2020年徐州市初中毕业升学考试初中数学

合集下载

2020年江苏省徐州市中考数学试卷

2020年江苏省徐州市中考数学试卷

∴a ∠HFE 90° ∵OA OE FO⊥AE ∴FA FE ∴OF OA OE 1 ∴3a
1 ∴a
a 3 EH∥GK A 1 0 F 0 3a D 2 3a H 2 3a E 1 0 ∴ AF y 3ax 3a DF y
3ax 3a ∴K 6 21a ∴G 3 12a ∴ HE y ax+a GK y ax 15a ∵k ∴HE∥GK 25 25
∴DEAC 5 5 14 3 2020? Rt△ABC ∠C 90° AC 4 BC 3 AC
△ABC
15π
l5 r
3 ∴ s πlr 5×3×π 15π 15π 15 3 2020? x 9
9 x 1 8x9x 9 8xx 9 x 9 x x 1 ≠0 x 9
x
9 16 3 2020? A B C D
13
“B ”
1 “B ” 2
9
“”
3 ∴P
22 7 2020?
ABCD x min 0≤x 3030≤x 606
0≤x 90x≥90 450400m50
1
1000 m 100 2
“B”
144° 3
60min “ ” 60
0
“”
1 450÷45% 1000 m 1000 450+400
+50 100 1000 100 2 360°144°
“B”
144°
144 3 60090
“ ” 90 23 8 2020? AC
⊥BC DC⊥EC AC BC DC EC AE BD F 1 AE BD 2 ∠AFD
1
∵AC⊥BC DC⊥EC ∴∠ACB ∠DCE 90° ∴∠ACE ∠BCD △ACE △BCD ∴△ACE≌△BCD SA

江苏省徐州市2020年中考数学试题及参考答案

江苏省徐州市2020年中考数学试题及参考答案

【答案】D 【解析】 【分析】 由合并同类项、同底数幂除法,完全平方公式、积的乘方,分别进行判断,即可得到答案.
【详解】解:A、 a2 2a2 3a2 ,故 A 错误;
B、 a6 a3 a3 ,故 B 错误;
C、 (a b)2 a2 2ab b2 ,故 C 错误;
D、 (ab)2 a2b2 ,故 D 正确;
故选:D. 【点睛】本题考查了同底数幂除法,积的乘方,完全平方公式,合并同类项,解题的关键是熟练掌握运算 法则进行解题.
7.如图, AB 是 O 的弦,点 C 在过点 B 的切线上, OC OA , OC 交 AB 于点 P .若 BPC 70 , 则 ABC 的度数等于( )
A. 75
【答案】B
【答案】 7
【解析】
2
∵ 7 7 ,∴7 的平方根是 7 ,
故答案为 7 .
10.分解因式: x2 4

【答案】 x+2 x 2 .
【解析】 【分析】 先把式子写成 x2-22,符合平方差公式的特点,再利用平方差公式分解因式. 【详解】x2-4=x2-22=(x+2)(x-2).
1.3 的相反数是( ).
A. 3
B. 3
C. 1 3
D. 1 3
【答案】A
【解析】
【分析】
相反数的定义:只有符号不同的两个数互为相反数,根据相反数的定义即可得.
【详解】3 的相反数是-3
故选:A.
【点睛】本题考查了相反数的定义,熟记定义是解题关键.
2.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是( )
D.极差为 36.6-36.2=0.4( C ),故此选项错误,
故选:B. 【点睛】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键. 6.下列计算正确的是( )

2020年江苏省徐州市中考数学试卷(后附答案及详尽解析)

2020年江苏省徐州市中考数学试卷(后附答案及详尽解析)

