北师版八年级数学上册教案:立方根2

合集下载

北师大版八年级数学上册:2.3《立方根》教学设计2

北师大版八年级数学上册:2.3《立方根》教学设计2

北师大版八年级数学上册:2.3《立方根》教学设计2一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。

本节内容是在学生已经掌握了有理数的乘方、平方根和算术平方根的基础上进行学习的,是进一步深化学生对数的概念的理解,也是进一步培养学生的抽象思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、平方根和算术平方根的概念和性质,能够进行相关的运算。

但是,对于立方根的概念和性质的理解可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过实际操作和思考,来理解和掌握立方根的概念和性质。

三. 教学目标1.知识与技能:使学生理解立方根的概念,掌握立方根的性质,能够进行立方根的运算。

2.过程与方法:通过实际操作和思考,培养学生的抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探索精神。

四. 教学重难点1.重点:立方根的概念和性质。

2.难点:立方根的运算。

五. 教学方法采用问题驱动法,通过引导学生思考和探索,让学生在实际操作中理解和掌握立方根的概念和性质。

六. 教学准备1.准备一些立方体的教具,用于引导学生直观地理解立方根的概念。

2.准备一些有关立方根的练习题,用于巩固学生的学习成果。

七. 教学过程1.导入(5分钟)通过向学生展示一些立方体的教具,引导学生直观地感受立方体的形状,从而引出立方根的概念。

2.呈现(10分钟)向学生介绍立方根的概念,并引导学生通过实际操作,理解立方根的性质。

3.操练(10分钟)让学生通过实际的计算,来理解和掌握立方根的运算方法。

4.巩固(10分钟)让学生通过做一些有关立方根的练习题,来巩固所学的知识。

5.拓展(10分钟)引导学生思考:除了立方根,还有哪些其他的根呢?它们的性质又是怎样的呢?6.小结(5分钟)让学生总结一下,今天学到了什么,有哪些收获。

7.家庭作业(5分钟)布置一些有关立方根的家庭作业,让学生在家里进行练习。

8.板书(5分钟)在黑板上写出立方根的概念和性质,以及立方根的运算方法。

北师大版-数学-八年级上册-《立方根》教学设计

北师大版-数学-八年级上册-《立方根》教学设计

第二章实数3.立方根一、学生起点分析学生已经学习了平方根的概念,掌握了求一个非负数的平方根和算术平方根的方法,明确了平方运算与开平方的互逆关系.学生在平方根学习活动中体会了类比的思想方法,为立方根的学习提供了一定的经验基础和学习方法.立方根的计算有着非常广泛的应用,有关空间形体的计算经常涉及开立方,因此本节知识是后续学习内容的基础.二、教学任务分析《立方根》是义务教育教科书北师大版八年级(上)第二章《实数》第三节.本节内容1个学时完成.主要是通过对立方根与平方根的类比,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能以外,关注学生的学习方法培养,渗透数学思想方法也是教师教学过程中的关注点.为此本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;三、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用半径为1m的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为334R =v ,R 为球的半径)提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数? (1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(. 目的:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a 的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法.2议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1)每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.例如x 3=7时,x 是7的立方根,即37=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a 的立方根的运算叫做开立方(extrction of cubic root) , 其中a 叫做被开方数.开立方与立方互为逆运算.效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根.第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-. 解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--; (2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=; (5)5-的立方根是35-.提问:35-是否可写例2 求下列各式的值:(1);83- (2);064.03 (3)31258-; (4)()339. 解:(1)38-=()2233-=-; (2)3064.0=()4.04.033=;(3)31258-=525233-=⎪⎭⎫ ⎝⎛-; (4)()339=9. 反馈练习 1.求下列各数的立方根:().1656464125.03333333 ;;-;;- 2.通过上面的计算结果,你发现了什么规律?目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:().8283273228333333333=)=(;==;=--= -引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究想一想:(1)3a 表示a 的立方根,那么()33a 等于什么?33a 呢? (2)3a -与3a -有何关系? 目的:明晰()33a =a ,33a =a说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果3x =a ,那么x 就是a 的立方根,即x =3a ,所以3x =()33a =a , 同样,根据定义,3a 是的a 三次方,所以3a 的立方根就是a , 即a a =33,3a -=3a -.第六环节 课时小结内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a 中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:(3a )3=a , a a =33,3a -=3a -;(5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.内容2:回顾引例某化工厂使用半径为1m 的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?如有时间,学生学力许可,还可以安排学生探究下列问题:1.回顾上节课的内容:已知01822=-x ,求x 的值.2.求下列各式中的x . ()()--=+=-=3435(1)8+27=0; (2)10.3430; (3)81116;(4)3210.x x x x 目的:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.效果:学生通过引例的解决,体会到了立方根及开立方运算的实用性,并类比应用方法解决(3)(4),培养并形成能力.第七环节 作业布置1、 习题2.52、再次体会总结立方根与平方根的区别与联系四、教学设计说明(一)关注类比思想的渗透,关注学习方法的指导类比是在两类不同的事物之间进行的对比,在找出若干相同或相似点之后,推测在这两类事物的其他方面也可能存在相同或相似之处的一种思维方式.当然,类比的结果是猜测的,不一定可靠,但它作为一种思考问题的方法,可以发现数学结论,可以沟通数学知识,可以解决生活中的一些实际问题,具有发现的功能,有助于发展学生的创新精神.因此,学习中要注意渗透这样的思维方式,实际上,类比学习法让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.为此,本节课让学生应用类比法顺理成章的学习立方根的概念、性质、运算.同样在学生以后的数学学习中,可以通过三角形类比四面体、通过圆类比球……(二)关注学生个体差异,关注学生探究过程根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对“议一议”、“想一想”、“比一比”的探究情况和学生反馈练习的完成情况,教师要关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确的表示一个数的立方根。

