实验五 数码管动态显示电路设计

合集下载

实例(5)-数码管动态显示

实例(5)-数码管动态显示

2.2、硬件原理图
1
嵌入式学习——51 单片机篇 图4 硬件电路与上一个静态显示实验是完全一样的。
三、程序设计
下面, 我们可以根据实验原理来设计数码管动态显示程序。 首先将实验 4 数码管的驱动 调用至本程序中。在编程时,需要输出段选和位选信号,位选信号选中其中一个数码管,然 后输出段码,使该数码管显示所需要的内容,延时一段时间后,再选中下一位数码管,再输 出对应的段码。这样子就编写出一个子函数 void SMG_Display(unsigned int dat);利用这个 函数实现数四位数码管的一次轮显。函数中每位数码管的点亮时间为 2ms,2ms 结束后马上 熄灭,再轮到下一位数码点亮。函数入口参数为 unsigned int,16 位整形数据,但在调用该 函数输入形参时,限制输入范围是 0~9999,因为我们只有四位数码管。 在主函数里将 num 变量加 1,再输出显示, 这样就可以看到数码管上的数字从 0、 1、 2„ „ 一直加到 9999。最后再变回 0。 实验代码如下: #include "STC12C5A.h"//包含头文件 /***数字编码表 0~9***/ unsigned char const seg[10] = {0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6}; //段选 unsigned char const position[]={1,2,4,8}; //位选 sbit HC595_SCK = P0^4; sbit HC595_RCK = P0^5; sbit HC595_RST = P0^6; sbit HC595_DAT = P0^7; //us 延时 void delay_us(unsigned int t) { while(t--); } //延时函数(24M 晶振下延时 1ms) void delay_ms(unsigned int time) { unsigned int t; for(;time>0;time--) { t = 1500; while(t--); } }

EDA设计课程实验报告数码管动态显示实验报告

EDA设计课程实验报告数码管动态显示实验报告

EDA设计课程实验报告实验题目:数码管动态显示实验学院名称:专业:电子信息工程班级:姓名:高胜学号小组成员:指导教师:一、实验目的学习动态扫描显示的原理;利用数码管动态扫描显示的原理编写程序,实现自己的学号的显示。

二、设计任务及要求1、在SmartSOPC实验箱上完成数码管动态显示自己学号的后八个数字。

2、放慢扫描速度演示动态显示的原理过程。

三、系统设计1、整体设计方案数码管的八个段a,b,c,d,e,f,g,h(h是小数点)都分别连接到SEG0~SEG7,8个数码管分别由八个选通信号DIG0~DIG7来选择,被选通的数码管显示数据,其余关闭。

如果希望8个数码管显示希望的数据,就必须使得8个选通信号DIG0~DIG7分别被单独选通,并在此同时,在段信号输入口SEG0~SEG7加上该对应数码管上显示的数据,于是随着选通信号的扫描就能实现动态扫描显示的目的。