2020年江苏省徐州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)(2020•徐州)3的相反数是()A.﹣3B.3C.−13D.132.(3分)(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm4.(3分)(2020•徐州)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.155.(3分)(2020•徐州)小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5℃B.众数是36.2°CC.平均数是36.2℃D.极差是0.3℃6.(3分)(2020•徐州)下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a﹣b)2=a2﹣b2D.(ab)2=a2b27.(3分)(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°8.(3分)(2020•徐州)如图,在平面直角坐标系中,函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),则代数式1a−1b的值为()A.−12B.12C.−14D.14二.填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)(2020•徐州)7的平方根是.10.(3分)(2020•徐州)分解因式:m2﹣4=.11.(3分)(2020•徐州)若√x−3在实数范围内有意义,则x的取值范围是.12.(3分)(2020•徐州)原子很小,1个氧原子的直径大约为0.000000000148m,将0.000000000148用科学记数法表示为.13.(3分)(2020•徐州)如图,在Rt△ABC中,∠ABC=90°,D、E、F分别为AB、BC、CA的中点,若BF=5,则DE=.14.(3分)(2020•徐州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于.15.(3分)(2020•徐州)方程9x =8x−1的解为.16.(3分)(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.17.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于.18.(3分)(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2020•徐州)计算:(1)(﹣1)2020+|√2−2|﹣(12)﹣1;(2)(1−1a)÷a2−2a+12a−2.20.(10分)(2020•徐州)(1)解方程:2x2﹣5x+3=0;(2)解不等式组:{3x−4<52x−13>x−22.21.(7分)(2020•徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)22.(7分)(2020•徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如图尚不完整的统计图表:市民每天的阅读时间统计表类别A B C D 阅读时间x(min)0≤x<3030≤x<6060≤x<90x≥90频数450400m50根据以上信息解答下列问题:(1)该调查的样本容量为,m=;(2)在扇形统计图中,“B”对应扇形的圆心角等于°;(3)将每天阅读时间不低于60min的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.23.(8分)(2020•徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.24.(8分)(2020•徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准目的地起步价(元)超过1千克的部分(元/千克)上海a b北京a+3b+4实际收费目的地质量费用(元)上海29北京 3 22求a ,b 的值.25.(8分)(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD 边AB 的中点M 处有一座雕塑.在某一时刻,小红到达点P 处,爸爸到达点Q 处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM =30m ,求小红与爸爸的距离PQ .(结果精确到1m ,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)26.(8分)(2020•徐州)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (0,﹣4)、B (2,0),交反比例函数y =mx (x >0)的图象于点C (3,a ),点P 在反比例函数的图象上,横坐标为n (0<n <3),PQ ∥y 轴交直线AB 于点Q ,D 是y 轴上任意一点,连接PD 、QD .(1)求一次函数和反比例函数的表达式; (2)求△DPQ 面积的最大值.27.(10分)(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC AB=AB AC,那么称点B 为线段AC 的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF,连接CE,将CB折叠到CE上,点B对应点H,得折痕CG.试说明:G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E(AE >DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.28.(10分)(2020•徐州)如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:;(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.2020年江苏省徐州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(3分)(2020•徐州)3的相反数是()A.﹣3B.3C.−13D.13【解答】解:根据相反数的含义,可得3的相反数是:﹣3.故选:A.2.(3分)(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、既是中心对称图形,也是轴对称图形,故此选项符合题意;D、不是中心对称图形,不是轴对称图形,故此选项不合题意;故选:C.3.(3分)(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm【解答】解:设第三边长为xcm,根据三角形的三边关系可得:6﹣3<x<6+3,解得:3<x<9,故选:C.4.(3分)(2020•徐州)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.15【解答】解:设袋子中红球有x个,根据题意,得:x20=0.25,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.5.(3分)(2020•徐州)小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5℃B.众数是36.2°CC.平均数是36.2℃D.