北师大版九年级上册数学矩形的性质教案
九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)

第一章特殊平行四边形1.2 矩形的性质与判定(一)教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质.过程与方法:经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重难点、关键重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.教学准备教师准备:投影仪,收集有关矩形的图片,制作教具.学生准备:复习平行四边形性质,预习矩形这节内容.学法解析1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.2.知识线索:情境与操作→平行四边形→矩形→矩形性质.3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,•平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)[来源:21世纪教育网学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.[来源:学*科*网Z*X*问题2:既然它具有平行四边形的所有性质,•那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才∠α变为90°,可以得到∠α的补角也是90°,从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等。
北师大版九年级上册数学《矩形的性质与判定》说课稿

说教学过程
5. 练习与巩固:组织学生进行小组讨论和练习, 通过解决一些简单的矩形判定问题,巩固他们对 矩形性质的理解,并培养他们的分析和解决问题 的能力。例如,我可以给学生一些四边形的尺寸 数据,让他们判断是否为矩形,并给出解释。
说教学过程
6. 拓展应用:通过提供一些实际问题,引导学生 将矩形的性质应用到实际生活中,培养他们的数 学建模能力和解决实际问题的能力。例如,我可 以给学生一个房间的平面图,让他们计算出房间 的面积,并判断是否为矩形。
谢谢
一、说教材
目录
01. 说教材
02. 说学情
03. 说教学目标 04. 说教学重难点
05. 说教法与学法 06. 说教学过程
07. 说板书设计 08. 说教学反思
《矩形的性质与判定》说课稿
敬爱的各位评委老师,大家好! 今天我将为大家呈现初 中数学北师大版九年级上册第一章特殊平行四边形第2节 《矩形的性质与判定》的说课稿。
说教法与学法
本节课将采用多种教学方法和学习方式, 包括讲解法、示范法、讨论法和实践操作 等。在教学过程中,我将注重启发式教学, 引导学生主动思考和探究,培养他们的自 主学习能力和团队合作精神。
说教学过程
1. 导入新课:通过展示一些矩形的图片和实物,引 起学生对矩形的兴趣,并与学生进行简短的讨论, 了解学生对矩形的认识和了解程度。 2. 提出问题:通过提问的方式,引导学生思考并回 顾平行四边形的性质,进而引出矩形的定义和性质。 例如,问学生平行四边形的特点是什么?是否有一 种特殊的平行四边形?
说教学重难点
教学重点: 矩形的定义和性质,以及判定一个四 边形是否为矩形的方法。 教学难点:如何引导学生理解并应用矩形的性质 解决实际问题。
北师大版九年级上册数学矩形的性质教案

九年级数学上册教案吧斗 Assistant teacher 为 梦 想 奋1.2矩形的性质与判定第1课时矩形的性质1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;(重点)2.会运用矩形的概念和性质来解决有关问题.(难点)一、情景导入1.展示生活中一些平行四边形的实际应用图片(推拉门、活动衣架、篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形),引出本课题及矩形定义.矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都是矩形.有一个角是直角的平行四边形是矩形.矩形是平行四边形,但平行四边形不一定是矩形,矩形是特殊的平行四边形,它具有平行四边形的所有性质.二、合作探究探究点一:矩形的性质【类型一】矩形的四个角都是直角如图,矩形ABCD中,点E在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC的面积为()A.15B.30C.45D.60解析:如图,过E作EF⊥AC,垂足为F.∵AE 平分∠BAC ,EF ⊥AC ,BE ⊥AB , ∴EF =BE =4,∴S △AEC =12AC ·EF =12×15×4=30.故选B.方法总结:矩形的四个角都是直角,常作为证明或求值的隐含条件.【类型二】 矩形的对角线相等如图所示,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =2,则AC的长是( )A .2B .4C .23D .43解析:根据矩形的对角线互相平分且相等可得OC =OD =OA =12AC ,由∠AOD =60°得△AOD 为等边三角形,即可求出AC 的长.