虽然每次只有1个数码管显示,但只要扫描显示速率足够快,利用人眼的视觉余辉效应,我们仍会感觉所有的数码管都在同时显示。

2、功能模块电路设(1)输入输出模块框图(见图1)图1(2)模块逻辑表达(见表1)表1(数码管显示真值表)clk_1k dig seg↑01111111 C0↑10111111 F9注:数码管显示为01180121(3)算法流程图(见图2)(4)Verilog源代码module scan_led(clk_1k,d,dig,seg); //模块名scan_ledinput clk_1k; //输入时钟input[31:0] d; //输入要显示的数据output[7:0] dig; //数码管选择输出引脚output[7:0] seg; //数码管段输出引脚reg[7:0] seg_r; //定义数码管输出寄存器reg[7:0] dig_r; //定义数码管选择输出寄存器reg[3:0] disp_dat; //定义显示数据寄存器reg[2:0]count; //定义计数寄存器assign dig = dig_r; //输出数码管选择assign seg = seg_r; //输出数码管译码结果always @(posedge clk_1k) //定义上升沿触发进程begincount <= count + 1'b1;endalways @(posedge clk_1k)begincase(count) //选择扫描显示数据3'd0:disp_dat = d[31:28]; //第一个数码管3'd1:disp_dat = d[27:24]; //第二个数码管3'd2:disp_dat = d[23:20]; //第三个数码管3'd3:disp_dat = d[19:16]; //第四个数码管3'd4:disp_dat = d[15:12]; //第五个数码管3'd5:disp_dat = d[11:8]; //第六个数码管3'd6:disp_dat = d[7:4]; //第七个数码管3'd7:disp_dat = d[3:0]; //第八个数码管endcasecase(count) //选择数码管显示位3'd0:dig_r = 8'b01111111; //选择第一个数码管显示3'd1:dig_r = 8'b10111111; //选择第二个数码管显示3'd2:dig_r = 8'b11011111; //选择第三个数码管显示3'd3:dig_r = 8'b11101111; //选择第四个数码管显示3'd4:dig_r = 8'b11110111; //选择第五个数码管显示3'd5:dig_r = 8'b11111011; //选择第六个数码管显示3'd6:dig_r = 8'b11111101; //选择第七个数码管显示3'd7:dig_r = 8'b11111110; //选择第八个数码管显示endcaseendalways @(disp_dat)begincase(disp_dat) //七段译码4'h0:seg_r = 8'hc0; //显示04'h1:seg_r = 8'hf9; //显示14'h2:seg_r = 8'ha4; //显示24'h3:seg_r = 8'hb0; //显示34'h4:seg_r = 8'h99; //显示44'h5:seg_r = 8'h92; //显示54'h6:seg_r = 8'h82; //显示64'h7:seg_r = 8'hf8; //显示74'h8:seg_r = 8'h80; //显示84'h9:seg_r = 8'h90; //显示94'ha:seg_r = 8'h88; //显示a4'hb:seg_r = 8'h83; //显示b4'hc:seg_r = 8'hc6; //显示c4'hd:seg_r = 8'ha1; //显示d4'he:seg_r = 8'h86; //显示e4'hf:seg_r = 8'h8e; //显示fendcaseendendmodule四、系统调试(1)仿真代码`timescale 1ns/1nsmodule scan_ledfz;reg clk_1k;reg[31:0] d;wire[7:0] dig;wire[7:0] seg;parameter dely=100;scan_led u1(clk_1k,d,dig,seg);always #(dely/2)clk_1k=~clk_1k;initial beginclk_1k=0;d=32'h01180134;#dely ;#dely ;#dely ;#dely ;#dely ;#(dely*20);#dely $finish;endinitial $monitor($time,,,"%b,%d,%h,%h",clk_1k,d,dig,seg); endmodulemodule scan_led(clk_1k,d,dig,seg); //模块名scan_ledinput clk_1k; //输入时钟input[31:0] d; //输入要显示的数据output[7:0] dig; //数码管选择输出引脚output[7:0] seg; //数码管段输出引脚reg[7:0] seg_r; //定义数码管输出寄存器reg[7:0] dig_r; //定义数码管选择输出寄存器reg[3:0] disp_dat; //定义显示数据寄存器reg[2:0] count=3'b000; //定义计数寄存器assign dig = dig_r; //输出数码管选择assign seg = seg_r; //输出数码管译码结果always @(posedge clk_1k) //定义上升沿触发进程begincount <= count + 1'b1;endalways @(posedge clk_1k)begincase(count) //选择扫描显示数据3'd0:disp_dat = d[31:28]; //第一个数码管3'd1:disp_dat = d[27:24]; //第二个数码管3'd2:disp_dat = d[23:20]; //第三个数码管3'd3:disp_dat = d[19:16]; //第四个数码管3'd4:disp_dat = d[15:12]; //第五个数码管3'd5:disp_dat = d[11:8]; //第六个数码管3'd6:disp_dat = d[7:4]; //第七个数码管3'd7:disp_dat = d[3:0]; //第八个数码管endcasecase(count) //选择数码管显示位3'd0:dig_r = 8'b01111111; //选择第一个数码管显示3'd1:dig_r = 8'b10111111; //选择第二个数码管显示3'd2:dig_r = 8'b11011111; //选择第三个数码管显示3'd3:dig_r = 8'b11101111; //选择第四个数码管显示3'd4:dig_r = 8'b11110111; //选择第五个数码管显示3'd5:dig_r = 8'b11111011; //选择第六个数码管显示3'd6:dig_r = 8'b11111101; //选择第七个数码管显示3'd7:dig_r = 8'b11111110; //选择第八个数码管显示endcaseendalways @(disp_dat)begincase(disp_dat) //七段译码4'h0:seg_r = 8'hc0; //显示04'h1:seg_r = 8'hf9; //显示14'h2:seg_r = 8'ha4; //显示24'h3:seg_r = 8'hb0; //显示34'h4:seg_r = 8'h99; //显示44'h5:seg_r = 8'h92; //显示54'h6:seg_r = 8'h82; //显示64'h7:seg_r = 8'hf8; //显示74'h8:seg_r = 8'h80; //显示84'h9:seg_r = 8'h90; //显示94'ha:seg_r = 8'h88; //显示a4'hb:seg_r = 8'h83; //显示b4'hc:seg_r = 8'hc6; //显示c4'hd:seg_r = 8'ha1; //显示d4'he:seg_r = 8'h86; //显示e4'hf:seg_r = 8'h8e; //显示fendcaseendendmodule位码代码仿真代码`timescale 1ns/1nsmodule smg_tp; //测试模块的名字reg [2:0] c; //测试输入信号定义为reg型wire[7:0] dig; //测试输出信号定义为wire型parameter DEL Y=100; //延时100秒wei u1(c,dig); //调用测试对象initial begin //激励波形设定c=3'b0;#DEL Y c=3'b001 ;#DEL Y c=3'b010 ;#DEL Y c=3'b100 ;#DEL Y c=3'b101 ;#DEL Y c=3'b110 ;#DEL Y c=3'b111 ;#DEL Y $finish;endinitial $monitor($time,,,"dig=%d,c=%b ",dig,c); //输出格式i定义endmodulemodule wei(c,dig); //命名模块名字input[2:0] c;output[7:0] dig; //定义输入与输出reg[7:0] dig_r;reg[2:0] c_r; // 定义dig_r与c_r2个reg型数据assign dig=dig_r; //将reg型数据转化为wire型数据always @(*) //检测c_r的数据是否变化begin c_r=c;case (c_r)3'b000:dig_r=8'b11111110; //c_r的数据变化而dig_r对于的数据变化3'b001:dig_r=8'b11111101;3'b010:dig_r=8'b11111011;3'b011:dig_r=8'b11110111;3'b100:dig_r=8'b11101111;3'b101:dig_r=8'b11011111;3'b110:dig_r=8'b10111111;3'b111:dig_r=8'b01111111;default: dig_r=8'b11111111;endcase //结束case语句end //结束always语句endmodule //结束程序译码器代码仿真代码`timescale 1ns/1nsmodule duan_tp; //测试模块的名字reg[3:0] a; //测试输入信号定义为reg型wire[7:0] seg; //测试输出信号定义为wire型parameter DEL Y=100; //延时100秒duan u1(a,seg); //调用测试对象initial begin //激励波形设定a=4'b0;#DELY a=4'b0001;#DELY a=4'b0010;#DELY a=4'b0011;#DELY a=4'b0100;#DELY a=4'b0101;#DELY a=4'b0110;#DELY a=4'b0111;#DELY a=4'b1000;#DELY a=4'b1001;#DELY a=4'b1010;#DELY a=4'b1011;#DELY a=4'b1100;#DELY a=4'b1101;#DELY a=4'b1110;#DELY a=4'b1111;#DELY $finish;endinitial $monitor($time,,,"seg=%d,a=%b",seg,a); //输出格式i定义endmodulemodule duan(a,seg); //命名模块名字input[3:0] a;output[7:0] seg; //定义输入与输出reg[7:0] seg_r;reg[3:0] a_r; // 定义seg_r与a_r2个reg型数据assign seg=seg_r; //将reg型数据转化为wire型数据always @(*) //检测c_r的数据是否变化begin a_r=a;case(a_r) //七段译码4'b0000:seg_r = 8'hc0; //显示04'b0001:seg_r = 8'hf9; //显示14'b0010:seg_r = 8'ha4; //显示24'b0011:seg_r = 8'hb0; //显示34'b0100:seg_r = 8'h99; //显示44'b0101:seg_r = 8'h92; //显示54'b0110:seg_r = 8'h82; //显示64'b0111:seg_r = 8'hf8; //显示74'b1000:seg_r = 8'h80; ///显示84'b1001:seg_r = 8'h90; //显示94'b1010:seg_r = 8'h88; //显示a4'b1011:seg_r = 8'h83; //显示b4'b1100:seg_r = 8'hc6; //显示c4'b1101:seg_r = 8'ha1; //显示d4'b1110:seg_r = 8'h86; //显示e4'b1111:seg_r = 8'h8e; ///显示f endcase //结束case语句end //结束always语句endmodule //结束程序(2)仿真波形图(3)引脚图五、实验感想通过这次实验,让我学习动态扫描显示的原理;利用数码管动态扫描显示的原理编写程序,实现自己的学号的显示。