极差是0.3℃【解答】解:把小红连续5天的体温从小到大排列得,36.2,36.2,36.3.36.5,36.6,处在中间位置的一个数是36.3℃,因此中位数是36.3℃;出现次数最多的是36.2℃,因此众数是36.2℃;平均数为:x=(36.2+36.2+36.3+36.5+36.6)÷5=36.36℃,极差为:36.6﹣36.2=0.4℃,故选:B.6.(3分)(2020•徐州)下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2【解答】解:a2+2a2=3a2,因此选项A不符合题意;a6÷a3=a6﹣3=a3,因此选项B不符合题意;(a﹣b)2=a2﹣2ab+b2,因此选项C不符合题意;(ab)2=a2b2,因此选项D符合题意;故选:D.7.(3分)(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°【解答】解:∵OC⊥OA,∴∠AOC=90°,∵∠APO=∠BPC=70°,∴∠A=90°﹣70°=20°,∵OA=OB,∴∠OBA=∠A=20°,∵BC为⊙O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ABC=90°﹣20°=70°.故选:B.8.(3分)(2020•徐州)如图,在平面直角坐标系中,函数y=4x(x>0)与y=x﹣1的图象交于点P(a,b),则代数式1a−1b的值为()A.−12B.12C.−14D.14【解答】解:法一:由题意得,{y =4x y =x −1,解得,{x =1+√172y =√17−12或{x =1−√172y =−1−√172(舍去), ∴点P (1+√172,√17−12), 即:a =1+√172,b =√17−12, ∴1a −1b=1+√17−√17−1=−14;法二:由题意得,函数y =4x (x >0)与y =x ﹣1的图象交于点P (a ,b ), ∴ab =4,b =a ﹣1, ∴1a −1b =b−a ab=−14;故选:C .二.填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.(3分)(2020•徐州)7的平方根是 ±√7 . 【解答】解:7的平方根是±√7. 故答案为:±√7.10.(3分)(2020•徐州)分解因式:m 2﹣4= (m +2)(m ﹣2) . 【解答】解:m 2﹣4=(m +2)(m ﹣2). 故答案为:(m +2)(m ﹣2).11.(3分)(2020•徐州)若√x −3在实数范围内有意义,则x 的取值范围是 x ≥3 . 【解答】解:根据题意得x ﹣3≥0, 解得x ≥3. 故答案为:x ≥3.12.(3分)(2020•徐州)原子很小,1个氧原子的直径大约为0.000000000148m ,将0.000000000148用科学记数法表示为 1.48×10﹣10.【解答】解:0.000000000148=1.48×10﹣10.故答案为:1.48×10﹣10.13.(3分)(2020•徐州)如图,在Rt △ABC 中,∠ABC =90°,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =5,则DE = 5 .【解答】解:如图,∵在Rt△ABC中,∠ABC=90°,F为CA的中点,BF=5,∴AC=2BF=10.又∵D、E分别为AB、BC的中点,∴DE是Rt△ABC的中位线,∴DE=12AC=5.故答案是:5.14.(3分)(2020•徐州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于15π.【解答】解:由已知得,母线长l=5,底面圆的半径r为3,∴圆锥的侧面积是s=πlr=5×3×π=15π.故答案为:15π.15.(3分)(2020•徐州)方程9x =8x−1的解为x=9.【解答】解:去分母得:9(x﹣1)=8x9x﹣9=8xx=9检验:把x=9代入x(x﹣1)≠0,所以x=9是原方程的解.故答案为:x=9.16.(3分)(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为10.【解答】解:连接OA,OB,∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数=360°36°=10,故答案为:10.17.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A3B3=2A2B2=22•A1B1,…,由此规律可得A20B20=219•A1B1,∵A1B1=OA1•tan30°=√3×√33=1,∴A20B20=219,故答案为219.18.(3分)(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为9√2+9.【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=12AB=12×6=3,∴OA=√OM2+AM2=3√2,∴CM=OC+OM=3√2+3,∴S△ABC=12AB•CM=12×6×(3√2+3)=9√2+9.故答案为:9√2+9.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(2020•徐州)计算:(1)(﹣1)2020+|√2−2|﹣(12)﹣1;(2)(1−1a)÷a2−2a+12a−2.【解答】解:(1)原式=1+2−√2−2=1−√2;(2)原式=a−1a÷(a−1)22(a−1)=a−1a •2a−1 =2a.20.(10分)(2020•徐州)(1)解方程:2x 2﹣5x +3=0; (2)解不等式组:{3x −4<52x−13>x−22.【解答】解:(1)2x 2﹣5x +3=0, (2x ﹣3)(x ﹣1)=0, ∴2x ﹣3=0或x ﹣1=0, 解得:x 1=32,x 2=1; (2){3x −4<5①2x−13>x−22②解不等式①,得x <3. 解不等式②,得x >﹣4.则原不等式的解集为:﹣4<x <3.21.(7分)(2020•徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A 组(体温检测)、B 组(便民代购)、C 组(环境消杀). (1)小红的爸爸被分到B 组的概率是13;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)【解答】解:(1)共有3种等可能出现的结果,被分到“B 组”的有1中,因此被分到“B 组”的概率为13;(2)用列表法表示所有等可能出现的结果如下:共有9种等可能出现的结果,其中“他与小红的爸爸”在同一组的有3种, ∴P (他与小红爸爸在同一组)=39=13.22.(7分)(2020•徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如图尚不完整的统计图表:市民每天的阅读时间统计表类别A B C D 阅读时间x(min)0≤x<3030≤x<6060≤x<90x≥90频数450400m50根据以上信息解答下列问题:(1)该调查的样本容量为1000,m=100;(2)在扇形统计图中,“B”对应扇形的圆心角等于144°;(3)将每天阅读时间不低于60min的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.【解答】解:(1)450÷45%=1000,m=1000﹣(450+400+50)=100.故答案为:1000,100;(2)360°×4001000=144°.即在扇形统计图中,“B”对应扇形的圆心角等于144°.故答案为:144;(3)600×100+501000=90(万人).答:估计该市能称为“阅读爱好者”的市民有90万人.23.(8分)(2020•徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F .