北师大版八年级数学上册:2.3《立方根》教学设计1

北师大版八年级数学上册:2.3《立方根》教学设计1

北师大版八年级数学上册:2.3《立方根》教学设计1一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。

本节主要让学生掌握立方根的概念,学会求一个数的立方根,以及理解立方根的性质。

教材通过引入立方根的概念,让学生通过观察、操作、思考、交流等活动,体会数学知识之间的联系,提高学生分析问题、解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、实数等知识,具备了一定的观察、操作、思考能力。

但部分学生对抽象的数学概念理解仍有困难,因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.理解立方根的概念,掌握求一个数的立方根的方法。

2.会运用立方根解决实际问题,提高解决问题的能力。

3.培养学生的观察、操作、思考能力,提高学生的数学素养。

四. 教学重难点1.重点:立方根的概念,求一个数的立方根的方法。

2.难点:理解立方根的性质,运用立方根解决实际问题。

五. 教学方法1.引导法:教师引导学生观察、操作、思考,让学生在活动中体验数学知识。

2.交流法:教师学生进行小组讨论,分享学习心得,提高学生的沟通能力。

3.实践法:教师设计具有实践性的数学问题,让学生在实践中掌握数学知识。

六. 教学准备1.教学课件:制作与本节内容相关的课件,辅助教学。

2.教学素材:准备一些实际问题,供学生练习。

3.学生活动材料:为学生提供观察、操作、思考的材料。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节内容,引导学生思考:如何求一个数的立方根?2.呈现(10分钟)教师展示立方根的定义,让学生观察、思考,引导学生发现立方根的性质。

3.操练(10分钟)教师设计一些练习题,让学生求一个数的立方根,巩固所学知识。

4.巩固(5分钟)教师学生进行小组讨论,分享解题心得,提高学生的沟通能力。

5.拓展(5分钟)教师提出一些具有挑战性的问题,引导学生进行思考,提高学生的分析问题、解决问题的能力。

北师大版数学八年级上册《3 立方根》教学设计2

北师大版数学八年级上册《3 立方根》教学设计2

北师大版数学八年级上册《3 立方根》教学设计2一. 教材分析《北师大版数学八年级上册》第三单元《立方根》主要介绍了立方根的概念、性质和运算法则。

通过本节课的学习,学生能够理解立方根的定义,掌握立方根的性质和运算法则,并能运用立方根解决实际问题。

本节课的内容是初中数学的重要知识,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

二. 学情分析八年级的学生已经学习了实数的概念和运算法则,对于求一个数的平方根已经有了初步的了解。

但是,对于立方根的概念和性质,学生可能还比较陌生。

因此,在教学过程中,需要通过具体的教学活动,引导学生理解和掌握立方根的概念和性质。

三. 教学目标1.理解立方根的概念,掌握立方根的性质和运算法则。

2.能够运用立方根解决实际问题。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.立方根的概念和性质。

2.立方根的运算法则。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解立方根的概念和性质。

2.小组合作学习:学生在小组内进行讨论和实践,共同探索立方根的运算法则。

3.练习法:通过大量的练习题,巩固学生对立方根概念和性质的理解。

六. 教学准备1.教学课件:制作课件,展示立方根的概念和性质。

2.练习题:准备一些有关立方根的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用生活实例,如冰淇淋的体积,引入立方根的概念。