数码管动态显示实验

数码管动态显示实验

数码管动态显示实验一该实验采用proteus 7.5 sp3进行的仿真,仿真原理图如下图所示,其中采用的元器件有AT89C51单片机,74HC573锁存器,共阳极数码管。

单片机的P0口用与输出数码管要显示的段码,P2口用于选通要点亮的数码管。

数码管通过动态扫描显示HELLO,HELLO循环左移,左移一位LED灯亮下。

实验程序如下:/*********************************************************************** 程序名; 数码管动态显示实验* 功能:数码管通过动态扫描显示HELLO,HELLO循环左移,左移一位LED灯* 亮下。

* 编程者:ZPZ* 编程时间:2009/8/4**********************************************************************/#include<reg52.h>#include <intrins.h>#define uint unsigned int#define uchar unsigned charsbit P1_7=P1^7;uchar num;uchar code table2[]={0x89,0x86,0xc7,0xc7,0xc0,0xbf,0xff,0xff,0xff,0xff,0xff,0xff,0x89,0x86,0xc7,0xc7,0xc0,0xbf};void delay(uint);void main(){unsigned long b=0;uint a;uint l=0,k=6;P1_7=0;while(1){b++;a=0x01;if(b<80){for(num=l;num<k;num++){P2=a;a=a<<1;if(a==0x40)a=0x01;P0=table2[num];delay(2);}}else{ b=0;l++;k++;P1_7=!P1_7;if(l==12){l=0;k=6;}}}}void delay(uint z){uint i,j;for(i=z;i>0;i--)for(j=110;j>0;j--);}数码管动态显示实验二该实验如同实验一,不同之处在于,该实验是将预先设定的一个百位数,通过动态扫描使其在数码管的后三位显示。

单片机数码管动态显示实验报告

单片机数码管动态显示实验报告

单片机数码管动态显示实验报告单片机数码管动态显示实验程序(汇编)单片机数码管动态显示实验程序org 00hajmp headorg 0030hhead:mov sp,#0070hnum equ p0 ;p0口连接数码管reset:mov dptr ,#tabmov r0,#4sh:acall show_tabcall dptr_adddjnz r0,shmov r0 ,#4sjmp resetdptr_add:inc dptrinc dptrinc dptrinc dptrrettab :db0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,88H,83H,0C6H,0A1H,86H,8EH;;;;;;;;;;;;;;;;;;;;; 函数的功能是用来动态显示dptr上的四个数据 ;;;;;;;;;;;;;;;;;;;;;; show_tab:clr amov r2,#0mov r3,#148mov p2,#238loop:movc a,@a+dptrmov num ,aacall delay_5msinc r2mov a,r2;调用片选函数前注意A的变化acall select_movcjne r2,#4,loopmov r2,#0clr adjnz R3,loopret;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;select_mov:;p2的初值238push 0e0hmov a,p2rl amov p2,apop 0e0hretdelay_5ms:mov r6,#5signed_5ms:call delay_1msdjnz r6,signed_5msret篇二:单片机动态数码显示设计实验报告微机原理与接口技术实验报告实验题目:指导老师:班级:计算机科学与技术系姓名:动态数码显示设计2014年 12月3日实验十三动态数码显示设计一、实验目的1.掌握动态数码显示技术的设计方法。

实验五 数码管动态显示

实验五 数码管动态显示

实验五数码管动态显示实验
一.实验内容
1、在proteus软件中画好数码管动态显示实验电路,共阳数码管4个,由P0口作数据输出口与7段数码管数据引脚相连,P3.0~P3.3引脚输出位选控制信号。