(1)求证:AE =BD ; (2)求∠AFD 的度数.【解答】解:(1)∵AC ⊥BC ,DC ⊥EC , ∴∠ACB =∠DCE =90°, ∴∠ACE =∠BCD , 在△ACE 和△BCD 中, {AC =BC∠ACE =∠BCD CE =CD, ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)∵∠ACB =90°, ∴∠A +∠ANC =90°, ∵△ACE ≌△BCD , ∴∠A =∠B , ∵∠ANC =∠BNF ,∴∠B +∠BNF =∠A +∠ANC =90°, ∴∠AFD =∠B +∠BNF =90°.24.(8分)(2020•徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表: 收费标准 目的地 起步价(元)超过1千克的部分(元/千克)上海 a b 北京 a +3b +4实际收费 目的地 质量 费用(元)上海 2 9 北京 322求a ,b 的值.【解答】解:依题意,得:{a +(2−1)b =9a +3+(3−1)(b +4)=22,解得:{a =7b =2.答:a 的值为7,b 的值为2.25.(8分)(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD 边AB 的中点M 处有一座雕塑.在某一时刻,小红到达点P 处,爸爸到达点Q 处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM =30m ,求小红与爸爸的距离PQ .(结果精确到1m ,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)【解答】解:作PN ⊥BC 于N ,如图: 则四边形ABNP 是矩形, ∴PN =AB ,∵四边形ABCD 是矩形, ∴∠A =90°,∵∠APM=45°,∴△APM是等腰直角三角形,∴AM=√22PM=√22×30=15√2(m),∵M是AB的中点,∴PN=AB=2AM=30√2m,在Rt△PNQ中,∠NPQ=90°﹣∠DPQ=90°﹣60°=30°,∴NQ=√33PN=10√6m,PQ=2NQ=20√6≈49(m);答:小红与爸爸的距离PQ约为49m.26.(8分)(2020•徐州)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=mx(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.(1)求一次函数和反比例函数的表达式;(2)求△DPQ面积的最大值.【解答】解:(1)把A(0,﹣4)、B(2,0)代入一次函数y=kx+b得,{b=−4,解得,{k=2,∴一次函数的关系式为y =2x ﹣4,当x =3时,y =2×3﹣4=2,∴点C (3,2),∵点C 在反比例函数的图象上,∴k =3×2=6,∴反比例函数的关系式为y =6x,答:一次函数的关系式为y =2x ﹣4,反比例函数的关系式为y =6x ;(2)点P 在反比例函数的图象上,点Q 在一次函数的图象上,∴点P (n ,6n ),点Q (n ,2n ﹣4), ∴PQ =6n−(2n ﹣4), ∴S △PDQ =12n [6n −(2n ﹣4)]=﹣n 2+2n +3=﹣(n ﹣1)2+4,∴当n =1时,S 最大=4,答:△DPQ 面积的最大值是4.27.(10分)(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC AB =AB AC ,那么称点B 为线段AC 的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 (10√5−10) cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.【解答】解:(1)∵点B 为线段AC 的黄金分割点,AC =20cm ,∴AB =√5−12×20=(10√5−10)cm .故答案为:(10√5−10).(2)延长EA ,CG 交于点M ,∵四边形ABCD 为正方形,∴DM ∥BC ,∴∠EMC =∠BCG ,由折叠的性质可知,∠ECM =∠BCG ,∴∠EMC =∠ECM ,∴EM =EC ,∵DE =10,DC =20,∴EC =√DE 2+DC 2=√102+202=10√5,∴EM =10√5,∴DM =10√5+10,∴tan ∠DMC =DC DH =10√5+10=√5+1=√5−12. ∴tan ∠BCG =√5−12, 即BG BC =√5−12, ∴BG AB =√5−12, ∴G 是AB 的黄金分割点;(3)当BP =BC 时,满足题意.理由如下:∵四边形ABCD 是正方形,∴AB =BC ,∠BAE =∠CBF =90°,∵BE ⊥CF ,∴∠ABE +∠CBF =90°,又∵∠BCF +∠BFC =90°,∴∠BCF =∠ABE ,∴△ABE ≌△BCF (ASA ),∴BF =AE ,∵AD ∥CP ,∴△AEF ∽△BPF ,∴AE BP =AF BF ,当E 、F 恰好分别是AD 、AB 的黄金分割点时,∵AE >DE ,∴AF BF =BF AB ,∵BF =AE ,AB =BC ,∴AF BF =BF AB =AE BC ,∴AE BP =AE BC , ∴BP =BC .28.(10分)(2020•徐州)如图,在平面直角坐标系中,函数y =﹣ax 2+2ax +3a (a >0)的图象交x 轴于点A 、B ,交y 轴于点C ,它的对称轴交x 轴于点E .过点C 作CD ∥x 轴交抛物线于点D ,连接DE 并延长交y 轴于点F ,交抛物线于点G .直线AF 交CD 于点H ,交抛物线于点K ,连接HE 、GK .(1)点E 的坐标为: (1,0) ;(2)当△HEF 是直角三角形时,求a 的值;(3)HE 与GK 有怎样的位置关系?请说明理由.【解答】解:(1)对于抛物线y=﹣ax2+2ax+3a,对称轴x=−2a−2a=1,∴E(1,0),故答案为(1,0).(2)如图,连接EC.对于抛物线y=﹣ax2+2ax+3a,令x=0,得到y=3a,令y=0,﹣ax2+2ax+3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),C(0,3a),∵C,D关于对称轴对称,∴D(2,3a),CD=2,EC=DE,当∠HEF=90°时,∵ED=EC,∴∠ECD=∠EDC,∵∠DCF=90°,∴∠CFD+∠EDC=90°,∠ECF+∠ECD=90°,∴∠ECF=∠EFC,∴EC=EF=DE,∵EA∥DH,∴F A=AH,∴AE=12DH,∵AE=2,∴DH=4,∵HE⊥DFEF=ED,∴FH=DH=4,在Rt △CFH 中,则有42=22+(6a )2,解得a =√33或−√33(不符合题意舍弃),∴a =√33.当∠HFE =90°时,∵OA =OE ,FO ⊥AE ,∴F A =FE ,∴OF =OA =OE =1,∴3a =1,∴a =13,综上所述,满足条件的a 的值为√33或13. (3)结论:EH ∥GK .理由:由题意A (﹣1,0),F (0,﹣3a ),D (2,3a ),H (﹣2,3a ),E (1,0), ∴直线AF 的解析式y =﹣3ax ﹣3a ,直线DF 的解析式为y =3ax ﹣3a ,由{y =−3ax −3a y =−ax 2+2ax +3a,解得{x =−1y =0或{x =6y =−21a , ∴K (6,﹣21a ),由{y =3ax −3a y =−ax 2+2ax +3a,解得{x =2y =3a 或{x =−3y =−12a , ∴G (﹣3,﹣12a ),∴直线HE 的解析式为y =﹣ax +a ,直线GK 的解析式为y =﹣ax ﹣15a ,∵k 相同,∴HE ∥GK .。