∵四边形ABCD 为矩形,∴AC =BD ,OA =OC =12AC ,OD =OB =12BD ,∴OA =OD .∵∠AOD =60°,∴△AOD 为等边三角形,∴OA =OD =2,∴AC =2OA =4. 故选B.方法总结:矩形的两条对角线互相平分且相等,即对角线把矩形分成四个等腰三角形,当两条对角线的夹角为60°或120°时,图中有等边三角形,从而可以利用等边三角形的性质解题.探究点二:直角三角形斜边上的中线等于斜边的一半如图,已知BD ,CE 是△ABC 不同边上的高,点G ,F 分别是BC ,DE 的中点,试说明GF ⊥DE .解析:本题的已知条件中已经有直角三角形,有斜边上的中点,由此可联想到应用“直角三角形斜边上的中线等于斜边的一半”这一定理.解:连接EG ,DG .∵BD ,CE 是△ABC 的高, ∴∠BDC =∠BEC =90°. ∵点G 是BC 的中点,∴EG =12BC ,DG =12BC .∴EG =DG .又∵点F 是DE 的中点, ∴GF ⊥DE .方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.探究点三:矩形的性质的应用【类型一】 利用矩形的性质求有关线段的长度如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.解析:先判定△AEF ≌△DCE ,得CD =AE ,再根据矩形的周长为32列方程求出AE 的长.解:∵四边形ABCD 是矩形, ∴∠A =∠D =90°, ∴∠CED +∠ECD =90°. 又∵EF ⊥EC ,∴∠AEF +∠CED =90°, ∴∠AEF =∠ECD . 而EF =EC ,∴△AEF ≌△DCE , ∴AE =CD . 设AE =x cm ,∴CD =x cm ,AD =(x +4)cm , 则有x +4+x =16,解得x =6. 即AE 的长为6cm.方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件解决直角三角形中的问题.【类型二】 利用矩形的性质求有关角度的大小如图,在矩形ABCD 中,AE ⊥BD 于E ,∠DAE :∠BAE =3:1,求∠BAE 和∠EAO的度数.解析:由∠BAE 与∠DAE 之和为90°及这两个角之比可求得这两个角的度数,从而得∠ABO 的度数,再根据矩形的性质易得∠EAO 的度数.解:∵四边形ABCD 是矩形,∴∠DAB =90°,AO =12AC ,BO =12BD ,AC =BD ,∴∠BAE +∠DAE =90°,AO =BO .又∵∠DAE :∠BAE =3:1, ∴∠BAE =22.5°,∠DAE =67.5°. ∵AE ⊥BD ,∴∠ABE =90°-∠BAE =90°-22.5°=67.5°, ∴∠OAB =∠ABE =67.5° ∴∠EAO =67.5°-22.5°=45°. 方法总结:矩形的性质是证明线段相等或倍分、角的相等与求值及线段平行或垂直的重要依据.【类型三】 利用矩形的性质求图形的面积如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15B.14C.13D.310解析:由四边形ABCD 为矩形,易证得△BEO ≌△DFO ,则阴影部分的面积等于△AOB 的面积,而△AOB 的面积为矩形ABCD 面积的14,故阴影部分的面积为矩形面积的14.故选B.方法总结:求阴影部分的面积时,当阴影部分不规则或比较分散时,通常运用割补法将阴影部分转化为较规则的图形,再求其面积.【类型四】 矩形中的折叠问题如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E ,AD=8,AB =4,求△BED 的面积.解析:这是一道折叠问题,折后的图形与原图形全等,从而得知△BCD ≌△BC ′D ,则易得BE =DE .在Rt △ABE 中,利用勾股定理列方程求出BE 的长,即可求得△BED 的面积.解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°, ∴∠2=∠3.又由折叠知△BC ′D ≌△BCD , ∴∠1=∠2.∴∠1=∠3.∴BE =DE .设BE =DE =x ,则AE =8-x .∵在Rt △ABE 中,AB 2+AE 2=BE 2, ∴42+(8-x )2=x 2.解得x =5, 即DE =5.∴S △BED =12DE ·AB =12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED 是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形⎩⎪⎨⎪⎧矩形的定义:有一个角是直角的平行四边形叫做矩形矩形的性质⎩⎪⎨⎪⎧四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.1.2矩形的性质与判定第1课时 矩形的性质教学目 标 1.知道矩形的概念与有关性质,会用这些知识进行简单的推理与计算。
北师大版数学九年级上册1.2.1矩形的性质(教案)

