⎛⎫-= ⎪⎝⎭.故选:C.20.A 【详解】由题意,圆22:224C x y x ++=,可得圆心坐标为(1,0)C -,点()2,3P -在圆C 内,则过点P 且被点P 平分的弦所在的直线和圆心与P 的连线垂直,又由3012(1)CP k --==---,所以所求直线的斜率为1,且过点()2,3P -,可得所求直线方程为(3)1(2)y x --=-⨯-,即50x y --=.故选:A 21.B 【详解】根据题意,圆()2224x y -+=的圆心为()2,0,半径为2,设圆心到直线0kx y +=的距离为d ,则221k d k =+,若直线0kx y +=被圆()2224x y -+=所截得的弦长为2,则2222r d =-,所以214d +=,又0d >,解得3d =,所以2321k d k==+,解得3k =±,点()0,23A 与直线m 上任意一点P 的最小值为点到直线的距离122331d k ==+,故选:B .22.A 【详解】解:把圆的方程化为标准方程得:22(1)(2)4x y ++-=,∴圆心坐标为(1,2)-,半径2r =,根据题意可知:圆心在已知直线220ax by -+=上,把圆心坐标代入直线方程得:2220a b --+=,即1b a =-,则设2211(1)24m ab a a a a a ⎛⎫==-=-+=--+ ⎪⎝⎭,∴当12a =时,m 有最大值,最大值为14,即ab 的最大值为14,则ab 的取值范围是(-∞,1]4.故选:A .23.C由题意,知23MN =,圆心为(3,2).设圆的半径为r ,则2r =,所以圆心到直线的距离224312MN d r ⎛⎫=-=-= ⎪⎝⎭.由点到直线的距高公式,得232311k k -+=+,解得0k =或34k =-.故选:C.24.B 【详解】由222420x x y y -+++=,得22(1)(2)3x y -++=,则圆心为(1,2)-,半径3r =,因为圆心(1,2)-到直线2220x y -+=的距离为22222243381d +++==>+,且2242243333133d ++--=-=<,所以圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有2个,故选:B25.C 【详解】解:由22(3)(4)1x y -+-=,得圆心(3,4)C ,过直线:350l x ay +-=上任意一点作圆C 的切线,要使切线长最小,即要使圆心到直线l 的距离最小,根据题意作图,如图所示:圆的半径为1,切线长为15,∴圆心到直线l 的距离等于221(15)4+=,∴由点到直线的距离公式得2|3345|49a a ⨯+-=+,解得4a =,此时直线l 的斜率为34-.故选:C .26.B 【详解】解:根据题意,直线1(2)y m x +=-,恒过定点(2,1)-,动圆222:(1)(1)C x y r -+-=,其圆心为(1,1),半径为r ,若圆的面积最大,即圆心到直线l 的距离最大,且其最大值22(12)(11)5CP =-++=,即圆的面积最大时,圆的半径5r =,此时圆的方程为:22(1)(1)5x y -+-=,故选:B .27.A 【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0,半径为1r =.依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC ,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△,而21PA PC =-,当直线PC ⊥l 时,PA 最小,此时PC AB ⋅最小.结合图象可知,此时切点为()()0,0,1,1-,所以直线AB 的方程为y x =-,即0x y +=.故选:A28.A 【详解】将圆C 方程整理为:()()22214x y -+-=,则圆心()2,1C ,半径2r =;将直线l 方程整理为:()12y k x =-+,则直线l 恒过定点()1,2,且()1,2在圆C 内;最长弦MN 为过()1,2的圆的直径,则4MN =;最短弦PQ 为过()1,2,且与最长弦MN 垂直的弦,21112MN k -==-- ,1PQ k ∴=,∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ 的距离为21122-+==d ,22224222PQ r d ∴=-=-=;∴四边形PMQN 的面积114224222S MN PQ =⋅=⨯⨯=.故选:A.29.A 【详解】圆的方程可化为()()()222210x m y m m m -+--=≠,其圆心为(),21m m +.依题意得,2170m m ++-=,解得2m =,∴圆的半径为2,面积为4π,故选:A 30.A 【详解】解:将圆的方程化为标准形式得圆()()22216x a y -++=,所以圆心坐标为(),2a -,半径为4r =因为圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,所以圆心到直线的距离d 满足15d r ≤+=,即4455a d +=≤,解得:2921,44a ⎡⎤∈-⎢⎥⎣⎦故选:A31.C 【详解】设四边形PAOB 的面积为S ,2||||||PAO S S AO AP AP === ,222||||||||1AP OP OA OP =-=-,所以,当||OP 最小时,||AP 就最小,|002|||22min o l OP d -++===,所以||211min min S AP ==-=.此时OP l ⊥.所以||||||||1OA AP PB OB ====,四边形PAOB 是正方形,由题得直线OP 的方程为y x =,联立20y x x y =⎧⎨++=⎩得(1,1)--P ,所以线段OP 的中点坐标为11(,)22--,由题得直线AB 的斜率为1,-所以直线AB 的方程为11()[()]22y x --=---,化简得直线AB 的方程为10x y ++=.故选:C 32.C 【详解】解:因为圆()2222x y r ++=的圆心为()2,0-,半径为r ,圆心()2,0-到直线40x y +-=的距离22432d --==,因为在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,所以32242r =+=.故选:C .33.D 【详解】因为圆221x y +=与直线310ax by ++=相切,所以2200113a b++=+,所以2231a b +=,所以()2222222222222213133310616310a b a b a b ab b a b b a a ⎛⎫+=+=++≥+⋅= ⎪⎭+⎝,取等号时2214a b ==,所以2213a b +的最小值为16.故选:D.34.C 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-=曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,2233411k kk-+-∴≤+,即221k k -≤+,解得3333k -≤≤.故选:C.35.D 【详解】由于1:0l mx ny +=,2:30l nx my m n -+-=,且()0mn n m +⋅-=,12l l ∴⊥,易知直线1l 过原点,将直线2l 的方程化为()()130n x m y ---=,由1030x y -=⎧⎨-=⎩,解得13x y =⎧⎨=⎩,所以,直线2l 过定点()1,3M ,所以10OM =,因为2a c b +=,则2a cb +=,直线3l 的方程为02a c ax y c +++=,直线3l 的方程可化为1022y y a x c ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,由02102y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12x y =⎧⎨=-⎩,所以,直线3l 过定点()1,2N -,如下图所示:设线段OM 的中点为点E ,则13,22E ⎛⎫⎪⎝⎭,若点P 不与O 或M 重合,由于OP PM ⊥,由直角三角形的性质可得EP EO EM ==;若点P 与O 或M 重合,满足12l l ⊥.由上可知,点P 的轨迹是以OM 为直径的圆E ,该圆圆心为13,22E ⎛⎫ ⎪⎝⎭,半径为102.设点E 到直线3l 的距离为d ,当3EN l ⊥时,d EN =;当EN 不与3l 垂直时,d EN <.综上,22135212222d EN ⎛⎫⎛⎫≤=-+--=⎪ ⎪⎝⎭⎝⎭.所以,点P 到直线3l 的距离的最大值为521022OM EN ++=.故选:D.36.BC 【详解】解:对于A 、C ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,所以直线l 恒过定点(2,0)-,故A 错误;因为直线l 恒过定点(2,0)-,而()2220416-+=<,即(2,0)-在圆22:16O x y +=内,所以直线l 与圆O 相交,故C 正确;对于B ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故B 正确;对于D ,1k =-时,直线:20l x y ++=,圆心到直线的距离为22002211d ++==+,所以直线l 被圆O 截得的弦长为()22222242214r d -=-=,故D 错误.故选:BC.37.BD 【详解】圆心为原点,半径为5,依题意可知直线l 的斜率存在,设直线l 的方程为()55y k x -=-,即550kx y k -+-=,所以()2225552521k k k -=-⇒=+或12k =.所以直线l 的方程为25520x y -+-⨯=或1155022x y -+-⨯=,即250x y --=或250x y -+=.故选:BD38.BD 【详解】对于A 选项,直线l 过定点()0,1,且点()0,1在圆C 内,则直线l 与圆C 必相交,A 选项错误;对于B 选项,若直线l 将圆C 平分,则直线l 过原点,此时直线l 的斜率不存在,B 选项正确;对于C 选项,当1k =时,直线l 的方程为10x y -+=,圆心C 到直线l 的距离为22d =,所以,直线l 被C 截得的弦长为2225322⎛⎫-= ⎪ ⎪⎝⎭,C 选项错误;对于D 选项,圆心C 到直线l 的距离为2111d k =≤+,所以,直线l 被C 截得的弦长为2254d -≥,D 选项正确.故选:BD.39.AD 【详解】解:由直线:(2)10l mx m y m --+-=,即(1)210m x y y +--+=,得10210x y y +-=⎧⎨-+=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,则直线l 过定点1(2P ,1)2,圆22:20C x y x +-=化为22(1)1x y -+=,圆心坐标为(1,0)C ,22112||(1)(0)1222PC =-+-=< ,点P 在圆C 内部,∴直线l 与圆C 恒有两个公共点,故A正确;圆心C 到直线l 的最大距离为2||2PC =,故B 错误; 直线系方程(2)10mx m y m --+-=不包含直线10x y +-=(无论m 取何值),而经过1(2P ,1)2的直线只有10x y +-=过(1,0)C ,故C 错误;当1m =时,直线l 为0x y -=,圆C 的圆心坐标为(1,0),半径为1,圆22(1)1y x +-=的圆心坐标为(0,1),半径为1,两圆的圆心关于直线0x y -=对称,半径相等,则当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称,故D 正确.故选:AD .40.22【详解】圆22(1)4x y ++=的圆心为()0,1-,半径为2,则圆心()0,1-到直线的距离为()22011211++=+-,所以()2222222AB =-=,故答案为:2241.21-【详解】令t x y =+,则y x t =-+,t 表示直线在y 轴上的截距,所以x y +的最大值是直线在y 轴上截距的最大值,此时直线与圆相切,则圆心到直线的距离等于半径,即2312td --==,解得21t =-.故答案为:21-42.x =2或3420x y +=-.【详解】圆2220x y x +-=的标准式为:()2211x y -+=,容易验证x =2与圆相切,若切线的斜率存在,则设其方程为:()22220y k x kx y k -=-⇒-+-=,于是圆心到直线的距离2|2|3141k d k k -+==⇒=+,则切线:310342042x y x y -+=⇒-+=.故答案为:x =2或3420x y +=-.43.522+解:因为直线1l :()0kx y k R +=∈恒过定点(0,0)O ,直线2l :220x ky k -+-=恒过定点(2,2)C ,且12l l ⊥,所以两直线的交点A 在以OC 为直径的圆D 上,且圆的方程为22:(1)(1)2D x y -+-=,要求AB 的最大值,转化为在22:(1)(1)2D x y -+-=上找上一点A ,在()()22232x y +++=上找一点B ,使AB 最大,根据题意可知两圆的圆心距为22(12)(13)5+++=,所以AB 的最大值为522+,故答案为:522+44.(1)2m =-;(2)20x y -+=或0x y +=.【详解】解:(1)圆C 的标准方程为:222(1)()124m m x y -++=+,所以,圆心为(1,)2m -由圆心C 在直线y x =上,得2m =-.所以,圆C 的方程为:22(1)(1)2x y -+-=.(2)由题意可知直线l 的斜率存在,设直线l 的方程为:1(1)y k x -=+,即10kx y k -++=,由于直线l 和圆C 相切,得2|2|21k k =+解得:1k =±所以,直线方程为:20x y -+=或0x y +=.45.(1)()()22231x y -+-=;(2)1y x =+.【详解】解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-=(2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并整理,得22(1)4(1)70k x k x +-++=,∴1224(1)1k x x k++=+,12271x x k =+∴()()()212121212241118121k k OM ON x x y y k x x k x x k +⋅=+=++++=+=+ ,即()24141k k k +=+,解得1k =,又当1k =时0∆>,∴1k =,∴直线l 的方程为1y x =+46.(1)圆()22:15C x y +-=的圆心()0,1C ,半径为5,所以圆心()0,1C 到直线l 的距离为22151m m d m m --=<=<+,所以直线l 与圆C 相交,故对m R ∈,直线l 与圆C 总有两个不同交点;(2)当M 与P 不重合时,连接,CM CP ,则CM MP ⊥,所以222CM MP CP +=,设()(),1M x y x ≠,则()()()22221111x y x y +-+-+-=,整理得()222101x y x y x +--+=≠,当M 与P 重合时,1x y ==也满足22210x y x y +--+=,故弦AB 的中点M 的轨迹方程为22210x y x y +--+=;(3)设()()1122,,,A x y B x y ,由12AP PB =,得12AP PB = ,所以()121112x x -=-,即2132x x =-,又()221015mx y m x y -+-=⎧⎪⎨+-=⎪⎩,消去y 得()22221250m x m x m +-+-=,所以212221m x x m +=+,()()4222441516200m m m m ∆=-+-=+>,由2121223221x x m x x m =-⎧⎪⎨+=⎪+⎩得21231m x m +=+,将21231m x m+=+带入()22221250m x m x m +-+-=得1m =±,所以此时直线l 的方程为0x y -=或20x y +-=.47.(1)因为(1,3),(3,1)P Q ---,所以PQ 的中垂线为11(2)2y x +=+上,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩,解得21x y =⎧⎨=⎩,所以圆心为()2,1C ,又半径||5r PC ==,∴圆C 的方程为22(2)(1)25x y -+-=.(2)直线l 的方程可化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩可得3x =,1y =-,∴直线l 过定点(3,1)M -,由22(32)(11)25-+--<可知M 在圆内,∴直线l 与圆C 一定相交.(3)设圆心C 到直线l 的距离为d ,弦长为L ,则2222225L r d d =-=-,∵0||d CM ≤≤,即05d ≤≤,∴4510L ≤≤,即弦长的取值范围是[45,10].48.(1)224x y +=;(2)15±;(3)存在,(1,1)-.(1)由题,设点P 的坐标为(,)x y ,因为||2||PA PB =,即2222(4)2(1)x y x y +-=+-,整理得224x y +=,所以所求曲线E 的轨迹方程为224x y +=.(2)依题意,2OC OD ==,且120COD ∠= ,由圆的性质,可得点O 到边CD 的距离为1,即点(0,0)O 到直线:40l kx y --=的距离为2411k =+,解得15k =±,所以所求直线l 的斜率为15±.(3)依题意,,ON QN OM QM ⊥⊥,则,M N 都在以OQ 为直径的圆F 上,Q 是直线:4l y x =-上的动点,设(,4)Q t t -,则圆F 的圆心为4(,)22t t -,且经过坐标原点,即圆的方程为22(4)0x y tx t y +---=,又因为,M N 在曲线22:4E x y +=上,由22224(4)0x y x y tx t y ⎧+=⎨+---=⎩,可得(4)40tx t y +--=,即直线MN 的方程为(4)40tx t y +--=,由t R ∈且()440t x y y +--=,可得0440x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,所以直线MN 过定点(1,1)-.。