引导学生思考:如何求一个数的立方根?从而激发学生的学习兴趣。

2.呈现(10分钟)讲解立方根的定义,并通过多媒体展示立方根的图形,让学生直观地理解立方根的概念。

同时,介绍立方根的性质,如一个数的立方根与原数的性质之间的关系。

3.操练(10分钟)学生分组讨论,探索立方根的运算法则。

教师巡回指导,解答学生的问题。

每组学生通过实际操作,总结出立方根的运算法则。

4.巩固(10分钟)学生独立完成练习题,巩固对立方根概念和性质的理解。

教师及时批改,给予学生反馈,帮助学生纠正错误。

北师大版数学八上2.3《立方根》教案 (2)

北师大版数学八上2.3《立方根》教案 (2)

求关于立方根和平方根的小故事数学家--毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少?是整数呢,还是分数?毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数.世界上除了整数和分数以外还有没有别的数?这个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数. 从希伯斯的发现中,人们知道了除了整数和分数以外,还存在着一种新数,就是一个新数.给新发现的数起个什么名字呢?当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”,而希伯斯发现的这种新数不好理解,就取名为“无理数”. 希伯斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们严密封锁希伯斯的发现,如果有人胆敢泄露出去,就处以极刑--活埋.然而真理是封锁不住的,尽管毕达哥拉斯学派规矩森严,希伯斯的发现还是被许多人知道了.他们追查泄密的人,追查的结果,发现泄密的不是别人,正是希伯斯本人!这还了得!希伯斯竟背叛老师,背叛自己的学派.毕达哥拉斯学派按着规矩,要活埋希伯斯.希伯斯听到风声逃跑了. 希伯斯在国外流浪了好几年,由于思念家乡,他偷偷地返回希腊.在地中海的一条海船上,毕达哥拉斯的忠实门徒发现了希伯斯,他们残忍地将希伯斯扔进地中海.之后它被称为无理数之父,为无理数的一切奠定了基础.倍立方问题很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里祈求.神说,我之所以不给你们降水,因为你们给我做的正方体祭坛太小了,如果你们做一个比它大1倍的祭坛放在我面前,我就给你们降下雨水.大家觉得这好办,很快做好一个祭坛送到神那儿,新祭坛的边长是原祭坛边长的2倍,于是神更加发火,他说,你们竟敢愚弄我!这个祭坛的体积根本不是原来祭坛的2倍,我要进一步惩罚你们!请你想一想,要做一个体积是原来祭坛的2倍的新祭坛,它的边长应是原来的多少倍?实际上,这就要求作出一个正方体,使它是已知正方体体积的2倍,或者说作出一条边是已知边长的32倍,这就是数学史上有名的倍立方问题.许多数学家试图用尺规作图作出它,均告失败,最后才发现这是一尺规作图不能成功的问题.。

八年级数学上册2.3立方根教学设计 (新版北师大版)

八年级数学上册2.3立方根教学设计 (新版北师大版)

八年级数学上册2.3立方根教学设计(新版北师大版)一. 教材分析《八年级数学上册2.3立方根教学设计》是人教版初中数学八年级上册的一部分。

这部分内容主要介绍了立方根的概念、性质和运算方法。

教材通过丰富的实例和练习,使学生掌握立方根的知识,并能够运用到实际问题中。

本节课的内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。

二. 学情分析学生在学习本节课之前,已经学习了平方根的知识,对根的概念有一定的了解。

但是,立方根的概念和平方根有所不同,需要学生通过实例和练习来理解和掌握。

此外,学生对于实数的运算也有一定的了解,但还需要进一步的学习和巩固。

三. 教学目标1.知识与技能目标:使学生理解立方根的概念,掌握立方根的性质和运算方法,能够运用立方根解决实际问题。

2.过程与方法目标:通过实例和练习,培养学生的观察能力、思考能力和运算能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:立方根的概念、性质和运算方法。