在本次教学过程中,我发现学生们对矩形的性质表现出较高的兴趣。通过日常生活中的实例引入,他们能够更快地理解并接受新知识。但在教学过程中,我也注意到以下几点需要改进和反思:
1.对于矩形性质的理解,部分学生仍然存在困难,特别是在证明矩形对角线平分和相等的过程中。在今后的教学中,我需要更加注重引导学生们通过实际操作和逻辑推理来加深理解。
2.教学难点
-矩形性质的证明:理解并掌握矩形性质证明的过程,特别是对角线相等和平分的证明。
-举例:引导学生通过画图和逻辑推理,证明矩形的对角线互相平分。
-矩形与平行四边形的区别与联系:理解矩形是平行四边形的特殊情况,掌握两者之间的相互关系。
-举例:对比矩形和平行四边形的性质,强调矩形的特殊性。
-解决实际问题时建模能力的培养:将实际问题抽象为矩形模型,运用矩形性质解决。
-举例:给出实际情境,如设计矩形花园或房间,让学生应用矩形性质进行计程中,鼓励学生提出新的解题方法或发现新的性质。
-举例:组织学生进行小组讨论,分享各自发现的不同解题思路或对矩形性质的深入理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状类似长方形或正方形的物体?”(如门、窗户、书本等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形性质的奥秘。
2.在小组讨论环节,我发现有的学生参与度不高,可能是因为他们对主题不够感兴趣或者不知道如何表达自己的观点。为了提高学生的参与度,我可以在选题和引导方式上做出调整,鼓励他们积极发表自己的看法。
3.在实践活动过程中,学生们对矩形性质的应用表现出较高的热情,但部分学生在具体操作中仍然存在一定的困难。这说明我们在实践教学环节还需要进一步加强,让学生们在动手操作中更好地消化和吸收知识。
北师大版数学九年级上册《矩形的性质》教案x

北师大版数学九年级上册《矩形的性质》教案x一. 教材分析《矩形的性质》是北师大版数学九年级上册第17章第1节的内容。
本节课主要让学生掌握矩形的性质,包括矩形的对角相等、矩形的对边平行且相等、矩形的四个角都是直角等。
同时,通过探究矩形的性质,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了平行四边形的性质,对矩形有一定的了解。
但在理解和运用矩形的性质方面,学生可能还存在一定的困难。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等活动,深入理解矩形的性质。
三. 教学目标1.知识与技能:掌握矩形的性质,能运用矩形的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的观察能力、动手能力、思考能力、交流能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:矩形的性质。
2.难点:矩形的性质的灵活运用。
五. 教学方法采用问题驱动法、合作交流法、操作实践法等教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和思考能力。
六. 教学准备1.准备矩形的相关图片和实例。
2.准备矩形的性质的PPT课件。
3.准备矩形的性质的练习题。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的矩形实例,如门窗、电视屏幕等,引导学生关注矩形在日常生活中的应用。
提问:你们对这些矩形有什么了解?矩形有哪些性质?2.呈现(10分钟)通过PPT课件,呈现矩形的性质。
引导学生观察、思考,并总结出矩形的性质。
同时,教师进行讲解,确保学生理解。
3.操练(10分钟)学生分组进行操作实践,利用准备好的矩形纸片,验证矩形的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些有关矩形性质的练习题,让学生独立完成。
教师选取部分题目进行讲解,确保学生掌握矩形的性质。
5.拓展(10分钟)出示一些有关矩形性质的综合题,让学生分组讨论、交流,寻找解题策略。
北师大版九年级数学上册1.2矩形的性质与判定教学设计

(二)讲授新知
1.矩形的定义:回顾平行四边形的定义,引导学生理解矩形是一种特殊的平行四边形,即四个角都是直角的平行四边形。
2.矩形的性质:通过动画演示、实际操作等方式,引导学生发现矩形的性质,如对边相等、对角线相等、对角线互相平分等。
1.基础巩固题:完成教材课后习题1、2、3题,要求学生熟练掌握矩形的基本性质和判定方法,加强对矩形知识点的理解。
2.提高拓展题:完成教材课后习题4、5题,引导学生运用矩形知识解决实际问题,培养学生的逻辑思维和知识运用能力。
4.实践应用题:设计一道与实际生活相关的矩形问题,如计算教室黑板的面积、设计一个矩形花园等,让学生将所学知识应用于解决实际问题。
4.培养学生的空间观念,使学生能够将矩形的相关知识应用到生活中,体会数学在现实生活中的重要作用。
二、学情分析
九年级学生在前两年的数学学习过程中,已经掌握了平行四边形、三角形等基本的几何图形知识,具备了一定的几何图形识别和分析能力。在此基础上,学生对矩形的认识已经具备了一定的基础,但在理解矩形性质的推理和应用方面,仍需进一步引导和培养。此外,学生在解决实际问题时,可能对矩形相关性质的应用还不够熟练,需要通过本章节的学习,提高对矩形的认识和运用能力。因此,在教学过程中,应关注以下几个方面:
北师大版九年级数学上册1.2矩形的性质与判定教学设计
一、教学目标ቤተ መጻሕፍቲ ባይዱ
(一)知识与技能
1.理解矩形的定义,知道矩形是一种特殊的平行四边形,并掌握矩形的四个角都是直角的特性。
2.掌握矩形的基本性质,如对边相等、对角线相等、对角线互相平分等,并能够运用这些性质解决相关问题。
北师大版九年级上册数学 第1课时 矩形的性质第1课时 矩形的性质教案1

1.2矩形的性质与判定第1课时矩形的性质一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.三、例题的意图分析例1是矩形性质的直接运用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.四、课堂引入1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.五、例习题分析例1 已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4cm ,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB 是等边三角形,因此对角线的长度可求.解:∵ 四边形ABCD 是矩形,∴ AC 与BD 相等且互相平分.∴ OA=OB .又 ∠AOB=60°,∴ △OAB 是等边三角形.∴ 矩形的对角线长AC=BD = 2OA=2×4=8(cm ).例2(补充)已知:如图 ,矩形 ABCD ,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A到BD 的距离AE 的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.略解:设AD=xcm ,则对角线长(x+4)cm ,在Rt △ABD 中,由勾股定理:222)4(8+=+x x ,解得x=6. 则 AD=6cm .“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB = AD×AB ,解得 AE = 4.8cm .例3(补充) 已知:如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F ,若AE=BC . 求证:CE =EF .分析:CE 、EF 分别是BC ,AE 等线段上的一部分,若AF =BE ,则问题解决,而证明AF =BE ,只要证明△ABE ≌△DFA 即可,在矩形中容易构造全等的直角三角形.证明:∵ 四边形ABCD 是矩形,∴ ∠B=90°,且AD ∥BC . ∴ ∠1=∠2.∵ DF ⊥AE , ∴ ∠AFD=90°.∴ ∠B=∠AFD .又 AD=AE ,∴ △ABE ≌△DFA (AAS ).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.六、随堂练习1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.七、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.。
1.2《矩形的性质与判定》北师大版九年级数学上册教案(第2课时)

第一章特殊的平行四边形1.2 矩形的性质与判定第2课时一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形判定定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的判定定理,以及其他相关结论,进一步发展演绎推理能力.4.进一步体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:探索矩形的判定方法.难点:合理应用矩形的判定定理解决问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资《四边形到平行四边形再到矩形的变化》动画,《矩形的判定》微课.五、教学过程设计【复习引入】1.什么叫做矩形?答:有一个角是直角的平行四边形叫做矩形.2.矩形与平行四边形及四边形有什么从属关系?3.矩形有什么特有的性质呢?答:(1)矩形的四个角都是直角;(2)矩形的对角线相等.4.你知道如何判定一个平行四边形是矩形吗?答:有一个角是直角的平行四边形是矩形(定义判定).5.那么除了矩形的定义外,还有没有其他判定矩形的方法呢?这节课我们就共同来探究一下.师生活动:教师出示问题,学生回答,让学生复习前面学过的内容.设计意图:通过复习,巩固旧知,铺垫新知,设置问题,引出新课.【探究新知】做一做如图,是一个平行四边形活动框架,拉动一对不相邻的顶点时,平行四边形的形状会发生变化.(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?(2)当两条对角线的长度相等时,平行四边形有什么特征?由此你能得到一个怎样的猜想?师生活动:教师出示“做一做”并操作演示,学生思考、讨论、交流,猜想出矩形的一个判定方法.答:(1)当∠α增大到90°时,两条对角线的长度相等.当∠α超过90°时,以∠α的顶点为端点的一条对角线逐渐变短,另一条对角线逐渐变长.