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案)一、两直线的位置关系1.求直线斜率的基本方法(1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1x 2-x 1.2.判断两直线平行的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2.(2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法(1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2.1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.②解①②组成的方程组得⎩⎨⎧a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =-(-b ).④由③④联立,解得⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.经检验此时的l 1与l 2不重合,故所求值为 ⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23 ,b =2.注:已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0(1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去.(2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43 C .2D .3解析:选D 由2a -6=0得a =3.故选D.3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0D .-2解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =32.故选A.二、直线方程1.直线方程的五种形式2.常见的直线系方程(1)经过两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定系数.在这个方程中,无论λ取什么实数,都不能得到A 2x +B 2y +C 2=0,因此它不能表示直线l 2.(2)平行直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)平行的直线系方程是Ax +By +λ=0(λ≠C ).(3)垂直直线系方程:与直线Ax +By +C =0(A ,B 不同时为0)垂直的直线系方程是Bx -Ay +λ=0.4.过点A (3,-1)作直线l 交x 轴于点B ,交直线l 1:y =2x 于点C ,若|BC |=2|AB |,求直线l 的方程.[解] 当直线l 的斜率不存在时,直线l :x =3, ∴B (3,0),C (3,6).此时|BC |=6,|AB |=1,|BC |≠2|AB |, ∴直线l 的斜率存在.设直线l 的方程为y +1=k (x -3), 显然k ≠0且k ≠2. 令y =0,得x =3+1k , ∴B ⎝ ⎛⎭⎪⎫3+1k ,0,由⎩⎨⎧y =2x ,y +1=k (x -3),得点C 的横坐标x C =3k +1k -2.∵|BC |=2|AB |,∴|x B -x C |=2|x A -x B |,∴⎪⎪⎪⎪⎪⎪3k +1k -2-1k -3=2⎪⎪⎪⎪⎪⎪1k , ∴3k +1k -2-1k -3=2k 或3k +1k -2-1k -3=-2k , 解得k =-32或k =14.∴所求直线l 的方程为3x +2y -7=0或x -4y -7=0. 注:求直线方程时,要根据给定条件,选择恰当的方程,常用以下两种方法求解:(1)直接法:直接选取适当的直线方程的形式,写出结果;(2)待定系数法:先以直线满足的某个条件为基础设出直线方程,再由直线满足的另一个条件求出待定系数,从而求得方程.5.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,求直线l 的方程.解:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行(否则d 1=0或d 2=0,不符合题意).设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13,d 2=|m +13|13,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 6.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′). ∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.三、圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2 (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(3)若圆经过两已知圆的交点或一已知圆与一已知直线的交点,求圆的方程时可用相应的圆系方程加以求解:①过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ为参数,λ≠-1),该方程不包括圆C 2;②过圆C :x 2+y 2+Dx +Ey +F =0与直线l :Ax +By +C =0交点的圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0(λ为参数,λ∈R).7.在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-3,0),B (2,0),C (0,-4),经过这三个点的圆记为M .(1)求BC 边的中线AD 所在直线的一般式方程; (2)求圆M 的方程.[解] (1)法一:由B (2,0),C (0,-4),知BC 的中点D 的坐标为(1,-2). 又A (-3,0),所以直线AD 的方程为y -0-2-0=x +31+3,即中线AD 所在直线的一般式方程为x +2y +3=0. 法二:由题意,得|AB |=|AC |=5, 则△ABC 是等腰三角形, 所以AD ⊥BC .因为直线BC 的斜率k BC =2, 所以直线AD 的斜率k AD =-12,由直线的点斜式方程,得y -0=-12(x +3), 所以直线AD 的一般式方程为x +2y +3=0. (2)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.将A (-3,0),B (2,0),C (0,-4)三点的坐标分别代入方程,得⎩⎨⎧9-3D +F =0,4+2D +F =0,16-4E +F =0,解得⎩⎪⎨⎪⎧D =1,E =52,F =-6.所以圆M 的方程是x 2+y 2+x +52y -6=0. 注:利用待定系数法求圆的方程(1)若已知条件与圆的圆心和半径有关,可设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.(2)若已知条件没有明确给出圆的圆心或半径,可选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,从而求出D ,E ,F 的值.8.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8 D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.9.已知圆C 经过点A (2,-3),B (-2,-5),且圆心在直线l :x -2y -3=0上,求圆C 的方程.解:设圆C 的方程为(x -a )2+(y -b )2=r 2.由题意,得⎩⎨⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎨⎧a =-1,b =-2,r 2=10.所以圆C 的方程为(x +1)2+(y +2)2=10.10.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.解:联立两圆的方程得方程组 ⎩⎨⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线的方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0解得两圆交点坐标为(-1,2),(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径长为12 (5+1)2+(-6-2)2=5.∴圆C 的方程为(x -2)2+(y +2)2=25.四、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离.2.过圆外一点(x 0,y 0)与圆相切的切线方程的求法①当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),化成一般式kx -y +y 0-kx 0=0,利用圆心到直线的距离等于半径长,解出k ;②当切线斜率存在时,设切线方程为y -y 0=k (x -x 0),与圆的方程(x -a )2+(y -b )2=r 2联立,化为关于x 的一元二次方程,利用判别式为0,求出k .当切线斜率不存在时,可通过数形结合思想,在平面直角坐标系中作出其图象,求出切线的方程.3.圆中弦长的求法(1)直接求出直线与圆或圆与圆的交点坐标,再利用两点间的距离公式求解. (2)利用圆的弦长公式l =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2(其中x 1,x 2为两交点的横坐标).(3)利用垂径定理:分别以圆心到直线的距离d 、圆的半径r 与弦长的一半l 2为线段长的三条线段构成直角三角形,故有l =2r 2-d 2.4.圆与圆的位置关系:(1)利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. (2)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交.则两圆方程相减后得到的新方程:(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0表示的是两圆公共弦所在直线的方程.11.(1)直线x +y -2=0与圆(x -1)2+(y -2)2=1相交于A ,B 两点,则|AB |=( )A.22B.32C. 3D. 2(2)若直线x -my +1=0与圆x 2+y 2-2x =0相切,则m 的值为( ) A .1 B .±1 C .±3D. 3(3)已知圆C :(x -3)2+(y -4)2=4,直线l 过定点A (1,0). ①若l 与圆C 相切,求l 的方程;②若l 与圆C 相交于P ,Q 两点,且|PQ |=22,求此时直线l 的方程. [解析] (1)∵圆心(1,2)到直线x +y -2=0的距离d =22,∴|AB |=212-⎝ ⎛⎭⎪⎫222=2,故选D.(2)由x 2+y 2-2x =0,得圆心坐标为(1,0),半径为1,因为直线与圆相切,所以圆心到直线的距离等于半径,即|1-0+1|1+m2=1,解得m =±3. 答案:(1)D (2)C(3)解:①若直线l的斜率不存在,则直线l:x=1,符合题意.若直线l的斜率存在,设直线l的方程为y=k(x-1),即kx-y-k=0.由题意知,圆心(3,4)到直线l的距离等于2,即|3k-4-k|k2+1=2,解得k=34,此时直线l的方程为3x-4y-3=0.综上可得,所求直线l的方程是x=1或3x-4y-3=0.②由直线l与圆C相交可知,直线l的斜率必定存在,且不为0,设直线l的方程为k0x-y-k0=0,圆心(3,4)到直线l的距离为d,因为|PQ|=24-d2=22,所以d=2,即|3k0-4-k0|k20+1=2,解得k0=1或k0=7,所以所求直线l的方程为x-y-1=0或7x-y-7=0.注:研究直线与圆位置关系综合问题时易忽视直线斜率k不存在情形,要注意作出图形进行判断.12.由直线y=x+1上的一点向圆x2-6x+y2+8=0引切线,则切线长的最小值为()A.1 B.2 2C.7 D.3解析:选C切线长的最小值在直线y=x+1上的点与圆心距离最小时取得,圆心(3,0)到直线的距离为d=|3-0+1|2=22,圆的半径为1,故切线长的最小值为d2-r2=8-1=7.13.P是直线l:3x-4y+11=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,C是圆心,那么四边形P ACB面积的最小值是()A. 2 B.2 2C. 3 D.2 3解析:选C圆的标准方程为(x-1)2+(y-1)2=1,圆心C(1,1),半径r=1.根据对称性可知四边形P ACB的面积等于2S△APC =2×12×|P A|×r=|P A|=|PC |2-r 2=|PC |2-1.要使四边形P ACB 的面积最小,则只需|PC |最小,最小值为圆心C 到直线l :3x -4y +11=0的距离d =|3-4+11|32+42=105=2,所以四边形P ACB面积的最小值为4-1= 3.14.已知圆C :x 2+y 2-2x +4y -4=0.问是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 满足:以AB 为直径的圆经过原点.解:假设存在且设l :y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),则过圆心C 垂直弦AB 的直线为y +2=-x +1,解方程组⎩⎨⎧y =x +m ,y +2=-x +1得AB 的中点N 的坐标为⎝ ⎛⎭⎪⎫-m +12,m -12,由于以AB 为直径的圆过原点,所以|AN |=|ON |. 又|AN |=|CA |2-|CN |2= 9-2×⎝⎛⎭⎪⎫m +322, |ON |=⎝⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122.所以9-2×⎝⎛⎭⎪⎫3+m 22=⎝ ⎛⎭⎪⎫-m +122+⎝ ⎛⎭⎪⎫m -122, 解得m =1或m =-4.所以存在直线l ,其方程为x -y +1=0和x -y -4=0,并可以检验,这时l 与圆是相交于两点的.。