2020年江苏省徐州巿中考数学试题及答案

2020年江苏省徐州巿中考数学试题及答案

初中毕业、升学考试数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上.2.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的) 1.4的平方根是A.2±B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元 3.函数11y x =+中自变量x 的取值范围是 A. x ≥-1 B. x ≤-1 C. x ≠-1 D. x =-1 4.下列运算中,正确的是A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1 5.如果点(3,-4)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是 A.(3,4) B. (-2,-6) C.(-2,6) D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是ABC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B. 13 C. 12 D. 14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上................) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷(第10题图)(第15题图)(第16题图)三、解答题(每小题5分,共20分)17.计算:2008011(1)()3π--+-+18.已知21,23.x x x =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:DCBAB(第20题图)(第21题图)项目月功能费基本话费长途话费短信费金额/元 5金额/元6050403020100项目(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2007年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)行驶路程 收费标准调价前 调价后 不超过3km 的部分 起步价6元起步价a 元超过3km 不超出6km 的部分每公里2.1元每公里b 元超出6km 的部分每公里c 元设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.FEDCB A 13.311.276763Oxy26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC②AB=CD③∠BAD=∠DCB④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点..E.旋转..,并使边DE与边AB交于点P,边EF与边BC于点Q【探究一】在旋转过程中,(1)如图2,当CE1EA=时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图3,当CE2EA=时EP与EQ满足怎样的数量关系?,并说明理由.(3) 根据你对(1)、(2)的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.F C(E)A(D)Q PDEFCBAQPDEFCBA(图1) (图2) (图3)徐州巿2008年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2 12. 3750元 13.-1 14. 15.126° 16.7cm17.解:原式=1+1-3+2=118.解:,将代入到上式,则可得19.解:20.解:如图所示,过点A 、D 分别作BC 的垂线AE 、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =12.1所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)(2)(2)x x -+24a 223(3)(1)x x x x --=-+1x =223111)2)1x x --=-+==-12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩BE FDCBA(4) 24. 解:如下图所示,(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2) (3)有交点为其意义为当时是方案调价前合算,当时方案调价后合算. 26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1) (2) (0,3),(-3,0),(1,0) (3)略1 2.10.3y x =-31(,9)7317x <317x >223y x x =--+50403020100项目金额/元。

