2019年北京朝阳高考一模数学试卷(理)及答案

合集下载

2019年高考新课标Ⅰ卷理数试题解析(解析版)

2019年高考新课标Ⅰ卷理数试题解析(解析版)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .AB =∅【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B【解析】不妨设正方形边长为 a.由图形的对称性可知,太极图中黑白部分面积相等,即所各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221()228a a ππ⨯⨯=,选B. 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C【解析】设公差为d ,则有112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D【解析】由已知,使1()1f x -≤≤成立的x 满足11x -≤≤,所以由121x -≤-≤得13x ≤≤,即使1(2)1f x -≤-≤成立的x 满足13x ≤≤,选D.6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】621(1)(1)x x ++展开式中含2x 的项为224426621130C x C x x x⋅+⋅=,故2x 前系数为30,选C.. 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B8.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2 【答案】D【解析】由题意选择321000nn->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D.9.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【解析】设直线1l 方程为1(1)y k x =-取方程214(1)y xy k x ⎧=⎨=-⎩得2222111240k x k x x k --+=∴21122124k x x k --+=-212124k k += 同理直线2l 与抛物线的交点满足22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++221222222212121224244416482816k k k k k k k k ++=++=++≥+= 当且仅当121k k =-=(或1-)时,取得等号. 11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,学科*网其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +的部分和,即1212221t t k -+=+++=-,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 二、填空题:本题共4小题,每小题5分,共20分。

北京市朝阳区2019届高三一模数学(理)试题及答案

北京市朝阳区2019届高三一模数学(理)试题及答案

北京市朝阳区高三年级第一次综合练习数学(理) 2019.3本试卷共4页。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A={x︳x>1},集合B={ x︳x²<4},则A∩B=A. {x︳x>-2}B. {x︳1<x<2}C. {x︳1≤x<2}D. R2. 在复平面内,复数z=对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. ()的展开式中的常数项为A. -12B. -6C. 6D. 124. 若函数f(x)=则函数f(x)的值域是A. (-∞,2)B. (-∞,2]C. [0,+ ∞)D. (-∞,0)∪(0,2)5. 如图,函数f(x)的图像是由正弦曲线或余弦曲线经过变换得到的,则f(x)的解析式可以是A. f(x)=sin(2x+)B. f(x)=sin(4x+)C. f(x)=cos(2x+)D. f(x)=cos(4x+)6. 记不等式组,所表示的平面区域为D,“点(-1,1)∈D”是“k”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为A. 4B. 2C.D.8. 某单位周一、周二、周三开车上班的职工人数分别是14、10、8,若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是A. 5B. 6C. 7D. 8第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

9. 双曲线-=1的右焦点到其一条渐近线的距离是10. 执行如图所示的程序框图,输出的x值为11.在极坐标系中,直线cosθ=1与圆cosθ交于A,B两点,则=12.能说明“函数f(x)的图像在区间[0,2]上是一条连续不断的曲线,若f(0), f(2)>0则f(x)在(0,2)内无零点”为假命题的一个函数是13.天坛公园是明、清两代皇帝“祭天”“祈谷”的场所,天坛公园中的圜丘台共有三层(如下页本题图1所示)上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石铺成(如下页本题图2所示),上层从第一环至第九还共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是;上、中、下三层坛所有的扇面形石块数是14.在平面内,点A是定点,动点B,C满足==1,·=0,则集合=+,1≤≤2|所表示的区域面积是三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程15.(本小题满分13分)在△ABC中,a=,∠A=120°,△ABC的面积等于,且b<c,(I)求b的值;(II)求cos2B的值16.(本小题满分13分)某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客。

2019年北京卷语文英语数学理综高考真题及答案(4套齐了)

2019年北京卷语文英语数学理综高考真题及答案(4套齐了)

2019年普通高等学校招生全国统一考试语文(北京卷)本试卷共10页,150分。

考试时长150分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、本大题共7小题,共23分。

阅读下面的材料,完成1—6题。

材料一随着全球人口的不断增长和科学技术的飞速发展,人类在创造文明的同时也缔造了一个深受人类影响的全球生态系统。

长期以来对生物资源及土地的过度利用,导致了动植物栖息地丧失、环境污染等一系列问题的出现,生态环境及生物系统遭受了严重破坏。

据专家估计,由于人类活动和气候变化,地球上的生物种类目前正在以相当于正常水平1000倍速度消失,全球已有约3.4万种植物和5200多种动物濒临灭绝,物种分布发生了大范围的变化,这些形成了全球性的生物多样性危机。