(2)当两条对角线的长度相等时,平行四边形的四个角都等于90°.得到的猜想是:对角线相等的平行四边形是矩形.思考你能证明你的猜想吗?师生活动:教师出示问题,学生思考,教师引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AC,DB是它的两条对角线,AC=DB.求证:□ABCD是矩形.分析:利用全等三角形证明平行四边形的某两个相邻的角相等,而这两个角又互补,所以它们都是直角,从而得证.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.又∵BC=CB,AC=DB,∴△ABC≌△DCB.∴∠ABC=∠DCB.∵AB∥DC,∴∠ABC+∠DCB=180°.∴∠ABC=∠DCB=.∴□ABCD是矩形(矩形的定义).设计意图:培养学生发现规律的能力和逻辑推理能力.判定定理1:对角线相等的平行四边形是矩形.几何语言:∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形.该判定定理的两个适用条件:(1)对角线相等;(2)是平行四边形.想一想:我们知道,矩形的四个角都是直角.反过来,一个四边形至少有几个角是直角时,这个四边形就是矩形呢?请证明你的结论.师生活动:教师出示问题,学生思考、讨论、交流,形成猜想并证明猜想.猜想:一个四边形至少有三个角是直角时,这个四边形就是矩形.已知:在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.证明:∵∠A=∠B=90°,∴∠A+∠B=180°.∴AD∥BC.∵∠B+∠C=180°,∴AB∥CD.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).又∵∠A=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).设计意图:培养学生的归纳猜想,推理论证的能力.判定定理2:有三个角是直角的四边形是矩形.几何语言:∵∠A=∠B=∠C=90°,∴四边形ABCD是矩形.归纳:矩形的判定方法:方法1:有一个角是直角的平行四边形是矩形;方法2:对角线相等的平行四边形是矩形;方法3:有三个角是直角的四边形是矩形.议一议你有什么方法检查你家(或教室)刚安装的门框是不是矩形?如果仅有一根较长的绳子,你怎样检查?请说明检查方法的合理性,并与同伴交流.师生活动:教师出示问题,学生思考,教师找学生代表回答.答:可以用直角尺检查安装的门框的四个角是否为直角.如果有三个角是直角,那么刚安装的门框一定是矩形.也可以用直尺(或皮尺)分别量出门框两组对边的长度,如果两组对边长度分别相等,则门框一定是平行四边形,再测量门框的对角线的长度,如果两条对角线的长度相等,那么刚安装的门框一定是矩形.如果仅有一根较长的绳子,可以先用绳子分别测量出门框的两组对边的长度,做上记号.如果两组对边的长度分别相等,那么这个门框一定是平行四边形,再用绳子量出门框的对角线的长度.如果这两条对角线的长度相等,那么这个刚安装的门框一定是矩形,否则不是矩形.理由是对角线相等的平行四边形是矩形.设计意图:让学生运用所学知识解决实际问题.【典例精析】例1 如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.师生活动:教师出示例题,学生思考,教师引导学生完成本题.分析:教师先带学生从已知条件入手,对平行四边形对角线的性质进行分析,再结合△ABO是等边三角形的条件,很容易推出对角线相等,从而利用刚学的矩形的判定定理“对角线相等的四边形是矩形”证得是矩形,再利用勾股定理求出边长BC,进而求出矩形的面积.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴OA=OB=OC=OD=4.∴AC=BD=2OA=2×4=8.∴□ABCD是矩形(对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴.∴S□ABCD=AB·BC=4×=.设计意图:培养学生应用所学知识解决问题的能力.【课堂练习】1.下列命题错误的是().A.对角线相等且互相平分的四边形是矩形B.对角互补的平行四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.四个角都相等的四边形是矩形参考答案C2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.参考答案12.3.已知:如图,在□ABCD中,M是AD边的中点,且MB=MC.求证:四边形ABCD是矩形.师生活动:教师先找几名学生板演,然后讲解出现的问题.答案证明:∵四边形ABCD是平行四边形,∴AB=DC.∵M是AD边的中点,∴AM=DM.又∵MB=MC,∴△ABM≌△DCM(SSS).∴∠A=∠D.又∵AB∥DC,∴∠A+∠D=180°.∴平行四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).4.如图,在□ABCD中,对角线AC,BD相交于点O,点E是□ABCD外一点,且∠AEC=∠BED=90°.求证:□ABCD是矩形.