高中数学-直线与圆的位置关系、圆与圆的位置关系精讲精练

高中数学-直线与圆的位置关系、圆与圆的位置关系精讲精练

高中数学-直线与圆的位置关系、圆与圆的位置关系精讲精练典题精讲例1如图2-3-(3,4)-3已知圆x 2+y 2+x-6y+c=0与直线x+2y-3=0的两交点为P 、Q ,且OP⊥OQ(O 为原点),求圆的方程.图2-3-(3,4)-3思路分析:涉及到直线与圆的交点问题,可以联立方程求解. 解法一:设P(x 1,y 1)、Q(x 2,y 2). 由⎩⎨⎧=+-++=-+,06,03222c y x y x y x消去x,得(3-2y)2+y 2+(3-2y)-6y+c=0,即5y 2-20y+12+c=0.由韦达定理,得y 1+y 2=4,y 1y 2=512c+. 如图2.3(3.4)3所示, ∵OP⊥OQ, ∴2211x y x y •=-1, 即123232211-=-•-y y y y .解得9-6(y 1+y 2)+5y 1y 2=0. ∴9-6×4+5×512c+=0,解得c=3. 从而所求圆的方程为x 2+y 2+x-6y+3=0.解法二:设过圆x 2+y 2+x-6y+c=0与直线x+2y-3=0的交点P 、Q 的圆的方程为x 2+y 2+x-6y+c+λ(x+2y-3)=0,即x 2+y 2+(1+λ)x-(2λ-6)y+c-3λ=0. ∵OP⊥OQ,故该圆过原点,c-3λ=0,① 且圆心(21λ+-,262--λ)在直线x+2y-3=0上, 21λ+-+2·(262--λ)-3=0.②由①②求得λ=1,c=3.故所求圆的方程为x 2+y 2+x-6y+3=0.绿色通道:在解析几何中,更多的是把垂直转化为斜率问题,而较少利用勾股定理.在判定直线与圆的位置关系时,应选择能体现圆的几何性质的方法,即用圆心到直线距离与半径作比较,这样更简捷.变式训练1若半径为1的圆分别与y 轴的正半轴和射线y=33x(x≥0)相切,则这个圆的方程为_________________.思路解析:若半径为1的圆分别与y 轴的正半轴和射线y=33x(x≥0)相切,则圆心在直线y=3x 上,且圆心的横坐标为1,所以纵坐标为3,这个圆的方程为(x-1)2+(y-3)2=1. 答案:1变式训练2(2006重庆高考,文3)以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为 ( )A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=3 思路解析:根据题意,圆心到切线的距离即为圆的半径r=22435)1(423++-⨯-⨯=3,故选C.答案:C例2已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9. (1)求证:无论m 为何值,直线l 与圆C 总相交.(2)m 为何值时,直线l 被圆C 所截得的弦长最小?并求出该最小值.思路分析:分析已知条件:圆是定圆,直线不确定(方程中含有未知数m),解题关键在于发现直线的特征:过定点.(1)证法一:设圆心C(3,4)到动直线l 的距离为d ,则 d=21)25(21)2()3(|4)2(3)3(|222++=++++•+-•+m m m m m m ≤2.∴当m=25-时,d max =2<3(半径). 故动直线l 总与圆C 相交.证法二:直线l 变形为m(x-y+1)+(3x-2y)=0. 令⎩⎨⎧=-=+-,023,01y x y x 解得⎩⎨⎧==.3,2y x如图2-3-(3,4)-4所示,故动直线l 恒过定点A(2,3).图2-3-(3,4)-4而|AC|=32)43()32(22<=-+-,∴点A 在圆内,故无论m 取何值,直线l 与圆C 总相交. (2)解法一:由平面几何知识知,弦心距越大,弦长越小. 由(1)知,当m=25-时,弦长最小. ∴最小值为72)2(3222=-.解法二:由平面几何知识知,弦心距越大,弦长越小, ∴过点A 且垂直AC 的直线被圆C 所截弦长最小. ∴k l =11-=-ACk .∴,123-=++m m 解得m=25-.此时弦长为72)2(92||32222=-=-AC . 故当m=25-时,直线被圆C 所截弦长最小,最小值为72. 绿色通道:解法一使用圆心到直线的距离判断直线与圆的位置关系,解法简便,运算量小. 解法二从所要证的结论分析,总与定圆相交的动直线可能是过定点的直线系,且定点必在圆内.于是抓住动直线与定圆的几何特征,数形结合,生动直观,迅速解决问题.变式训练3设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,则a 的值为( ) A.±2 B.±2 C.±22 D.±4 思路分析:设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,设直线方程为y=x+a ,圆心(0,0)到直线的距离等于半径2, ∴22||=a .∴a 的值为±2,选B. 答案:B例3已知P(x,y)在圆C:x 2+y 2-6x-4y+12=0上, (1)求x-y 的最大及最小值;(2)求x 2+y 2的最大及最小值;(3)求|PA|2+|PB|2的范围,其中A(-1,0)、B(1,0).思路分析:利用直线与圆的位置关系还可以求最值;另外数形结合的方法也需注意. (1)解:设x-y=m ,则P(x,y)在l:x-y-m=0上.又在⊙C 上,⊙C 的圆心坐标为(3,2), ∴l 与⊙C 有公共点. ⊙C 的圆心坐标为(3,2),∴圆心到直线l 的距离d=11|23|+--m ≤1,|1-m|≤2,得1-2≤m≤2+1.∴x -y 的最大值为2+1,最小值为1-2.(2)解法一:x 2+y 2=(x-0)2+(y-0)2=(22)0()0(-+-y x =|OP|2.由平面几何知识,连结直线OC 交⊙C 于A 、B. 当P 与A 重合时,|OP|min =|OA|=|OC|-1=13-1; 当P 与B 重合时,|OP|max =|OB|=|OC|+1=13+1. 从而,14-213≤x 2+y 2≤14+213.解法二:设x 2+y 2=r 2(r >0),因此P 在⊙O 上,又在⊙C 上,图2-3-(3,4)-5即⊙O 与⊙C 有公共点,由图2-3-(3,4)-5可知,当⊙O 与⊙C 外切时,r 最小. 此时|OC|=r+1=13, ∴r min =13-1.当⊙O 与⊙C 内切时,r 最大. 此时,|OC|=|r-1|=13, ∴r max =13+1.∴14-213≤x 2+y 2≤14+213.(3)解:可化归为(2),|PA|2+|PB|2=222222))1(())1((y x y x +-+++ =x 2+2x+1+y 2+x 2-2x+1+y 2=2(x 2+y 2)+2.由(2)14-132≤x 2+y 2≤14+132, ∴30-134≤|PA|2+|PB|2≤30+134.绿色通道:本题是坐标法的逆向应用,即用几何法研究代数问题——最值.变式训练4圆x 2+y 2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( )A.36B.18C.26D.25思路解析:圆x 2+y 2-4x-4y-10=0的圆心为(2,2),半径为23,圆心到直线x+y-14=0的距离为23522|1422|>=-+,所以直线与圆的位置关系是相离.因此圆上的点到直线的最大距离与最小距离的差是2R=26,选C.答案:C例4已知圆C:x 2+y 2-2x-4y-20=0及直线l:(2m+1)x+(m+1)y=7m+4(m∈R ). (1)求证:不论m 取什么实数,直线l 与圆C 总相交;(2)求直线l 被圆C 截得的弦长最短长度及此时的直线方程. 思路分析:(1)直线l 是过一个定点的直线,若此定点在圆内,则此直线l 必与圆C 相交.(2)当过定点的直线与圆心的距离最短,即此直线垂直于定点与圆心的连线时,被圆截得的弦最短.(1)证明:把直线l 的方程改写成(x+y-4)+m(2x+y-7)=0.由方程组⎩⎨⎧=-+=-+,072,04y x y x解得⎩⎨⎧==.1,3y x∴直线l 总过定点(3,1).圆C 的方程可写成(x-1)2+(y-2)2=25.∴圆C 的圆心为(1,2),半径为5,定点(3,1)到圆心(1,2)的距离为5)21()13(22=-+-<5.∴点(3,1)在圆C 内.∴过点(3,1)的直线l 总与圆C 相交,即不论m 为何实数,直线l 与圆C 总相交.图2-3-(3,4)-6(2)解:当直线l 过定点M(3,1)且垂直于过点M 的圆心的半径时,l 被圆截得的弦长|AB|最短.(如图2-3-(3,4)-6) |AB|=254202])21()13[(2522222==-+--=-CM BC .此时,k AB =CMk 1-=2.∴直线AB 的方程为y-1=2(x-3),即2x-y-5=0.故直线l 被圆C 截得的弦长的最短长度为54,此时直线l 的方程为2x-y-5=0. 绿色通道:充分考虑圆的几何性质,数形结合,如果对于第(2)问用纯代数的方法来解决,会很复杂.变式训练5(2006高考全国卷Ⅰ,文7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为( ) A.21B.53C.23D.0思路解析:圆x 2-2x+y 2-2y+1=0的圆心为M(1,1),半径为1,从圆外一点P(3,2)向这个圆作两条切线,则点P 到圆心M 的距离等于5,每条切线与PM 的夹角的正切值等于21,所以两切线夹角的正切值为tanθ=34411212=-•,该角的余弦值等于53,选B. 答案:B 问题探究问题1过一点作圆的切线,求切线方程.现利用点斜式,求出斜率值只有一个,那么该点在圆上吗?利用点斜式求直线方程,会产生漏解吗?如果漏解,会漏掉什么样的解? 导思:根据不同条件求圆的切线,主要有以下题型:(1)已知切点,求切线方程.可根据切线垂直于过切点的半径直接写出切线的方程.注意只有一条.(2)已知圆外一点,求圆的切线方程.切记有两条. (3)已知切线的斜率求圆的切线方程. 求圆的切线方程常用的三种方法: (1)设切点用切线公式法; (2)设切线斜率用判别式法;(3)设切线斜率,用圆心到切线的距离等于半径法.探究:利用点斜式求直线方程时,很重要的一点就是注意点斜式不能表示斜率不存在的直线的方程,即倾斜角为2π的直线的方程.如果没有考虑到这一点就贸然运用点斜式方程就有可能产生漏解,忽略倾斜角为2π的直线的方程而造成错误.对于题中所给问题,先要判断此点与圆的位置关系,如果点在圆外,则过此点应该有两条圆的切线,现在只解出一个斜率,则说明遗漏了倾斜角为2π的切线方程;如果点在圆上,则应该有一条切线,现解出一个斜率,则正是所求切线的斜率;如果点在圆内,则不应该有切线,不可能解出正确的斜率值.问题2将两个相交的非同心圆的方程x 2+y 2+D i x+E i y+F i =0(i=1,2)相减,可得一直线方程,这条直线方程具有什么样的特殊性呢?导思:可以通过设出两圆的交点(x 1,y 1)、(x 2,y 2),将(x 1,y 1)代入两圆方程相减得到 (D 1-D 2)x 1+(E 1-E 2)y 1+F 1-F 2=0,将(x 2,y 2)代入两圆方程相减得到(D 1-D 2)x 2+(E 1-E 2)y 2+F 1-F 2=0,点(x1,y1)、(x2,y2)满足(D1-D2)x+(E1-E2)y+F1-F2=0,故该方程为公共弦所在直线的方程.探究:两圆相减得一直线方程,它当然经过两圆的公共点.经过相交两圆的公共交点的直线是两圆的公共弦所在的直线.。