生物多样性危机是多种因素综合作用的结果,城市化是其中重要的因素之一。

城市化是伴随工业化和现代化必然出现,反过来又推进工业化和现代化的一个历史过程;城市化水平是现代文明的重要指标。

但无序蔓延的城市开发使野生动植物的栖息地日益萎缩,一部分动植物不得不和人类共同生活在城市之中。

城市中约60~70%的地表被道路、人エ建筑、停车场等硬化,水不容易渗入,植物的种子难以生根。

全球很多城市的人口密度已达每平方千米数万人,密集的人流对诸多生物而言是潜在的危险;除此之外,还有大量的汽车、摩托车等在飞驰。

高楼大厦林立,热量不断聚集,城市中心的温度有时甚至高出周边10°C之多,这种热岛效应对生物的生存也是一大干扰因素。

生物多样性为人类发展带来了巨大财富,目前它却面临着来自城市化等方面的威胁。

城市化对生物多样性的影响成为生态学研究者关注的焦点问题。

(取材于干靓等的相关文章)1.根据材料一,下列表述不属于生物多样性危机的一项是(3分)A.生物种类以非正常速度消失。

B.大量动植物濒临灭绝。

C.物种分布发生大范围变化。

D.动植物和人类共同生活。

2.根据材料一,下列理解和分析,符合文意的一项是(3分)A.深受人类影响的全球生态系统利于缓解生物多样性危机。

2019年高考数学(理)模拟试题(三)含答案及解析

2019年高考数学(理)模拟试题(三)含答案及解析

2019年高考数学(理)模拟试题(三)含答案及解析2019年高考数学(理)模拟试题(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z满足(1-i)z=2+i,则z的共轭复数在复平面内对应的点在()A。

第一象限B。

第二象限C。

第三象限D。

第四象限2.设集合M={x|x<36},N={2,4,6,8},则M∩N=()A。

{2,4}B。

{2,4,6}C。

{2,6}D。

{2,4,6,8}3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A。

1/4B。

1/3C。

1/2D。

2/34.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A。

42种B。

48种C。

54种D。

60种5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A。

32π/3B。

64π/3C。

32πD。

64π/26.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),AC=BC,则△ABC的欧拉线方程为()A。

2x+y-3=0B。

2x-y+3=0C。

x-2y-3=0D。

x-2y+3=07.执行如图所示的程序框图,则输出S的值为()A。

2019年北京市朝阳一模理科答案终稿

2019年北京市朝阳一模理科答案终稿

北京市朝阳区高三年级第一次综合练习2019. 3三、解答题:(本题满分80 分)因为b c c ,所以b =1 .ab(n)由正弦定理二—=上-sin A sin B即 sin B =—^ =—.V 21 14所以 cos2B=1 -2sin 2 B =1 —2(0)2 二1314 1416. (本小题满分13分)解:(I )设M 表示事件“乘客 A 乘车等待时间小于 20分钟”,N 表示事件“乘客 B 乘车等待时间小于20分钟”,C 表示事件“乘客 A,B 乘车等待时间都小于 20分钟”.由题意知,乘客 A 乘车等待时间小于20分钟的频率为15.(本小题满分 13分)解:(I )由已知得 1 S=1bcsi nA=^, { 2[(妬)2二b 2 +c 2 -2bccos120。