师生活动:教师出示题目,学生思考,教师请有思路的学生讲述解题思路,然后订正,最后教师写出解题过程.证明:如图,连接OE.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠AEC=∠BED=90°,∴OE=AC=BD.∴AC=BD.∴□ABCD是矩形(对角线相等的平行四边形是矩形).设计意图:通过本环节的学习,让学生巩固所学知识,进一步加深对所学知识的理解.六、课堂小结请同学们回顾一下,我们学过的矩形的判定方法有哪些?答:我们学过的矩形的判定方法有:(1)定义:有一个角是直角的平行四边形是矩形;(2)判定定理1:对角线相等的平行四边形是矩形;(3)判定定理2:有三个角是直角的四边形是矩形.师生活动:教师出示问题,引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.2 矩形的性质与判定(2)1.矩形的判定方法:(1)定义:有一个角是直角的平行四边形是矩形(2)判定定理1:对角线相等的平行四边形是矩形(3)判定定理2:有三个角是直角的四边形是矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2矩形的性质与判定
第1课时矩形的性质
【学习目标】
1.了解矩形的有关概念,理解并掌握矩形的有关性质.
2.经历探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.
3.培养严谨的推理能力以及自主合作精神;体会逻辑推理的思维价值.
【学习重点】
掌握矩形的性质,并学会应用.
【学习难点】
理解矩形的特殊性质.
情景导入生成问题
1.菱形的定义是什么?
答:一组邻边相等的平行四边形叫做菱形.
2.菱形的四条边都相等,菱形的对角线互相垂直.
自学互研生成能力
知识模块一探索矩形的性质
先阅读教材P11-12页的内容,然后完成下列的问题。
1.矩形的定义是什么?
答:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
2.矩形具有一般平行四边形的所有性质吗?
答:因为矩形是特殊的平行四边形,所以矩形具有一般平行四边形的所有性质.
1.拿一个可以活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)
2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形.
归纳结论:矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).
3.学生观察教师的教具,研究其变化情况后,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.
思考:矩形还具有哪些特殊的性质?为什么?
归纳结论:矩形性质1:矩形的四个角都是直角;矩形性质2:矩形的对角线相等. 4.矩形是轴对称图形吗?如果是,它有几条对称轴? 答:矩形是轴对称图形,有两条对称轴.
5.如图,在矩形ABCD 中,AC 、BD 相交于点O ,探究AO 与BD 的数量关系. 归纳结论:直角三角形斜边上的中线等于斜边的一半. 知识模块二 矩形性质的应用
解答下列各题:
1.平行四边形、矩形、菱形都具有的性质是( B )
A .对角线相等
B .对角线互相平行
C .对角线平分一组对角
D .对角线互相垂直
2.如图,在Rt △ABC 中,∠ACB =90°,AB =10,CD 是AB 边上的中线,则CD 的长是( C ) A .20 B .10 C .5 D .52
典例讲解:
已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =4cm ,求矩形对角线的长. 解:∵四边形ABCD 是矩形.∴AC 与BD 相等且互相平分.∴OA =OB.又∠AOB =60°,∴△OAB 是等边三角形.∴矩形的对角线长AC =BD =2OA =2×4=8cm .
对应练习:
已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.
证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B =∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一探索矩形的性质
知识模块二矩形性质的应用
检测反馈达成目标
1.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=__3__cm.
2.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20cm.
3.已知:如图,矩形ABCD中,AB长8cm,对角线比AD长4cm.求AD的长及点A到BD的距离AE的长.
解:设AD=x cm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6,则AD =6cm;利用面积公式,可得到两直角边、斜边及斜边上的高有一个基本关系式:AE·DB=AD·AB,解得AE=4.8cm.
课后反思查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。