高考数学二轮复习直线与圆复习题及答案解析

高考数学二轮复习直线与圆复习题及答案解析

专题限时集训(九) 直线与圆[专题通关练] (建议用时:30分钟)1.(2019·江阴模拟)点P 是直线x +y -2=0上的动点,点Q 是圆x 2+y 2=1上的动点,则线段PQ 长的最小值为( )A.2-1 B .1 C.2+1D .2A [根据题意,圆x 2+y 2=1的圆心为(0,0),半径r =1,圆心(0,0)到直线x +y -2=0的距离d =|2|2=2,则线段PQ 长的最小值为2-1,故选A.]2.直线l 1:mx -2y +1=0,l 2:x -(m -1)y -1=0,则“m =2”是“l 1∥l 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件C [由l 1∥l 2得-m (m -1)=1×(-2),得m =2或m =-1,经验证,当m =-1时,直线l 1与l 2重合,不合题意.所以“m =2”是“l 1∥l 2”的充要条件,故选C.]3.圆x 2-4x +y 2=0与圆x 2+y 2+4x +3=0的公切线共有( ) A .1条 B .2条 C .3条D .4条D [根据题意,圆x 2-4x +y 2=0,即(x -2)2+y 2=4,其圆心坐标为(2,0),半径为2; 圆x 2+y 2+4x +3=0,即圆(x +2)2+y 2=1,其圆心坐标为(-2,0),半径为1; 则两圆的圆心距为4,两圆半径和为3,因为4>3,所以两圆的位置关系是外离,故两圆的公切线共4条.故选D.]4.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6B .-π3或π3C .-π6或π6D.π6A [由题意可知,圆心P (2,3),半径r =2, ∴圆心P 到直线y =kx +3的距离d =|2k |1+k2,由d 2+⎝ ⎛⎭⎪⎫2322=r 2,可得4k 21+k 2+3=4,解得k =±33.设直线的倾斜角为α,则tan α=±33,又α∈[0,π), ∴α=π6或5π6.]5.在平面直角坐标系xOy 中,以(-2,0)为圆心且与直线(3m +1)x +(1-2m )y -5=0(m ∈R )相切的所有圆中,面积最大的圆的标准方程是( )A .(x +2)2+y 2=16 B .(x +2)2+y 2=20 C .(x +2)2+y 2=25D .(x +2)2+y 2=36C [将直线(3m +1)x +(1-2m )y -5=0变形为(3x -2y )m +(x +y -5)=0.由⎩⎪⎨⎪⎧3x -2y =0,x +y -5=0,得⎩⎪⎨⎪⎧x =2,y =3.即直线恒过定点M (2,3).设圆心为P ,即P (-2,0),由题意可知, 当圆的半径r =|MP |时,圆的面积最大,此时|MP |2=r 2=25. 即圆的标准方程为(x +2)2+y 2=25.]6.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是________.x -y -3=0 [记题中圆的圆心为O ,则O (1,0),因为P (2,-1)是弦AB 的中点,所以直线AB 与直线OP 垂直,易知直线OP 的斜率为-1,所以直线AB 的斜率为1,故直线AB 的方程为x -y -3=0.]7.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________.102 [联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a 2=5a(a >0).故222-⎝ ⎛⎭⎪⎫5a 2=22,解得a 2=52,因为a >0,所以a =102.]8.设P 为直线3x -4y +11=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值为________.3 [圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径为r =1,根据对称性可知,四边形PACB 的面积为2S △APC =2×12|PA |r =|PA |=|PC |2-r 2,要使四边形PACB 的面积最小,则只需|PC |最小,最小值为圆心到直线l :3x -4y +11=0的距离d =|3-4+11|32+-42=105=2. 所以四边形PACB 面积的最小值为|PC |2min -r 2=4-1= 3.][能力提升练] (建议用时:20分钟)9.实数x ,y 满足x 2+y 2+2x =0,则yx -1的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞) C.⎣⎢⎡⎦⎥⎤-33,33 D.⎝ ⎛⎦⎥⎤-∞,-33∪⎣⎢⎡⎭⎪⎫33,+∞ C [设yx -1=t ,,则tx -y -t =0与圆(x +1)2+y 2=1有交点,∴圆心(-1,0)到直线tx-y -t =0的距离d =|-t -t |t 2+1≤1,解得-33≤t ≤33.故选C.]10.(2019·赣州模拟)已知动直线y =kx -1+k (k ∈R )与圆C :x 2+y 2-2x +4y -4=0(圆心为C )交于点A 、B ,则弦AB 最短时,△ABC 的面积为 ( )A .3B .6 C. 5D .2 5D [根据题意,圆C :x 2+y 2-2x +4y -4=0可化为(x -1)2+(y +2)2=9,其圆心为(1,-2),半径r =3.动直线y =kx -1+k ,即y +1=k (x +1),恒过定点P (-1,-1),又由(-1-1)2+(-1+2)2<9,可知点P (-1,-1)在圆C 的内部,动直线y =kx -1+k (k ∈R )与圆C :x 2+y 2-2x +4y -4=0(圆心为C )交于点A 、B ,当P 为AB 的中点即CP 与AB 垂直时,弦AB 最短,此时|CP |=5,弦AB 的长度为2×r 2-|CP |2=4,此时,△ABC 的面积S =12×|CP |×|AB |=12×4×5=2 5.故选D.]11.若圆C :x 2+⎝ ⎛⎭⎪⎫y +12m 2=n 的圆心为椭圆M :x 2+my 2=1的一个焦点,且圆C 经过椭圆M 的另一个焦点,则圆C 的标准方程为________.x 2+(y +1)2=4 [∵圆C 的圆心为⎝⎛⎭⎪⎫0,-12m ,∴1m -1=12m ,解得m =12.又圆C 经过M 的另一个焦点,则圆C 经过点(0,1),从而n =4,故圆C 的标准方程为x 2+(y +1)2=4.]12.(2019·九江二模)已知圆E 经过M (-1,0),N (0,1),P ⎝ ⎛⎭⎪⎫12,-32三点.(1)求圆E 的方程;(2)若过点C (2,2)作圆E 的两条切线,切点分别是A ,B ,求直线AB 的方程. [解](1)根据题意,设圆E 的圆心E 坐标为(a ,b ),半径为r ,则有⎩⎪⎨⎪⎧a +12+b 2=r 2,a 2+b -12=r 2,⎝ ⎛⎭⎪⎫a -122+⎝ ⎛⎭⎪⎫b +322=r 2,解得⎩⎪⎨⎪⎧a =0,b =0,r =1,则圆E 的方程为x 2+y 2=1.(2)根据题意,过点C (2,2)作圆E 的两条切线,切点分别是A ,B , 设以C 为圆心,CA 为半径的圆为圆C ,其半径为R , 则有R =|CA |=|OC |2-r 2=7, 则圆C 的方程为(x -2)2+(y -2)2=7, 即x 2+y 2-4x -4y +1=0,又由直线AB 为圆E 与圆C 的公共弦所在的直线,则有⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2-4x -4y +1=0,解得2x +2y -1=0,则AB 的方程为:2x +2y -1=0.题号 内容押题依据1点到直线的距离公式,数形由动态的观点,分析直线与圆的位置关系,并通过数结合思想 形结合的思想及方程思想确定方程的具体位置,体现了高考的最新动向2直线与圆的位置关系,平面向量,轨迹问题,根与系数的关系用代数的方法研究直线与圆的位置关系可以巧妙的将函数与方程,根与系数的关系等知识交汇在一起,考查考生的运算能力和等价转化能力【押题1】 已知直线l :x -2y +4=0,圆C :(x -1)2+(y +5)2=80,那么圆C 上到l 的距离为5的点一共有( )A .1个B .2个C .3个D .4个C [由圆C :(x -1)2+(y +5)2=80,可得圆心C (1,-5),半径R =45, 又圆心C (1,-5)到直线x -2y +4=0的距离d =|1-2×-5+4|12+-22=155=35, 如图所示,由图象可知,点A ,B ,D 到直线x -2y +4=0的距离都为5,所以圆C 上到l 的距离为5的点一共3个,故选C.]【押题2】 已知圆C :(x -2)2+(y -2)2=16,点A (10,0). (1)设点P 是圆C 上的一个动点,求AP 的中点Q 的轨迹方程; (2)直线l :kx -y -10k =0与圆C 交于M ,N ,求AM →·AN →的值. [解](1)设Q (x ,y ),P (x 0,y 0),则(x 0-2)2+(y 0-2)2=16, 由x =x 0+102,y =y 0+02,解得x 0=2x -10,y 0=2y .代入圆的方程可得:(2x -10-2)2+(2y -2)2=16, 即(x -6)2+(y -1)2=4.∴AP 的中点Q 的轨迹方程为:(x -6)2+(y -1)2=4.(2)直线l :kx -y -10k =0与圆C 交于M (x 1,y 1),N (x 2,y 2), 把直线l 的方程代入圆的方程可得:(x -2)2+(kx -10k -2)2=16, 化为:(1+k 2)x 2-(20k 2+4k +4)x +100k 2+40k -12=0.Δ>0.∴x 1x 2=100k 2+40k -121+k 2,x 1+x 2=20k 2+4k +41+k2. ∴AM →·AN →=(x 1-10,y 1)(x 2-10,y 2)=(x 1-10)(x 2-10)+y 1y 2=(x 1-10)(x 2-10)+(kx 1-10k )(kx 2-10k )=(1+k 2)x 1x 2-(10k 2+10)(x 1+x 2)+100+100k 2=(1+k 2)100k 2+40k -121+k 2-(10k 2+10)20k 2+4k +41+k2+100+100k 2=48.。