整理得I bc=4, 'b 2 +C 2=17.解得【;=4,或 P=4, .c=1..8分.13分(0.012 +0.040 +0.048)咒5 =0.5,故 P(M)的估计值为 0.5 . 乘客B 乘车等待时间小于 20分钟的频率为(0.016 +0.028 +0.036)x5 =0.4,故 P(N)的估计值为 0.4 . 又 P(C) =P(MN ) = P(M ) P(N)=丄咒2 =12 5 51故事件C 的概率为- .... ...........5(n )由(I )可知,乙站乘客乘车等待时间小于所以乙站乘客乘车等待时间小于20分钟的概率为2显然,X 的可能取值为0,1,2,3且X ~B (3,2).517. (本小题满分14分)解:(I )证明:因为 ADEF 为正方形, 所以AF 丄AD .又因为平面 ADEF 丄平面ABCD , 且平面ADEF ("1平面ABCD = AD , 所以AF 丄平面ABCD . 所以AF 丄CD .(n )由(I )可知, AF 丄平面ABCD ,所以AF 丄AD , AF 丄AB .因为N BAD =90°,所以AB, AD,AF 两两垂直.分别以AB, AD, AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图) 因为 AB =AD =1 , BC =3,所以 A(0,0,0), B(1,0,0), C(1,3,0), D(0,1,0), E(0,1,1), F (0,0,1), 所以 BF =(—1,0,1), DC =(1,2,0), DE =(0,0,1) •所以 P(X =0) =c3\3)5 2^2 P(X =2)=C3M5Q-7;p (x =1)=c 33 5故随机变量X 的分布列为2'(3)2125 ' ‘ 飞 5 3632 3芮 P(X =32C 3(5)54 "125 8一.6分20分钟的频率为0.4 ,.13分(川)设罟“.仃r ,i]),设 M (N ,y i ,Z i ),则(N —1, y i ,Z i )=几(―1,1,0), 所以 Xr =1 —几,yr = k , Z 1 = 0 ,所以 M (1 — L A ,0 ), 所以 AM = (1 -L A ,0 )•设平面AFM 的一个法向量为 m= (x 0,y 0,z 0),则=0,[m ”AF =0.因为 AF =(0,0,1),所以!(j )X 0+心 770 =0.令 X 0 = A ,贝y y 。

2019年北京市高考数学试卷(理科)以及答案解析

2019年北京市高考数学试卷(理科)以及答案解析

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试(北京卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(5分)已知复数z=2+i,则z•=()A.B.C.3D.52.(5分)执行如图所示的程序框图,输出的s值为()A.1B.2C.3D.43.(5分)已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是()A.B.C.D.4.(5分)已知椭圆+=1(a>b>0)的离心率为,则()A.a2=2b2B.3a2=4b2C.a=2b D.3a=4b5.(5分)若x,y满足|x|≤1﹣y,且y≥﹣1,则3x+y的最大值为()A.﹣7B.1C.5D.76.(5分)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2﹣m1=lg,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10﹣10.17.(5分)设点A,B,C不共线,则“与的夹角为锐角”是“|+|>||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③二、填空题共6小题,每小题5分,共30分。

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2019年高考理科数学北京卷(附参考答案和详解)

2019年高考理科数学北京卷(附参考答案和详解)