2020年江苏省徐州市中考数学试卷附解析

2020年江苏省徐州市中考数学试卷附解析

2020年江苏省徐州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列运算中正确的是( )A .(5)5L -=-B .2(5)5-=-C .2(5)5--=D .2(5)5-=2.已知正比例函数y=ax (a 为常数,且a≠0),y 随x 的增大而减小,则一次函数y ax a =-+的图象不经过( )A .第一象限B .第二象限C .第三象限D . 第四象限3.已知关于x 的不式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( ) A .2 B . 2.1 C .3 D .14.将一个立方体沿某些棱展开后,能够得到的平面图形是( )A .B .C .D .5.如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m /s ,摩托车的速度为10 m /s ,那么10 s 后,两车大约相距 ( )A .55 mB .l03 mC .125 mD .153 m6.5()10()a x y b y x ---在分解因式时,提取的公因式应当为( )A . 510a b -B .510a b +C .5()x y -D .y x -7.若二元一次方程21y x =-,3y kx =-,5y x =-+只有一组公共解,则k 的值等于( )A .1B .2C .3D .4 8.梯形的面积为 S ,上底为 a ,下底为 b ,那么高h 等于( ) A .1()2S a b + B .2S a b + C .2S()a b + D .2()a b S + 9.小明测得一周的体温并登记如下表:(单位:℃ )其中星期四的体温被墨汁污染,根据表中数据,可得此目的体温是( )A .36.7℃B .36.8℃C .36.9℃D .37.0℃二、填空题10.如果130sin sin 22=+ α,那么锐角α的度数是 . 11.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.12.在□ABCD 中,∠A 比∠B 大20°,则∠C 为 度.13.若方程组21,23x y m x y +=+⎧⎨+=⎩中未知数x 、y 满足2x y +>,则 m 的取值范围是 . 14.正三角形是轴对称图形,对称轴有 条.15.如图,直线1a ∥2a ,点A 在直线1a 上,点B 、C 在直线2a 上,BC=5,△ABC 的面积为10,则直线1a 与直线2a 之间的距离是 .16.如图,请写出能判定 CE ∥AB 的一个条件: .17.用x 、y 分别表示 2辆三轮车和3辆卡车一次运货的吨数,那么5辆三轮车和4辆卡车共能运货24吨所表示的数量关系式是 .18.在ABC △中,BC 边不动,点A 竖直向上运动,A ∠越来越小,BC ∠∠,越来越大.若A ∠减少α度,B ∠增加β度,C ∠增加γ度,则αβγ,,三者之间的等量关系是 .19.如图,图①经过 变为图②,再经过 变为图③.20.直角三角形作相似变换,各条边放大到原来的3倍,则放大后所得图形面积是原图形面积的 倍.21.要锻造一个直径为12 cm ,高10 cm 的圆柱形零件,需要直径为16 cm 的圆柱形钢条 .cm22.计算:()()4622-÷-=___________. 23.如果一个立体图形的主视图为长方形,则这个立体图形可能是 (只需填上一个立图形)三、解答题24. 如图,它是实物与其三种视图,在三视枧图中缺少一些线(包括实线和虚线),请将它 们补齐,让其成为一个完整的三种视图.25.先确定图中路灯灯泡的位置,再根据小浩的影子画出表示小洁身高的线段.26.近年来某市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加,从2004年底到2006年底城市绿地面积变化如图所示,那么绿地面积的年平均增长率是 .27.计算:(1)(10x 2y -5xy 2)÷5xy (2)x x -1·x 2-1x 228.如图所示,已知△ABC≌△DCB,其中AB=DC,试说明∠ABD=∠ACD的理由.29.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.30.杭州世博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计..为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的解析式;(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.C5.B6.C7.C8.B9.A二、填空题10.60°11.60度12.10013.m>214.315.4cm16.答案不唯一.如∠A=∠DCE17. 542423x y +=18. αβγ=+19.平移变换,轴对称变换20.921.5.62522.-423.答案不唯一,如长方体三、解答题24.25.如上图所示.P 为路灯灯泡,AB 即为小浩的身高.26.10%27.(1)y x -2;(2)xx 1+. 28.略29.设原来的两位数是10a+b ,则调换位置后的新数是10b+a .(10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除30.(1)由题意,x=1时,y=2;x=2时,y=2+4=6.代入y=ax 2+bx ,解得a=b=1,所以y=x 2+x ;(2)纯收益g=33x-150-(x 2+x )=-x 2+32x-150;(3)g=-(x-16)2+106,即设施开放16个月后,游乐场的纯收益达到最大; 又在0<x ≤16时,g 随着x 的增大而增大,当x ≤5时,g<0;而x=6时,g>0. 所以6个月后能收回投资.。

2020徐州中考数学试卷答案及解析

2020徐州中考数学试卷答案及解析

2020徐州中考数学试卷答案及解析分析:科学记数法的表示方法为a×10^b,其中1≤a<10,b为整数。

因此,需要将化为科学记数法的形式。

解答:=6.15×10^4故答案为6.15×10^4.点评:此题考查了科学记数法的基本概念和表示方法,需要掌握科学记数法的转化方法。

11、已知函数y=2x-1,当x=3时,y=______________。

考点:函数的概念和运算分析:根据函数的定义,将x=3代入函数y=2x-1中即可求得y的值。

解答:y=2×3-1=5故答案为5.点评:此题考查了函数的基本概念和运算,需要掌握函数的定义和代入法求解函数值的方法。

12、已知三角形ABC,∠A=60°,AB=3,AC=4,BC=5,则△ABC的高为______________。

考点:三角形的基本概念和性质分析:根据三角形的性质,可以利用三角形的面积公式求解△XXX的高。

解答:设△ABC的高为AD,则△ABC的面积为S=1/2×BC×AD=1/2×5×AD。

又因为△ABC为等边三角形,所以BD=CD=BC/2=2.5.由勾股定理可得,AD^2=AC^2-BD^2=4^2-2.5^2=11.25,故AD=√11.25=3/2×√5.因此,△ABC的高为3/2×√5.故答案为3/2×√5.点评:此题考查了三角形的基本概念和性质,需要掌握三角形面积公式和勾股定理的应用。

13、已知正方体的棱长为3cm,则它的体积为______________。

考点:正方体的基本概念和计算分析:根据正方体的定义,可以利用正方体的体积公式求解正方体的体积。

解答:正方体的体积为V=a^3=3^3=27.故答案为27.点评:此题考查了正方体的基本概念和计算,需要掌握正方体的定义和体积公式。

14、已知函数y=2x-1和函数z=x^2-3x,当x=2时,y+z=______________。

江苏省徐州市2020年中考数学试题(解析版)

江苏省徐州市2020年中考数学试题(解析版)