高中 平面解析几何 直线与圆、圆与圆位置关系 练习 含答案

高中 平面解析几何 直线与圆、圆与圆位置关系 练习 含答案

1.已知圆C 与直线x -y =0及直线x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为________________.2.直线(a +1)x +(a -1)y +2a =0(a ∈R )与圆x 2+y 2-2x +2y -7=0的位置关系是________.3.圆C :(x -1)2+y 2=25,过点P (2,-1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是________.4.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是________.5.已知P ={(x ,y )|x +y =2},Q ={(x ,y )|x 2+y 2=2},那么P ∩Q =________.6.M (x 0,y 0)为圆x 2+y 2=a 2(a >0)内异于圆心的一点,则直线x ·x 0+y ·y 0=a 2与该圆的位置关系为________.7.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R ,且ab ≠0,则1a 2+1b 2的最小值为________. 8.圆C 1:x 2+y 2=16与C 2:(x -4)2+(y +3)2=r 2(r >0)在交点处的切线互相垂直,则r =________.9.能够把圆O :x 2+y 2=9的周长和面积同时分为相等的两部分的函数f (x )称为圆O 的“亲和函数”,下列函数不是圆O 的“亲和函数”的是________.①f (x )=4x 3+x 2;②f (x )=ln 5-x 5+x; ③f (x )=e x +e -x 2;④f (x )=tan x 5. 10.已知圆C 的方程为x 2+y 2-2y -3=0,过点P (-1,2)的直线l 与圆C 交于A ,B 两点,若使AB 最小,则直线l 的方程是________________.11.圆x 2+y 2+2x +4y -3=0上到直线l :x +y +1=0的距离为2的点有________个.12.已知P 是直线3x +4y -10=0上的动点,P A ,PB 是圆x 2+y 2-2x +4y +4=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 面积的最小值为________.13.在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l上,若圆C 上存在点M ,使MA =2MO ,则圆心C 的横坐标a 的取值范围为________.14.已知P (2,0)为圆C :x 2+y 2-2x +2my +m 2-7=0(m >0)内一点,过点P 的直线AB 交圆C 于A ,B 两点,若△ABC 面积的最大值为4,则正实数m 的取值范围为________.答案解析1.(x -1)2+(y +1)2=22.相交3.1023解析 因为圆的方程为(x -1)2+y 2=25,所以圆心坐标为C (1,0),半径r =5,因为点P (2,-1)是该圆内一点,所以经过点P 的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.因为|PC |=2,所以与PC 垂直的弦长为225-2=223.因此所求四边形的面积S =12×10×223=1023. 4.相交解析 圆O 1的圆心坐标为(1,0),半径r 1=1,圆O 2的圆心坐标为(0,2),半径r 2=2.故两圆的圆心距|O 1O 2|=5,而r 2-r 1=1,r 1+r 2=3,则有r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.5.{(1,1)}解析 解方程组⎩⎪⎨⎪⎧x 2+y 2=2,x +y =2,得x =y =1. 6.相离解析 ∵点M 在圆内,∴x 20+y 20<a 2(a >0). 圆心到直线的距离d =a 2x 20+y 20>a ,即d >r ,故直线与圆相离. 7.9解析 ∵圆C 1:(x +2a )2+y 2=4和圆C 2:x 2+(y -b )2=1只有一条公切线,∴两圆内切,|C 1C 2|=2-1=1,即4a 2+b 2=1.1a 2+1b 2=(4a 2+b 2)(1a 2+1b 2)=5+b 2a 2+4a 2b2≥9, 当且仅当b 2=2a 2,即a 2=16,b 2=13时取等号. 8.3解析 设其中一个交点为P (x 0,y 0),则⎩⎪⎨⎪⎧x 20+y 20=16,(x 0-4)2+(y 0+3)3=r 2 可得r 2=41-8x 0+6y 0,∵两切线互相垂直,∴过交点的两半径也互相垂直,即y 0x 0·y 0+3x 0-4=-1, ∴3y 0-4x 0=-16,∴r 2=41-8x 0+6y 0=41+2(3y 0-4x 0)=41-32=9,∴r =3.9.③解析 若函数f (x )是圆O 的“亲和函数”,则函数的图象经过圆心且关于圆心对称.圆O :x 2+y 2=9的圆心为坐标原点,①中f (x )=4x 3+x 2,②中f (x )=ln 5-x 5+x , ④中f (x )=tan x 5的图象均过圆心O (0,0), 在③中,f (x )=e x +e -x2的图象不过圆心,不满足要求. 10.x -y +3=0解析 易知点P 在圆的内部,根据圆的性质,若使AB 最小,则AB ⊥CP ,因为圆心C (0,1),所以k CP =2-1-1-0=-1,k l =1, 因此直线l 的方程为y -2=x +1,即x -y +3=0.11.3解析 圆的方程化为标准方程为:(x +1)2+(y +2)2=8.圆心为(-1,-2),圆的半径为22,圆心到直线l 的距离为|-1-2+1|12+12=22= 2.因此和l 平行的圆的直径的两端点及与l 平行的圆的切线的切点到l 的距离都为 2.12.2 2解析 圆的标准方程为:(x -1)2+(y +2)2=1,其圆心C (1,-2),半径为1,且直线与圆相离,如图所示,四边形P ACB 的面积等于2S △P AC ,而S △P AC =12P A ·AC =12P A =12PC 2-1,又 PC min =|3-8-10|5=3,所以(S △P AC )min =129-1=2,故四边形P ACB 面积的最小值为2 2.13.[0,125]解析 设点M (x ,y ),由MA =2MO ,知x 2+(y -3)2=2x 2+y 2.化简,得x 2+(y +1)2=4,∴点M 的轨迹为以D (0,-1)为圆心,2为半径的圆,可记为圆D .又∵点M 在圆C 上,∴圆C 与圆D 的关系为相交或相切,∴1≤CD ≤3.∵圆C 的圆心在直线y =2x -4上,∴设C (a,2a -4),∴CD =a 2+(2a -3)2,∴1≤a 2+(2a -3)2≤3,解得0≤a ≤125.14.[3,7)解析 圆的标准方程为(x -1)2+(y +m )2=8,则圆心坐标为(1,-m),半径r=22,S△ABC=12r2sin∠ACB=4sin∠ACB,当∠ACB=90°时,△ABC的面积取得最大值4,此时△ABC为等腰直角三角形,AB=2r=4,则点C到直线AB的距离等于2,故2≤PC<22,即2≤1+m2<22,所以4≤1+m2<8,即3≤m2<7,因为m>0,所以3≤m<7.。

专题09 解析几何第二十一讲 直线与圆(解析版)

专题09 解析几何第二十一讲 直线与圆(解析版)