2.教学难点:立方根的概念和运算方法的理解和应用。

五. 教学方法1.实例教学法:通过丰富的实例,使学生理解和掌握立方根的概念和运算方法。

2.练习法:通过大量的练习,巩固学生的知识,提高学生的运算能力。

3.小组合作学习法:学生分组讨论和解决问题,培养学生的合作意识和沟通能力。

六. 教学准备1.教材和教辅:准备教材和相关的教辅资料,以便于学生学习和练习。

2.多媒体教学设备:准备多媒体教学设备,以便于展示实例和练习。

七. 教学过程1.导入(5分钟)通过一个实例,引出立方根的概念。

例如,展示一个正方体,让学生计算其体积,进而引出立方根的概念。

2.呈现(10分钟)介绍立方根的性质和运算方法,通过多媒体展示,使学生理解和掌握。

同时,引导学生与平方根进行对比,加深对立方根的理解。

3.操练(10分钟)让学生进行大量的练习,巩固立方根的知识。

北师大初中八年级数学上册《立方根》教案

北师大初中八年级数学上册《立方根》教案

立方根教学目标1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根;2.理解开立方的概念;3.明确立方根个数的性质,分清一个数的立方根与平方根的区别.教学重点和难点重点:立方根的概念及求法.难点:立方根与平方根的区别.教学过程一、复习:请同学回答下列问题:(1)什么叫一个数a的平方根?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(3)当a≥0时,式子a,-a,±a,的意义各是什么?二、引入新课1.计算下列各题:(1) 31.0;(2) 33)( ;(3) 30.22.立方根的概念.一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).用式子表示,就是,如果3x=a,那么x叫做a的立方根.数a的立方根用符号“3a”表示,读作“三次根号a,其中a是被开方数,3是根指数.(注意:根指数3不能省略).3.开立方.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.三、讲解例题:例1 求下列各数的立方根:(1)8;(2)-8;(3)0.125;(4)-27125;(5)0.分析:求一个数的立方根,我们可以通过立方运算来求.(2)因为3)2(-=8,所以-8的立方根是-2即 38-=-2(3)因为35.0=0.125,所以0.125的立方根是0.5,即3125.0=0.5.(4)因为(-53)3=-12527,所以-27 125的立方根是-35,即312527-=-53. (5)因为30=0,所以0的立方根是0,即30=0.例2 求下列各式的值: (1) 327; (2) 364-; (3) 3100027-. 四、随堂练习1.判断题:(1)4的平方根是2; (2)8的立方根是2;(3)-0.064的立方根是-0.4; (4)127的立方根是±13(5)-161的平方根是±4;(6)-12是144的平方根 2.选择题:(1)数0.000125的立方根是 .A.0.5B.±0.5C.0.05D.0.005(2)下列判断中错误的是()A.一个数的立方根与这个数的乘积为非负数B.一个数的两个平方根之积负数C.一个数的立方根未必小于这个数D.零的平方根等于零的立方根3.求下列各数的立方根:(1)27;(2)-38;(3)1;(4)0.五、小结请思考下面的问题:1.什么叫一个数的立方根?怎样用符号表示数a的立方根?a的取值范围是什么?2.数的立方根与数的平方根有什么区别?3.正数只有一个正的立方根,但有两个互为相反数的平方根;负数有一个负的立方根,但没有平方根.4.求一个数的立方根,可以通过立方运算来求.。