4.在一个不透明的袋子里装有红球、黄球共 20 个,这些球除颜色外都相同.小明通过多次实验发现,摸出
红球的频率稳定在 0.25 左右,则袋子中红球的个数最有可能是( )
A. 5
B. 10
C. 12
D. 15
【答案】A
【解析】
【分析】
设袋子中红球有 x 个,根据摸出红球的频率稳定在 0.25 左右列出关于 x 的方程,求出 x 的值即可得答案.
【答案】完全平方公式、积的乘方,分别进行判断,即可得到答案.
【详解】解:A、 a2 2a2 3a2 ,故 A 错误;
B、 a6 a3 a3 ,故 B 错误;
C、 (a b)2 a2 2ab b2 ,故 C 错误;
D、 (ab)2 a2b2 ,故 D 正确;
B. 70
C. 65
D. 60
【分析】
根据题意可求出∠APO、∠A 的度数,进一步可得∠ABO 度数,从而推出答案.
【详解】∵ BPC 70 ,
∴∠APO=70°,
∵ OC OA,
∴∠AOP=90°,∴∠A=20°, 又∵OA=OB, ∴∠ABO=20°, 又∵点 C 在过点 B 的切线上, ∴∠OBC=90°, ∴∠ABC=∠OBC−∠ABO=90°−20°=70°, 故答案为:B. 【点睛】本题考查的是圆切线的运用,熟练掌握运算方法是关键.
【详解】∵函数 y 4 x 0 与 y x 1的图像交于点 P( a , b ),
x
∴ b 4 , b a 1,即 ab 4 , b a 1, a
∴1 1 ba 1. a b ab 4
故选:C.
【点睛】本题考查了代数式的求值以及反比例函数与一次函数的交点问题:反比例函数与一次函数的交点

2020年江苏省徐州市中考数学试题(word版,含解析)

2020年江苏省徐州市中考数学试题(word版,含解析)
【答案】1.48×10−10
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】 =1.48×10−10.
故答案为:1.48×10−10.
【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
【解析】
【分析】
把P( , )代入两解析式得出 和 的值,整体代入 即可求解C
【详解】∵函数 与 的图像交于点P( , ),
∴ , ,即 , ,
∴ .
故选:C.
【点睛】本题考查了代数式的求值以及反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标同时满足两个函数的解析式.
二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)
(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E(AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.
28.(10分)如图,在平面直角坐标系中,函数 的图像交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.
则中位数为36.3 ,故此选项错误
B.36.2出现了两次,故众数是36.2 ,故此选项正确;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年徐州市初中毕业升学考试初中数学
数 学 试 题
本试卷分第一卷和第二卷两部分,第一卷1至2页,第二卷3至8页,全卷共120分,考试时刻120分钟。

第一卷〔共24分〕
本卷须知:
1.答第一卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上。

2.每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选择其他答案标号,不能答在试卷上。

一、选择题〔本大题共12小题,每题2分,共24分,在每题给出的四个选项中,有且只有一项为哪一项正确的〕 1.-2的绝对值是〔 〕
A.-2
B.2
C.-1
2
D.12
2.徐州市2007年中考考生总数约为158 000人,那个数用科学记数法能够表示为〔 〕
A.158×3
10 B.15.8×410 C.1.58×5
10
D.0.158×6
10
3.函数1+=
x y 中自变量x 的取值范畴是〔 〕
A.x ≥-1
B. x ≤-1
C.x >-1
D.x <-1
4.以下运算中错误的选项是〔 〕
A. 2 +3= 5
B. 2×3= 6
C. 6÷3= 2
D.〔-22
)=2 5.方程
x 3=2
2
-x 的解的情形是〔 〕 A.2=x
B.6=x
C.6-=x
D.无解
6.如图,水平放置的甲、乙两区域分不由假设干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P 〔甲〕表示小球停在甲中黑色三角形上的概率,P 〔乙〕表示小球停在乙中黑色三角形上的概率,以下讲法中正确的选项是〔 〕
A.P(甲)>P(乙)
B. P(甲)= P(乙)
C. P(甲)< P(乙)
D. P(甲)与P(乙)的大小关系无法确定
7.九年级某班在一次考试中对某道单项选择题的答题情形如以下图所示:
依照以上统计图,以下判定中错误的选项是〔〕
A.选A的人有8人
B. 选B的人有4人
C. 选C的人有26人
D.该班共有50人参加考试
8.以下图是由6个大小相同的正方形组成的几何体,它的俯视图是〔〕
9.梯形的上底长为a,下底长是上底长的3倍,那么该梯形的中位线长为〔〕
A. a
B.1.5a
C.2a
D.4a
10.等腰三角形的顶角为
120,腰长为2cm,那么它的底边长为〔〕
A.3cm
B.
33
4
cm C.2cm D.3
2cm
11.如图,将两张完全相同的正方形透亮纸片完全重合地叠放在一起,中心是点O,按住下
面的纸片不动,将上面的纸片绕点O逆时针旋转15 ,所得重叠部分
....的图形〔〕
A.既不是轴对称图形也不是中心对称图形
B.是轴对称图形但不是中心对称图形
C.是中心对称图形但不是轴对称图形
D.既是轴对称图形也是中心对称图形
(图2) 12.在以下图的扇形重,
90=∠AOB ,面积为4πcm 2,用那个扇形围成一个圆锥的侧面,那个圆锥的底面半径为〔 〕
A.1cm
B.2cm
C. 15cm
D.4cm
第二卷〔共96分〕
本卷须知:
1. 第二卷共6页,用钢笔或圆珠笔〔蓝色或黑色〕将答案直截了当写在试卷上。