2. 在keil软件中编写程序,采用动态显示法,实现数码管分别显示数字0,1,2,3 。

二.实验目的
1.巩固Proteus软件和keil软件的使用方法;
2. 掌握7段数码管的连接方式和动态显示法;
3. 掌握查表程序和延时子程序的设计。

三、实验电路及连线
四、程序流程图
五、实验代码
/*
*4只数码管采用动态扫描法显示0~3* */
#include <reg51.h>
typedef unsigned char uint8;
typedef unsigned int uint16;
code uint8 LED_CODE[] = {0xC0,0xF9,0xA4,0xB0}; void delay(uint16 x)
{
uint16 i,j;
for(i = x; i > 0; i --)
for(j = 114; j > 0; j --);
}
void main()
{
uint8 i;
while(1)
{
for(i = 0; i < 4; i ++)
{
P3 = 0x01 << i;
P0 = LED_CODE[i];
delay(10);
}
}
}
六、实验现象及结果分析。

实验5 LED数码管动态显示电路的设计与仿真

实验5  LED数码管动态显示电路的设计与仿真

实验项目五 LED数码管动态显示电路的设计与仿真[实验目的]1.掌握LED数码管的动态显示原理2.掌握LED数码管动态显示电路的设计3.掌握对LED数码管动态显示的控制方法[实验原理]动态扫描显示原理:动态显示方式是指逐位轮流点亮每位显示器(称为扫描),即每个数码管的位选被轮流选中,多个数码管公用一组段选。

对于每一位显示器来说,每隔一段时间点亮一次。

显示器的亮度既与导通电流有关,也与点亮时间和间隔时间的比例有关。

调整电流和时间参数,可实现亮度较高较稳定的显示。

若显示器的位数不大于8位,则控制显示器公共极电位只需8位口(称为扫描口),控制各位显示器所显示的字形也需一个8位口(成为段数据口)。

[实验仪器]PC机一台[Proteus用到器件的关键词]单片机(AT89C52)、六位一体数码管(7SEG-6MPX6-CC-BLUE)[实验内容与步骤]1.用Proteus软件设计出六位一体LED数码管动态显示电路原理图。

2.用Keil编写程序。

首先通过单片机的P3口逐个选通数码管的位选端,再通过单片机的P2口送出要显示的字符,最后调整每个数码管点亮时间,最终便可以看到动态显示的效果。

3.将HEX文件装载到AT89C52中,单击Start按钮开始动态仿真。

[实验数据记录];******六位一体数码管动态显示程序*******;ORG 0000HLJMP MAINORG 0050HMAIN: MOV DPH,#02HAGAIN: MOV R2,#00H ;段选端指针计数器MOV R3,#50H ;位选端指针计数器LP: MOV DPL,R3MOVC A,@A+DPTRMOV P3,AINC R3CLR AMOV DPL,R2MOVC A,@A+DPTRMOV P2,AMOV R2,DPLINC R2CLR ALCALL DELAYMOV P3,#0FFH ;为了去掉余辉,在下一次显示之前关掉位选端CJNE R2,#6,LPAJMP AGAINDELAY: MOV R0,#01FHDL1: MOV R1,#01FHDL2: NOPNOPDJNZ R1,DL2DJNZ R0,DL1RETORG 0200HTAB1: DB 06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH ;段选代码,对应0123456789 ORG 0250HTAB2: DB 0FEH,0FDH,0FBH,0F7H,0EFH,0DFH ;位选代码,分别选通第1,第2,第3,第4,;第5,第6个数码管END[实验数据处理] [实验结果及讨论]。

单片机数码管动态显示实验报告

单片机数码管动态显示实验报告

单片机数码管动态显示实验报告单片机数码管动态显示实验报告一、实验目的本实验旨在通过单片机控制数码管的动态显示,掌握单片机的基本操作和数码管显示原理,培养实际动手能力和编程技能。