专题09 解析几何 第二十一讲 直线与圆答案部分2019年1.D 【解析】由直线l 的参数方程消去t ,可得其普通方程为4320x y -+=. 则点(1,0)到直线l 的距离是d ==2.4 【解析】解法一:由4(0)y x x x =+>,得241y x '=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x-=-,解得000)x x =>. 所以曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,4=. 解法二:由题意可设点P 的坐标为4,x x x ⎛⎫+⎪⎝⎭()0x >,则点P 到直线0x y +=的距离222242x d ⎛⎫+ ⎪==⨯⨯=…,当且仅当x =所以点P 到直线0x y +=的距离的最小值为4. 3.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,联结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC -=-=此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H. 以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM ⎛⎫=++= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQ a a =-+-=>,得a =4321+,所以Q (4321+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4321+,9)时,d 最小,此时P ,Q 两点间的距离4321(13)17321PQ =+--=+.因此,d 最小时,P ,Q 两点间的距离为17321+(百米). 4.【解析】解法一:如图,由圆心与切点的连线与切线垂直,得1122m +=-,解得2m =-. 所以圆心为(0,-2),则半径22(20)(12)5r =--+-+= 解法二:由22034(1)41m r m ⨯-+==+++,得2m =-,所以55r == 2015-2018年1.A 【解析】圆心(2,0)到直线的距离d == 所以点P到直线的距离1d ∈.根据直线的方程可知A ,B 两点的坐标分别为(2,0)A -,(0,2)B -,所以||AB = 所以ABP ∆的面积111||2S AB d ==.因为1d ∈,所以[2,6]S ∈,即ABP ∆面积的取值范围是[2,6].故选A . 2.12【解析】直线的普通方程为20x y +-=,圆的标准方程为22(1)1x y -+=, 圆心为(1,0)C ,半径为1,点C 到直线20x y +-=的距离2d ==以||AB ==11222ABC S ∆==. 3.C【解析】由题意可得d ====(其中cos ϕ=,sin ϕ=,∵1sin()1θϕ--≤≤,d ≤1=+∴当0m =时,d 取得最大值3,故选C .4.A 【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a ==,故选A .5.A 【解析】如图建立直角坐标系,x则(0,1)A ,(0,0)B ,(2,1)D ,(,)Px y 所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-u u u r ,(0,1)AB =-u u u r ,(2,0)AD =u u u r,由AP AB AD λμ=+u u u r u u u r u u u r ,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12x y -+,设12x z y =-+,即102xy z -+-=, 点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,≤,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .6.D 【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2)y k x +=-,即230kx y k ---=,则1d ==,|55|k +=43k =-或34-.7.A 【解析】 设所求直线的方程为20x y c ++=(1)≠c,则=,所以c =250x y ++=或250x y +-=.8.C 【解析】设过,,A B C 三点的圆的方程为220x y Dx Ey F ++++=,则3100422007500D E F D E F D E F +++=⎧⎪+++=⎨⎪-++=⎩,解得2,4,20D E F =-==-, 所求圆的方程为2224200x y x y +-+-=,令0x =,得24200y y +-=, 设1(0,)M y ,2(0,)N y ,则124y y +=-,1220y y ⋅=-,所以12||||MN y y =-==9.C 【解析】圆C 标准方程为22(2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此2110a +⨯-=,1a =-,即(4,1)A --,6AB ===.选C .10.3【解析】因为0AB CD ⋅=u u u r u u u r ,所以AB CD ⊥,又点C 为AB 的中点,所以45BAD ∠=o,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan 2θ=,tan()34k πθ=+=-.又(5,0)B ,所以直线AB 的方程为3(5)y x =--,又A 为直线l :2y x =上在第一象限内的点,联立直线AB 与直线l 的方程,得3(5)2y x y x =--⎧⎨=⎩,解得36x y =⎧⎨=⎩,所以点A 的横坐标为3.11.[-【解析】设(,)P x y ,由20PA PB ⋅u u u r u u u r≤,得250x y -+≤,x如图由250x y -+≤可知,P 在¼MN上, 由2225050x y x y -+=⎧⎨+=⎩,解得(1,7)M ,(5,5)N --,所以P点横坐标的取值范围为[-.12.(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③【解析】(Ⅰ)由题意,设(1,)C r (r 为圆C 的半径),因为||2AB =,所以r ==C ,故圆C的标准方程为22(1)(2x y -+=.(Ⅱ)由220(1)(2x x y =⎧⎪⎨-+=⎪⎩,解得01x y =⎧⎪⎨=⎪⎩或01x y =⎧⎪⎨=⎪⎩, 因为B 在A的上方,所以1)A,1)B . 不妨令直线MN 的方程为0x =,(0,1)M -(0,1)N ,所以||MA||2MB =+,||2NA =||NB =,所以||1||NA NB ==,||1||MA MB ==, 所以||||||||NA MA NB MB =,所以||||1)2||||NB MA NA MB -==.||||1)||||NB MA NA MB +=+=. 正确结论的序号①②③.13.【解析】(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.。

2023年高考数学真题题源解密(新高考全国卷)专题11 直线与圆(解析版)

2023年高考数学真题题源解密(新高考全国卷)专题11  直线与圆(解析版)

专题11直线与圆目录一览2023真题展现考向一直线与圆相切考向二直线与圆相交真题考查解读近年真题对比考向一直线与圆相切考向二直线与圆的位置关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与圆相切1.(2023•新高考Ⅰ•第6题)过点(0,﹣2)与圆x 2+y 2﹣4x ﹣1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B解:圆x 2+y 2﹣4x ﹣1=0可化为(x ﹣2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,﹣2),切线为PA 、PB ,则PC =22+22=22,△PAC中,sin �2=5cos �2==3所以sin α=2sin �2cos �2=2×5×3=154.故选:B .考向二直线与圆相交2.(2023•新高考Ⅱ•第15题)已知直线x ﹣my +1=0与⊙C :(x ﹣1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】2(或﹣2或12或−12)解:由圆C :(x ﹣1)2+y 2=4,可得圆心坐标为C (1,0),半径为r =2,因为△ABC 的面积为85,可得S △ABC =12×2×2×sin ∠ACB =85,解得sin ∠ACB =45,设12∠ACB =θ所以∴2sin θcos θ=45,可得2푠푖푛휃 푠휃푠푖푛2휃+ 푠2휃=45,∴2푡푎푛휃푡푎푛2휃+1=45,∴tan θ=12或tan θ=2,∴cos θ=cos θ=∴圆心眼到直线x ﹣my +1=0的距离d===解得m =±12或m =±2.故答案为:2(或﹣2或12或−12).【命题意图】考查直线的倾斜角与斜率、直线方程、两直线平行与垂直、距离公式、圆的方程、直线与圆的位置关系、圆与圆的位置关系.【考查要点】常考查直线与圆的位置关系、动点与圆、圆与圆的关系。