八年级数学上册第二章实数:立方根教案新版北师大版

八年级数学上册第二章实数:立方根教案新版北师大版

八年级数学上册教案新版北师大版:2.3立方根教学目标1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点)2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点) 教学过程一、情境导入填空并回答问题:(1)( )3=0.001;(2)( )3=0;(3)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质 【类型一】立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根. 【类型二】立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2求其算术平方根即可.解:∵x -2的平方根是±2,∴x -2=4.∴x =6.∵2x +y +7的立方根是3,∴2x +y +7=27,把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根. 【类型三】立方根的实际应用已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r.解析:将公式变形为r 3=3V 4π,从而求r. 解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取 3.14,∴r ≈33×113.044×3.14=327=3(cm).故这个小皮球的半径r 约为3cm. 方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算求下列各式的值.(1)-3343;(2)31027-5;(3)-3-8÷214+(-1)100.解:(1)-3343=-7;(2)31027-5=3-12527=-53;(3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73.方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a都只有一个立方根,记为“3a”,读作“三次根号a”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a的立方根的运算叫做开立方,其中a叫做被开方数.开立方与立方互为逆运算.教学反思本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版八年级数学上册教案2.3 立方根一、学生起点分析学生已经学习了平方根的概念,掌握了求一个非负数的平方根和算术平方根的方法,明确了平方运算与开平方的互逆关系.学生在平方根学习活动中体会了类比的思想方法,为立方根的学习提供了一定的经验基础和学习方法.立方根的计算有着非常广泛的应用,有关空间形体的计算经常涉及开立方,因此本节知识是后续学习内容的基础.二、教学任务分析《立方根》是义务教育教科书北师大版八年级(上)第二章《实数》第三节.本节内容1个学时完成.主要是通过对立方根与平方根的类比,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能以外,关注学生的学习方法培养,渗透数学思想方法也是教师教学过程中的关注点.为此本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;三、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢? (球的体积公式为334R =v ,R 为球的半径) 提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(. 目的:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a 的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法.2议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1)每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.例如x 3=7时,x 是7的立方根,即37=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a 的立方根的运算叫做开立方(extrction of cubic root) , 其中a 叫做被开方数.开立方与立方互为逆运算.效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根.第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-. 解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--; (2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=; (5)5-的立方根是35-.例2 求下列各式的值:(1);83- (2);064.03 (3)31258-; (4)()339. 解:(1)38-=()2233-=-; (2)3064.0=()4.04.033=;(3)31258-=525233-=⎪⎭⎫ ⎝⎛-; (4)()339=9. 反馈练习1.求下列各数的立方根:().1656464125.03333333 ;;-;;- 2.通过上面的计算结果,你发现了什么规律?目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:().8283273228333333333=)=(;==;=--= -引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究想一想:(1)3a 表示a 的立方根,那么()33a 等于什么?33a 呢? (2)3a -与3a -有何关系? 目的:明晰()33a =a ,33a =a说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果3x =a ,那么x 就是a 的立方根,即x =3a ,所以3x =()33a =a , 同样,根据定义,3a 是的a 三次方,所以3a 的立方根就是a , 即a a =33,3a -=3a -.第六环节 课时小结内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a 中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:(3a )3=a , a a =33,3a -=3a -;(5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化. 效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.内容2:回顾引例某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?如有时间,学生能力许可,还可以安排学生探究下列问题:1.回顾上节课的内容:已知01822=-x ,求x 的值.2.求下列各式中的x .()()--=+=-=x x x x 3435(1)8+27=0; (2)10.3430; (3)81116;(4)3210.目的:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.效果:学生通过引例的解决,体会到了立方根及开立方运算的实用性,并类比应用方法解决(3)(4),培养并形成能力. 第七环节 作业布置1、 习题2.52、再次体会总结立方根与平方根的区别与联系四、教学设计说明(一)关注类比思想的渗透,关注学习方法的指导类比是在两类不同的事物之间进行的对比,在找出若干相同或相似点之后,推测在这两类事物的其他方面也可能存在相同或相似之处的一种思维方式.当然,类比的结果是猜测的,不一定可靠,但它作为一种思考问题的方法,可以发现数学结论,可以沟通数学知识,可以解决生活中的一些实际问题,具有发现的功能,有助于发展学生的创新精神.因此,学习中要注意渗透这样的思维方式,实际上,类比学习法让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.为此,本节课让学生应用类比法顺理成章的学习立方根的概念、性质、运算.同样在学生以后的数学学习中,可以通过三角形类比四面体、通过圆类比球……(二)关注学生个体差异,关注学生探究过程根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对“议一议”、“想一想”、“比一比”的探究情况和学生反馈练习的完成情况,教师要关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确的表示一个数的立方根。

教学过程中,教师应给足学生思考和计算的时间使学生用原有知识进行新知识建构,这是一个学生自主学习、探究学习的过程,充分开展这样的活动,可以使学生的个性得到张扬,探究能力得到培养。

课堂上,教师要充分发挥评价的教育功能,对于学生的回答应给予恰当的评价和鼓励,帮助学生认识自我,建立自信.(三)需要说明的几个问题:在第四教学环节中的例题1中补充了带分数的立方根求法,在教学中只要讲明将带分数转化为假分数,再求立方根的方法,学生就容易掌握;例题2则为第五环节补充立方根性质的3个公式( (3a )3=a , a a 33,3a -=3a -)打下了基础,若学生基础较差,教师也可删去这3个公式;第六环节中的探究与思考,将平方根、立方根的求法拓展到求四次方根、五次方根的学习,教师在教学过程中可根据学生的学习情况确定是否补充这部分内容,也可留给学生课后思考,分层要求,调动不同学生的学习热情.。

相关文档
最新文档