2. 答卷前将密封线内的项目及座位号填写清晰。

二、填空题〔本大题共4小题,每题3分,共12分〕
13.假设反比例函数的图像过点〔-2,3〕,那么其函数关系式为 。

14.如图,⊙O 是△ABC 的内切圆,且∠ABC=︒50,∠ACB=︒80,那么∠BOC= 。

15.一次考试中6名学生的成绩〔单位:分〕如下:24,72,68,45,86,92,这组数据的中位数是 分。

16.如图,Rt △ABC 中,∠C=︒90,AC=4cm ,BC=3cm ,现将△ABC 进行折叠,使顶点A 、B 重合,那么折痕DE= cm 。

三、解答题〔本大题共4小题,每题5分,共20分〕
17.运算:
9
2
1
2
)1
(
1
3+





-
+
-
-
18.解不等式组
⎪⎩



-
>
-

-
x
x3
1
11
2
2
1
19.:如图,直线AD与BC交于点O,OA=OD,OB=OC。

求证:AB∥CD
20.某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/
条,该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元,咨询小王该月发送网内、网际短信各多少条?
四、解答题〔本大题共2小题,每题有A、B两类题,A类题每题5分,B类题每题7分,你
能够依照自己的学习情形,在每题的两类题中任意选做一题
......,假如在同一小题中两类题都做,那么以A类题计分〕
21.〔A类〕0
1
2
2=
+
+a
a,求3
4
22-
+a
a的值。

〔B类〕0
5
4
2
2
2=
+
-
+
+b
a
b
a,求3
4
22-
+b
a的值。

解:我选做的是类题
22.〔A类〕如图,AB是⊙O的直径,弦CD⊥AB于E,CD=16cm,AB=20cm,求OE的长。

〔B类〕如图,AB是⊙O的直径,弦CD⊥AB于E,BE=4cm,CD=16cm,求⊙O的半径。

解:我选做的是类题
五、解答题〔本大题共4小题,每题5分,共20分〕
23.如图,一个能够自由转动的平均转盘被分成了4等份,每份内均标有数字,小明和小亮商定了一个游戏,规那么如下:
〔1〕连续转动转盘两次;
〔2〕将两次转盘停止后指针所指区域内的数字相加〔当指针恰好停在分格线上时视为无效,重转〕;
〔3〕假设数字之和为奇数,那么小明赢;假设数字之和为偶数,那么小亮赢。

请用〝列表〞或〝画树状图〞的方法分析一下,那个游戏对双方公平吗?并讲明理由。

解:
24.如图,过四边形ABCD的四个顶点分不作对角线AC、BD的平行线,所围成的四边形EFGH 明显是平行四边形。

〔1〕当四边形ABCD分不是菱形、矩形、等腰梯形时,相应的平行四边形EFGH一定是
...〝菱形、矩形、正方形〞中的哪一种?请将你的结论填入下表:
四边形ABCD 菱形矩形等腰梯形
平行四边形EFGH
ABCD必须满足
....如何样的条件?
解:
六、解答题〔本大题共2小题,每题8分,共160分〕
25.某隧道横断面由抛物线与矩形的三边组成,尺寸如下图。

〔1〕以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;
〔2〕某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并讲明理由。

解:
26.如图,一艘船以每小时30海里的速度向东北方向航行,在A 处观测灯塔S 在船的北偏东
︒75的方向,航行12分钟后到达B 处,这时灯塔S 恰好在船的正东方向。

距离此灯塔8海
里以外的海区为航行安全区域,这艘船能够连续沿东北方向航行吗?什么缘故?〔参考数据:
41.12≈,73.13≈〕

七、解答题〔本大题只有1小题,9分〕
27.如图,△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''〔使︒<'∠180E BC 〕,连接D A '、E B '设直线E B '与AC 、D A '分不交于点O 、E 。

〔1〕假设△ABC 为等边三角形,那么
E B D A '
'的值为 ,∠AFB 的度数为 0
, 〔2〕假设△ABC 满足∠ACB=︒60,AC=3,BC=2,
①求
E
B D A ''
的值和∠AFB 的度数 ②假设E 为BC 的中点,求△OBC 面积的最大值。

解:
八、解答题(本大题只有1小题,10分)
28.如图,直线1l :1+-=x y 与直线2l :x y l x y ==:,32分不交于M 、N 两点,设P 为x 轴上的一点,过点P 的直线b x y l +-=:与直线2l 、3l 分不交于A 、C 两点,以线段AC 为对角线作正方形ABCD .
(1)写出正方形ABCD 各顶点的坐标(用b 表示);
(2)当点P 从原点O 动身,沿着x 轴的正方向运动时,设正方形ABCD 与△OMN 重叠部分的面积为S ,求S 与b 之间的函数关系式,并写出相应自变量b 的取值范畴.。

相关文档
最新文档