高考数学(理)一轮复习文档 第八章 平面解析几何 第4讲 直线与圆、圆与圆的位置关系 Word版含答案

高考数学(理)一轮复习文档 第八章 平面解析几何 第4讲 直线与圆、圆与圆的位置关系 Word版含答案

第4讲直线与圆、圆与圆的位置关系1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).1.辨明两个易误点(1)对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k 不存在的情形. (2)两圆相切问题易忽视分两圆内切与外切两种情形. 2.求圆的弦长的常用方法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2.(2)代数法:运用根与系数的关系及弦长公式: 设直线与圆的交点为A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. 注意:常用几何法研究圆的弦的有关问题.1.教材习题改编直线x -y +1=0与圆(x +1)2+y 2=1的位置关系是( ) A .相切 B .直线过圆心 C .直线不过圆心,但与圆相交 D .相离B 依题意知圆心为(-1,0),到直线x -y +1=0的距离d =012+(-1)2=0,所以直线过圆心.2.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ) A .-1或 3 B .1或3 C .-2或6D .0或4D 圆心(a ,0)到直线x -y =2的距离d =|a -2|2,则⎝ ⎛⎭⎪⎫2222+⎝ ⎛⎭⎪⎫|a -2|22=22,所以a=0或4,故选D .3.圆Q :x 2+y 2-4x =0在点P (1,3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0D 因点P 在圆上,且圆心Q 的坐标为(2,0), 所以k PQ =-32-1=-3,所以切线斜率k =33,所以切线方程为y -3=33(x -1), 即x -3y +2=0.4.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则实数m =________. 圆C 1的圆心是原点(0,0),半径r 1=1,圆C 2:(x -3)2+(y -4)2=25-m ,圆心C 2(3,4),半径r 2=25-m ,由两圆外切,得|C 1C 2|=r 1+r 2=1+25-m =5,所以m =9.95.(2015·高考湖南卷)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =________.如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+(-4)2=1.因为 ∠AOB =120°,OA =OB , 所以∠OBD =30°,所以|OB |=2|OD |=2,即r =2. 2直线与圆的位置关系(1)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定(2)若过点A (4,0)的直线l 与曲线(x -2)2+y 2=1有公共点,则直线l 的斜率的取值范围为( )A .B .(-3,3)C.⎣⎢⎡⎦⎥⎤-33,33 D .⎝ ⎛⎭⎪⎫-33,33 【解析】 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,从而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1,所以直线与圆相交.(2)设直线方程为y =k (x -4),即kx -y -4k =0,因为直线l 与曲线(x -2)2+y 2=1有公共点,所以圆心到直线的距离d 小于或等于半径, 所以d =|2k -4k |k 2+1≤1,解得-33≤k ≤33.【答案】 (1)B (2)C若将本例(1)的条件改为“点M (a ,b )在圆O :x 2+y 2=1上”,则直线ax +by =1与圆O 的位置关系如何?由点M 在圆上,得a 2+b 2=1,所以圆心O 到直线ax +by =1的距离d =1a 2+b 2=1,则直线与圆O 相切.1.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离D .不确定A 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0,所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.2.(2017·聊城模拟)圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点的个数为( )A .1B .2C .3D .4C 因为圆心到直线的距离为|9+12-11|5=2,又因为圆的半径为3,所以直线与圆相交,由数形结合知,圆上到直线的距离为1的点有3个.圆与圆的位置关系(1)(2016·高考山东卷)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离(2)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab 的最大值为( )A.62B .32 C.94D .2 3【解析】 (1)由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0得两交点为(0,0),(-a ,a ). 因为圆M 截直线所得线段长度为22,所以a 2+(-a )2=2 2.又a >0,所以a =2.所以圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1,所以|MN |=(0-1)2+(2-1)2= 2.因为r 1-r 2=1,r 1+r 2=3,1<|MN |<3,所以两圆相交. (2)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=a 2+2ab +b 2=9,根据基本不等式可知9=a 2+2ab +b 2≥2ab +2ab =4ab ,即ab ≤94,当且仅当a=b 时,等号成立.故选C.【答案】 (1)B (2)C1.圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +4=0的公切线有( ) A .1条 B .2条 C .3条D .4条D 圆C 1:(x +1)2+(y +1)2=4, 所以圆心C 1(-1,-1),半径长r 1=2; 圆C 2:(x -2)2+(y -1)2=1, 所以圆心C 2(2,1),半径长r 2=1.所以d =(-1-2)2+(-1-1)2=13,r 1+r 2=3, 所以d >r 1+r 2,所以两圆外离,所以两圆有4条公切线.2.(2017·郑州质检)若⊙O 1:x 2+y 2=5与⊙O 2:(x +m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.由两圆在点A 处的切线互相垂直,可知两切线分别过另一圆的圆心,即AO 1⊥AO 2,在直角三角形AO 1O 2中,(25)2+(5)2=m 2,所以m =±5,|AB |=2×25×55=4.4与圆有关的切线与弦长问题(高频考点)与圆有关的切线及弦长问题,是近年来高考的一个热点,多以选择题、填空题的形式呈现,多为中、低档题目.高考对圆的切线及弦长问题的考查主要有以下三个命题角度: (1)求圆的切线方程; (2)求弦长及切线长; (3)由弦长及切线问题求参数.(1)(2015·高考重庆卷)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.(2)(2016·高考全国卷乙)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.【解析】 (1)因为以原点O 为圆心的圆过点P (1,2), 所以圆的方程为x 2+y 2=5.因为 k OP =2,所以切线的斜率k =-12.由点斜式可得切线方程为y -2=-12(x -1),即x +2y -5=0.(2)圆C 的方程可化为x 2+(y -a )2=a 2+2,可得圆心的坐标为C (0,a ),半径r =a 2+2,所以圆心到直线x -y +2a =0的距离为|-a +2a |2=|a |2,所以⎝ ⎛⎭⎪⎫|a |22+(3)2=(a 2+2)2,解得a 2=2,所以圆C 的半径为2,所以圆C 的面积为4π.【答案】 (1)x +2y -5=0 (2)4π解决直线与圆综合问题的常用结论(1)圆与直线l 相切的情形:圆心到l 的距离等于半径,圆心与切点的连线垂直于l . (2)圆与直线l 相交的情形:①圆心到l 的距离小于半径,过圆心且垂直于l 的直线平分l 被圆截得的弦;②连接圆心与弦的中点的直线垂直于弦;③过圆内一点的所有弦中,最短的是垂直于过这点的直径的那条弦,最长的是过这点的直径.角度一 求圆的切线方程1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0A 设直线方程为2x +y +c =0,由直线与圆相切,得d =|c |5=5,c =±5,所以所求方程为2x +y +5=0或2x +y -5=0.角度二 求弦长及切线长2.若a ,b ,c 是△ABC 三个内角的对边,且c sin C =3a sin A +3b sin B ,则直线l :ax -by +c =0被圆O :x 2+y 2=12所截得的弦长为( )A .4 6B .2 6C .6D .5C 因为a sin A =b sin B =csin C故由c sin C =3a sin A +3b sin B 可得c 2=3(a 2+b 2).圆O :x 2+y 2=12的圆心为O (0,0),半径为r =23,圆心O 到直线l 的距离d =|c |a 2+b 2=3,所以直线l 被圆O 所截得的弦长为2r 2-d 2=2(23)2-(3)2=6,故选C.3.(2017·云南省统一考试)已知圆O :x 2+y 2=1,直线x -2y +5=0上动点P ,过点P 作圆O 的一条切线,切点为A ,则|PA |的最小值为________.过O 作OP 垂直于直线x -2y +5=0,过P 作圆O 的切线PA ,连接OA ,易知此时|PA |的值最小.由点到直线的距离公式,得|OP |=|1×0-2×0+5|12+22= 5.又|OA |=1,所以|PA |=|OP |2-|OA |2=2.2角度三 由弦长及切线问题求参数4.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-34,0 B .⎣⎢⎡⎦⎥⎤-33,33 C . D .⎣⎢⎡⎦⎥⎤-23,0 B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝ ⎛⎭⎪⎫12|MN |2≤4-3=1, 即|2k |21+k 2≤1, 解得-33≤k ≤33.——直线与圆的综合问题(本题满分12分)已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,圆C 与直线3x -4y +7=0相切,且被y 轴截得的弦长为23,圆C 的面积小于13.(1)求圆C 的标准方程;(2)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB .是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出l 的方程;如果不存在,请说明理由.(1)设圆C 的标准方程为(x -a )2+y 2=r 2(a >0),由题意知⎩⎪⎨⎪⎧|3a +7|32+(-4)2=ra 2+3=r ,(2分)解得⎩⎪⎨⎪⎧a =1,r =2或⎩⎪⎨⎪⎧a =138,r =198,(4分)又因为S =πr 2<13, 所以a =1,r =2,所以圆C 的标准方程为(x -1)2+y 2=4.(5分) (2)不存在这样的直线l .理由如下:当斜率不存在时,直线l 为x =0,不满足题意. (6分)当斜率存在时,设直线l :y =kx +3,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +3,(x -1)2+y 2=4消去y 得(1+k 2)x 2+(6k -2)x +6=0,(7分)因为l 与圆C 相交于不同的两点,所以Δ=(6k -2)2-24(1+k 2)=12k 2-24k -20>0, 解得k <1-263或k >1+263.(8分)x 1+x 2=-6k -21+k 2,y 1+y 2=k (x 1+x 2)+6=2k +61+k2, OD →=OA →+OB →=(x 1+x 2,y 1+y 2),MC →=(1,-3).(9分)假设OD →∥MC →,则-3(x 1+x 2)=y 1+y 2, 所以3×6k -21+k 2=2k +61+k2,解得k =34,34∈/⎝ ⎛⎭⎪⎫-∞,1-263∪⎝ ⎛⎭⎪⎫1+263,+∞,(11分)所以假设不成立.不存在这样的直线l .(12分)(1)在解题过程中,注意答题要求,严格按照题目及相关知识的要求答题,不仅注意解决问题的巧解,更要注意此类问题的通性通法.如本例(1)中,设出圆的方程,利用待定系数法求出圆的方程.(2)本例(2)中由OD →=OA →+OB →求出OD →,再利用OD →∥MC →可求得k ,两步都应验证,不应忽视.1.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为( )A .4B .3C .2D .1C 法一:(直接法)集合A 表示圆,集合B 表示一条直线,又圆心(0,0)到直线x +y =1的距离d =12=22<1=r ,所以直线与圆相交. 法二:(数形结合法)画图可得(图略).2.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定A 因为圆C 的标准方程为(x +2)2+(y -1)2=2, 所以其圆心坐标为(-2,1),半径为2, 因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.3.(2017·兰州市实战考试)已知直线ax +y -1=0与圆C :(x -1)2+(y +a )2=1相交于A 、B 两点,且△ABC 为等腰直角三角形,则实数a 的值为( )A.17或-1 B .-1 C .1或-1D .1C 由题意得,圆心(1,-a )到直线ax +y -1=0的距离为22,所以|a -a -1|1+a2=22,解得a =±1,故选C.4.若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a 的值为( ) A .±2 B .2 C .-2D .无解A 圆x 2+y 2=a 2的圆心为原点O ,半径r =|a |. 将x 2+y 2=a 2与x 2+y 2+ay -6=0左右分别相减,可得a 2+ay -6=0,即得两圆的公共弦所在直线方程为a 2+ay -6=0.原点O 到直线a 2+ay -6=0的距离d =⎪⎪⎪⎪⎪⎪6a-a ,根据勾股定理可得a 2=(3)2+⎝ ⎛⎭⎪⎫6a -a 2, 所以a 2=4,所以a =±2.故选A.5.(2017·福建福州八中模拟)已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .A 由圆的方程可知圆心为O (0,0),半径为2,因为圆上的点到直线l 的距离等于1的点至少有2个,所以圆心到直线l 的距离d <r +1=2+1,即d =|-a |12+12=|a |2<3,解得a ∈(-32,32),故选A.6.(2017·兰州市诊断考试)在平面直角坐标系xOy 中,已知直线l :x +y +a =0与点A (0,2),若直线l 上存在点M 满足|MA |2+|MO |2=10(O 为坐标原点),则实数a 的取值范围是( )A .(-5-1,5-1)B .C .(-22-1,22-1)D .D 设M (x ,y ),因为|MA |2+|MO |2=10,所以x 2+(y -2)2+x 2+y 2=10,即x 2+(y -1)2=4,由于点M 在直线l 上,所以直线x +y +a =0与圆x 2+(y -1)2=4相交或相切时满足题意,即|1+a |2≤2,解得-22-1≤a ≤22-1.7.直线l :3x -y -6=0与圆x 2+y 2-2x -4y =0相交于A ,B 两点,则|AB |=________. 由x 2+y 2-2x -4y =0,得(x -1)2+(y -2)2=5,所以该圆的圆心坐标为(1,2),半径r =5,又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|9+1=102,由⎝ ⎛⎭⎪⎫|AB |22=r 2-d 2,得|AB |2=4⎝ ⎛⎭⎪⎫5-52=10,即|AB |=10.108.(2017·昆明两区七校调研)已知圆C :(x -3)2+(y -5)2=5,直线l 过圆心且交圆C 于A ,B 两点,交y 轴于P 点,若2 PA →=PB →,则直线l 的斜率k =________.依题意得,点A 是线段PB 的中点,|PC |=|PA |+|AC |=35,过圆心C (3,5)作y 轴的垂线,垂足为C 1,则|CC 1|=3,|PC 1|=(35)2-32=6.记直线l 的倾斜角为θ,则有|tan θ|=|PC 1||CC 1|=2,即k =±2.±29.(2017·云南省统一检测)已知f (x )=x 3+ax -2b ,如果f (x )的图象在切点P (1,-2)处的切线与圆(x -2)2+(y +4)2=5相切,那么3a +2b =________.由题意得f (1)=-2⇒a -2b =-3,又因为f ′(x )=3x 2+a ,所以f (x )的图象在点(1,-2)处的切线方程为y +2=(3+a )(x -1),即(3+a )x -y -a -5=0,所以|(3+a )×2+4-a -5|(3+a )2+1=5⇒a =-52,所以b =14, 所以3a +2b =-7. -710.(2017·贵阳市监测考试)在平面直角坐标系中,已知点P (3,0)在圆C :(x -m )2+(y -2)2=40内,动直线AB 过点P 且交圆C 于A ,B 两点,若△ABC 的面积的最大值为20,则实数m 的取值范围是________.由圆的方程知,圆心C (m ,2),半径r =210,所以S △ABC =12r 2sin ∠ACB =20sin ∠ACB ,所以当∠ACB =π2时,S △ABC 取得最大值20,此时△ABC 为等腰直角三角形,|AB |=2r =45,则点C 到AB 的距离为25,所以25≤|PC |<210,即25≤(m -3)2+22<210,解得-3<m ≤-1或7≤m <9.(-3,-1]∪ (1)因为k AC =-2+11-4=13,所以过切点A (4,-1)的切线斜率为-3,所以过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.(2)设切线方程为2x +y +m =0,则|2-2+m |5=10,所以m =±52,所以切线方程为2x +y ±52=0.12.(2015·高考全国卷Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. (1)由题设可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1, 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.13.(2017·湖南长郡中学月考)两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D .49A 由题意知两圆的标准方程为(x +a )2+y 2=4和x 2+(y -2b )2=1,圆心分别为(-a ,0)和(0,2b ),半径分别为2和1,因为两圆恰有三条公切线,所以两圆外切,故有a 2+4b2=3,即a 2+4b 2=9,所以1a 2+1b 2=19⎝ ⎛⎭⎪⎫9a 2+9b 2=19⎝ ⎛⎭⎪⎫1+4b 2a 2+a 2b 2+4≥19×(1+4+4)=1.当且仅当4b 2a 2=a2b2,即|a |=2|b |时取等号,故选A.14.(2017·南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当S △AOB =1时,直线l 的倾斜角为( )A .150°B .135°C .120°D .不存在A由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心, 以2为半径的半圆,其图象如图所示. 设过点P (2,0)的直线为y =k (x -2), 则圆心到此直线的距离d =|2k |1+k2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=2 2-2k21+k2, 所以S △AOB =12×|2k |1+k 2×22-2k 21+k 2=1,解得k 2=13,由图可得k =-33⎝ ⎛⎭⎪⎫k =33应舍去, 故直线l 的倾斜角为150°.15.已知⊙C :x 2+y 2-2x -4y -20=0,直线l :(2m +1)x +(m +1)y -7m -4=0. (1)求证:直线l 与⊙C 恒有两个交点;(2)若直线l 与⊙C 的两个交点分别为A 、B ,求线段AB 中点P 的轨迹方程,并求弦AB 的最小值.(1)证明:因为⊙C :x 2+y 2-2x -4y -20=0,即(x -1)2+(y -2)2=25,又因为直线l :(2m +1)x +(m +1)y -7m -4=0恒过定点Q (3,1)且点Q 在⊙C 内部,所以直线l 与⊙C 恒有两个交点.(2)由题意知,设点P (x ,y )为弦AB 的中点, 由(1)可知CP →·QP →=0,而CP →=(x -1,y -2),QP →=(x -3,y -1),所以CP →·QP →=(x -1)(x -3)+(y -2)(y -1)=0,化简得:x 2+y 2-4x -3y +5=0,点P 的轨迹方程为x 2+y 2-4x -3y +5=0,由圆的几何性质可知,当Q (3,1)是弦AB 的中点时,|AB |最小.|CQ |=(1-3)2+(2-1)2=5,圆C 的半径为5,所以|AB |min =252-(5)2=4 5. 16.(2017·湖南东部六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.(1)设圆心C (a ,0)(a >-52),则|4a +10|5=2⇒a =0或a =-5(舍).所以圆C :x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t ,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4y =k (x -1)得,(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面解析几何初步:圆与直线一、选择题2、已知两圆相交于点(1,3)(,1)A B m -和点,两圆圆心都在直线:0l x y c -+=上,则c m +的值等于 ( )A .-1B .2C .3D .0解:由题设得:点B A ,关于直线0=+-c y x 对称,41151AB lk m m k -==-=-⇒=-; 线段AB 的中点(3,1)在直线0=+-c y x 上,23c m c ∴=-∴+=,答案选C 。