二、实验原理数码管是一种常用的电子显示器件,通过单片机控制可以实现数字、字母等多种形式的显示。

本实验采用共阴极数码管,通过单片机控制选通哪个LED灯亮,从而在数码管上显示出相应的数字或字母。

三、实验步骤1.硬件搭建首先,将单片机、数码管、电源等硬件连接起来。

注意数码管的引脚与单片机的连接方式,确保正确连接。

2.编程环境设置打开单片机编程软件,如Keil uVision等,配置相应的编译器和调试器选项。

3.编写程序在编程环境中,编写程序以实现数码管的动态显示。

本实验采用C语言进行编程。

程序主要包括初始化、显示函数等。

4.编译程序将编写的程序进行编译,生成可执行文件。

5.调试程序通过调试器对程序进行调试,观察数码管的显示效果是否符合要求。

如有问题,及时修改程序并重新编译和调试。

6.测试结果确保程序运行无误后,对数码管的显示效果进行测试,观察是否达到预期效果。

四、实验结果与分析1.实验结果通过本次实验,我们成功实现了单片机对数码管的动态显示。

在数码管上成功显示了数字和字母,效果良好。

2.结果分析通过本次实验,我们深入了解了单片机的基本操作和数码管显示原理。

同时,我们也学会了如何编写程序、编译和调试程序。

此外,我们还学会了如何解决实验过程中遇到的问题。

这些技能对于后续的电子设计和开发具有重要意义。

五、实验总结与展望1.实验总结本次实验通过单片机控制数码管的动态显示,我们成功掌握了单片机的基本操作和数码管显示原理。

在实验过程中,我们学会了如何编写程序、编译和调试程序。

同时,我们也学会了如何解决实验过程中遇到的问题。

这些技能对于后续的电子设计和开发具有重要意义。

2.实验展望在本次实验的基础上,我们可以进一步探索如何实现更复杂的显示效果,如多位数码管的动态显示、彩色显示等。

数电实验报告:数码管显示控制电路设计

数电实验报告:数码管显示控制电路设计

数字电子技术实验报告实验五:数码管显示控制电路设计一、设计任务与要求:能自动循环显示数字0、1、2、3、4、1、3、0、2、4。

二、实验设备:1、数字电路实验箱;2、函数信号发生器;3、8421译码器;4、74LS00、74LS10、74LS90。

三、实验原理图和实验结果:1、逻辑电路设计及实验原理推导:将0、1、2、3、4、1、3、0、2、4用8421码表示出来,如下表:表一用8421码表示设想用5421码来实现8421码表示的0、1、2、3、4、1、3、0、2、4,故将0、1、2、3、4、5、6、7、8、9用5421码表示出来以与上表做对比:表二用5421码表示:观察表一,首先可得到最高位全为0,故译码器的“8”直接接低电平即可;对比表一和表二得,“4”位上的数字两表表示的数字是一样的,故“4”直接与5421码的“4”输出相连即可,即译码器的“4”连74LS90的“Q 3”端;表一的“2”位上的数字前五行与表二的“2”位上的数字前五行显示的一样,此时表二的“5”位上的数字均为0,表一的“2”位上的数字后五行与表二的“1”位上的数字后五行一样,此时表二上的“5”位上的数字均为1,故译码器的“2”要接的是实现函数表达式为1020Q Q Q Q +的电路;最后一位上没有明显的规律,可用卡诺图求得逻辑表达式,也即译码器的“1”要连接的是实现函数表达式为230130Q Q Q Q Q Q +的电路。

至此,实验原理图即可画出了。

2、 实验原理图:3、实验结果:编码器上依次显示0、1、2、3、4、1、3、0、2、4。

实验结果图如下:四、实验结果分析:实验结果为编码器上依次显示0、1、2、3、4、1、3、0、2、4,满足实验设计要求。

五、实验心得:在这次实验前,我认真的分析了实验原理并设计了电路,并用仿真软件得出了符合实验设计要求的结果,可是在实验过程中我遇到了问题,电路连了好几遍显示的结果都不完全对,第一次做的过程中没能顺利排除故障;但我在第二次做的过程中很顺利,因为实验原理已烂熟于心,所以很快完成了实验,一次成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五数码管动态显示电路设计(综合性)
一、实验目的
1.熟练掌握电路原理图的设计方法,能快速准确的画出电路原理图。

2.熟练掌握印制电路板的设计流程。

二、实验要求
1.做实验前对本科所学内容进行系统的复习。

2、实验完毕后讨论操作过程中遇到的问题。

三、实验设备
网络计算机,Protel99se软件。

四、实验内容及步骤
(一)实验内容
1.绘制电路原理图。

2.制作印制电路板。

(二)实验步骤
1、制作元件电气图形符号(可展开讲述)
2、制作元件封装(可展开讲述)。

3、请根据电路原理图自行绘制出电路图(可展开讲述)。

4、电路板为矩形,长 4800mil ,宽 2600mil ,双层板设计,自动布线。

在自动设计规则中,VCC、GND线宽设置为20mil,其余设置线宽为 10mil。

元件封装:
图25 电路图。

相关文档
最新文档