3、三边均为整数且最大边的长为11的三角形的个数为 ( )A.15B.30C.36D.以上都不对解:设三角形的另外两边长为x ,y ,则01101111x y x y <≤⎧⎪<≤⎨⎪+>⎩;注意“=”号,等于11的边可以多于一条。

点(,)x y 应在如右图所示区域内:当x =1时,y =11;当x =2时,y =10,11;当x =3时,y =9,10,11;当x =4时,y =8,9,10,11;当x =5时,y =7,8,9,10,11。

以上共有15个,x ,y 对调又有15个。

再加(6,6),(7,7),(8,8),(9,9),(10,10)、(11, 11),共36个,答案选C 。

4、设0m >,则直线2()10x y m +++=与圆22x y m +=的位置关系为 ( )A.相切B.相交C.相切或相离D.相交或相切 解:圆心(0,0)到直线的距离为12m d +=,圆半径r m =。

∵211(1)022m d r m m +-=-=-≥, ∴直线与圆的位置关系是相切或相离,答案选C 。

5、已知向量(2cos ,2sin ),(3cos ,3sin ),m n ααββ== 若m 与n 的夹角为60︒,则直线1:cos sin 02l x y αα-+=与圆221:(cos )(sin )2C x y ββ-++=的位置关系是( ) A .相交但不过圆心 B .相交过圆心 C .相切D .相离 解:06(cos cos sin sin )1cos()cos60232||||m n m n αβαβαβ⋅+==-==⋅⋅ , 圆心(cos ,sin )C ββ-到直线l 的距离r d =>=+-=221|21)cos(|βα, ∴直线与圆相离,答案选D 。

复习向量点乘积和夹角余弦的计算及三角函数公式7、若圆2221:()()1C x a y b b -+-=+始终平分圆222:(1)(1)4C x y +++=的周长,则实数ba ,应满足的关系是 ( )A .03222=---b a aB .05222=+++b a aC .0122222=++++b a b aD .01222322=++++b a b a 解:公共弦所在的直线l 方程为:22222(1)(1)-4-()()--1=0x y x a y b b ⎡⎤⎡⎤+++-+-⎣⎦⎣⎦,即:01)1(2)1(22=--+++a y b x a , 圆1C 始终平分圆2C 的周长,∴圆2C 的圆心()1,1--在直线l 上,01)1(2)1(22=--+-+-∴a b a ,即05222=+++b a a ,答案选B 。

二、填空题2、设不等式221(1)x m x ->-对一切满足2m ≤的值均成立,则x 的范围为 。

解:原不等式变换为2(1)(12)0x m x -+-<,设:2()(1)(12)f m x m x =-+-,(22)m -≤≤,按题意得:(2)0,(2)0f f -<<。

即:2222307131222210x x x x x ⎧+->-+⎪⇒<<⎨--<⎪⎩。

3、已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最大值与最小值之差为 。

解: 圆心()1,1C 到直线的距离=11422211r -+=>=+,∴直线与圆相离,∴C 上各点到l 的距离的最大值与最小值之差=r 2=22 。

4、直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。

解:直线方程消去参数t 得:10x y +-=,圆心到直线的距离1222d ==,弦长的一半为222142()22-=,得弦长为14。

6、点A (-3,3)发出的光线l 射到x 轴上被x 轴反射,反射光线与圆22:4470C x y x y +--+=相切,则光线l 所在直线方程为____ __。

解:光线l 所在的直线与圆C 关于x 轴对称的圆'C 相切。

圆心'C 坐标为()2,2-,半径1r =,直线过点A (-3,3),设l 的方程为:3(3)y k x -=+,即:330kx y k -++=圆心'C 到直线l 的距离2223311k k d k +++==+,21225120k K ⇒++= 解得:43k =-或34k =-,得直线l 的方程:4330x y ++=或3430x y +-=。

8、过圆224x y +=内一点)1,1(A 作一弦交圆于C B 、两点,过点C B 、分别作圆的切线PC PB 、,两切线交于点P ,则点P 的轨迹方程为 。

解:设00(,)P x y ,根据题设条件,线段BC 为点P 对应圆上的切点弦,∴直线BC 的方程为400=+y y x x ,A 点在BC 上,400=+∴y x ,即P 的轨迹方程为:4=+y x 。

注意掌握切点弦的证明方法。

三、解答题1、已知过原点O 的一条直线与函数8log y x =的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数2log y x =的图象交于C 、D 两点。

(1)证明:点C 、D 和原点O 在同一直线上;(2)当BC 平行于x 轴时,求点A 的坐标。

解:(1)设A 、B 的横坐标分别为12x x 、,由题设知1211x x >>、,得点181282(,log )(,log )A x x B x x 、,121222(,log )(,log )C x x D x x 、,A 、B 在过点O 的直线上,∴818212log log x x x x =, 8182212211223log 3log log log OC OD x x x x k k x x x x ====,,得:OC OD k k =,∴O 、C 、D 共线。

(2)由BC 平行于x 轴,有3218221log log x x x x =⇒= 代入818212log log x x x x =,得3181181log 3log x x x x =, 11x >,81log 0x ∴≠ ∴3113x x =,13x =,得8(3,log 3)A 。

3、已知1a <、1b <、1c <,求证:2abc a b c +>++ 证一:111a a <⇔-<<,111b b <⇔-<<,111c c <⇔-<<11111b bc bc c ⎧<⎪⇒<⇔-<<⎨<⎪⎩, 设函数()2()(1)(1)(1)y f a abc a b c bc a b c ==+-++=-+-+-,则:(1)(1)(1)(1)0(1)(1)(1)(1)(1)(1)0f bc b c f bc b c b c -=-+-+->⎫⇒⎬=-+-+-=-->⎭当a (1,1)∈-,即1a <时,上述函数()y f a =表示的直线都在a 轴上方,即:1a <、1b <、1c <,不等式2abc a b c +>++成立,证毕。

因为题中变量较多,考虑“固定”某变量(这里是a ),然后利用一次函数的性质来证明代数不等式的方法值得借鉴。

证二: 1a <、1b <,(1)(1)10a b ab a b ∴--=--+>,即:1a b ab +<+ ①; 111a ab b ⎧<⎪⇒<⎨<⎪⎩、1c <1ab c abc ⇒+<+ ②(将ab 看作一个数,利用①的结论) 由①式得1ab a b >+-,11a b c ab c abc +-+<+<+,即:2abc a b c +>++,证毕。

仔细体会上述递推证明的方法,你能进一步推广运用吗?如试证明4a b c d e abcde ++++<+,其中,,,,(1,1)a b c d e ∈-。

5、如图,已知圆心坐标为)1,3(M 的圆M 与x 轴及直线x y 3=均相切,切点分别为A 、B ,另一圆N 与圆M 、x 轴及直线x y 3=均相切,切点分别为C 、D 。

(1)求圆M 和圆N 的方程;(2)过B 点作MN 的平行线l ,求直线l 被圆N截得的弦的长度;解:(1)由于圆M 与BOA ∠的两边相切,故M 到OA 及OB 的距离均为圆M 的半径,则M 在BOA ∠的角平分线上,同理,N 也在BOA ∠的角平分线上,即N M O 、、三点共线,且OMN 为BOA ∠的角平分线,M 的坐标为)1,3(M ,M ∴到x 轴的距离为1,即:圆M 的半径为1,∴圆M 的方程为1)1()3(22=-+-y x ;设圆N 的半径为r ,由OCN Rt OAM Rt ∆∆~,得:NC MA ON OM ::=, 即3132=⇒=+r rr ,33=OC ,∴圆N 的方程为:9)3()33(22=-+-y x ; (2)由对称性可知,所求弦长等于过A 点的MN 的平行线被圆N 截得的弦长, 此弦所在直线方程为)3(33-=x y ,即033=--y x , 圆心N 到该直线的距离233133333=+-⋅-=d ,则弦长=33222=-d r 注:也可求得B 点坐标⎪⎪⎭⎫ ⎝⎛23,23,得过B 点MN 的平行线l 的方程033=+-y x ,再根据圆心N 到直线l 的距离等于23,求得答案33;还可以直接求A 点或B 点到直线的距离,进而求得弦长。

6、已知两圆4:221=+y x C ;0442:222=+--+y x y x C ,直线02:=+y x l ,求经过圆21C C 、的交点且和直线l 相切的圆的方程。

解:设所求圆的方程为0)4(4422222=-+++--+y x y x y x λ,即:04442)1()1(22=-+--+++λλλy x y x ,得: 圆心坐标为⎪⎭⎫ ⎝⎛++λλ12,11;半径⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-=λλλλ111614122122r , 所求圆与直线l 相切,∴圆心到直线的距离2111614125141122⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-==+++=λλλλλλr d ,解得1±=λ,舍去1-=λ ∴所求圆的方程为:0222=--+y x y x要熟练掌握过两圆交点的圆系的方程及公共弦的直线方程(=-1λ)7、如果实数x 、y 满足22(2)3x y ++=,求y x的最大值、2y x -的最小值。

相关文档
最新文档