4!数学中 有 许 多 形 状 优 美/寓 意 美 好 的 曲 线# 曲线 .,#$0&$'!0"#"& 就是 其 中 之 一$如 图 %!给 出 下 列 三 个 结 论 ,
曲线 . 恰 好 经 过 & 个 整 点 $即 横/纵 坐 标
均 为 整 数 的 点 %-
第4题图
曲线 . 上任意一点到原点的距离都不超过槡$-
三 解 答 题解答应写出文字说明证明过程或演算步骤
!"!$本小题满 分 !+ 分%在 '+0. 中#''+#(()'$#5290'
(
! $
!
$!%求(#) 的 值 -
$$%求9/: $0(.%的值!
.!( .
!&!$本小题满分!)分%如图#在 四 棱 锥 12+0.5 中#1+& 平
面 +0.5#+5&.5#+5,0.#1+'+5'.5'$#0.'+!
曲线 . 所围成的&心形'区域的面积小于+! 其 中 #所 有 正 确 结 论 的 序 号 是
*% -%
! ! !,% ! ! !.%
$! ! %
第二部分
二 填 空 题本大题共&小题每 小 题 " 分共 +# 分!把 答 案
填在题中横线上
8!函数 *$#%'9/:$$# 的最小正周期是!!!!! !#!设 等 差 数 列!'-"的 前- 项 和 为,-#若'$ ' (+#," ' (!##
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第一次综合练习数学 (理)2019.3本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|1}A x x =>,集合2{|4}B x x =<,则AB =A .{|2}x x >-B .{|12}x x <<C .{|12}x x ≤<D .R 2.在复平面内,复数12iiz +=对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.41()x x-的展开式中的常数项为A .12-B .6-C .6D . 124.若函数22,1,()log ,1x x f x x x ⎧<=⎨-≥⎩,则函数()f x 的值域是 A .(,2)-∞ B .(,2]-∞ C .[0,)+∞ D .(,0)(0,2)-∞5.如图,函数()f x 的图象是由正弦曲线或余弦曲线经过变换得到的,则()f x 的解析式可以是A .()sin(2)3f x x π=+B .()sin(4)6f x x π=+C .()cos(2)3f x x π=+D .()cos(4)6f x x π=+6.记不等式组0,3,y y x y kx ≥⎧⎪≤+⎨⎪≤⎩所表示的平面区域为D .“点(1,1)D -∈”是“1k ≤-”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为A .4B .2C .8D .4正(主)视图俯视图侧(左)视图12π1-1O 3π xy712π8.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是A .5B .6C .7D .8第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.双曲线2214x y -=的右焦点到其一条渐近线的距离是 .10.执行如图所示的程序框图,则输出的x 值为 .11.在极坐标系中,直线cos 1ρθ=与圆4cos ρθ=相交于,A B 两点,则AB =___.12.能说明“函数()f x 的图象在区间[]0,2上是一条连续不断的曲线.若(0)(2)0f f ⋅>,则()f x 在(0,2)内无零点”为假命题的一个函数是 .13.天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是 .14.在平面内,点A 是定点,动点C B ,满足||||1AB AC ==,0AB AC ⋅=,则集合{=+,12}|P AP AB AC λλ≤≤所表示的区域的面积是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC △中,a =,120A ∠=︒,ABC △b c <. (Ⅰ)求b 的值; (Ⅱ)求cos 2B 的值.16.(本小题满分13分)某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),,[35,40]分组,制成频率分布直方图:时间(分钟)乙站甲站时间(分钟)假设乘客乘车等待时间相互独立.(Ⅰ)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A ;从乙站的乘客中随机抽取1人,记为B .用频率估计概率,求“乘客A ,B 乘车等待时间都小于20分钟”的概率;(Ⅱ)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,X 表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X 的分布列与数学期望.如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD.四边形ADEF为正方形,四边形ABCD为梯形,且//AD BC,90BAD∠=︒,1AB AD==,3BC=.(Ⅰ)求证:AF CD⊥;(Ⅱ)求直线BF与平面CDE所成角的正弦值;(Ⅲ)线段BD上是否存在点M,使得直线//CE平面AFM? 若存在,求BMBD的值;若不存在,请说明理由.EDCB A F已知函数ln()()ax f x x=(R a ∈且0)a ≠. (Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当1a =-时,求证:()1f x x ≥+; (Ⅲ)讨论函数()f x 的极值.已知点00(,)M x y 为椭圆22:12x C y +=上任意一点,直线00:22l x x y y +=与圆22(1)6x y -+=交于,A B 两点,点F为椭圆C 的左焦点.(Ⅰ)求椭圆C 的离心率及左焦点F 的坐标; (Ⅱ)求证:直线l 与椭圆C 相切;(Ⅲ)判断AFB ∠是否为定值,并说明理由.20.(本小题满分13分)在无穷数列{}n a 中,12,a a 是给定的正整数,21n n n a a a ++=-,N n ∈*. (Ⅰ)若123,1a a ==,写出910100,,a a a 的值; (Ⅱ)证明:数列{}n a 中存在值为0的项;(Ⅲ)证明:若12,a a 互质,则数列{}n a 中必有无穷多项为1.北京市朝阳区高三年级第一次综合练习数学(理)答案2019.3一、选择题二、填空题:三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由已知得2221=sin 2=2cos120.S bc A b c bc ⎧⎪⎨⎪+-︒⎩整理得22=4,=17.bc b c ⎧⎨+⎩ 解得=1,=4b c ⎧⎨⎩,或=4,=1.b c ⎧⎨⎩因为b c <,所以1b =.………………………………………………….8分(Ⅱ)由正弦定理sin sin a bA B=, 即sin B =.所以2213cos 2=12sin 12(1414B B -=-= ……………………………….13分16.(本小题满分13分)解:(Ⅰ)设M 表示事件“乘客A 乘车等待时间小于20分钟”,N 表示事件“乘客B 乘车等待时间小于20分钟”,C 表示事件“乘客A,B 乘车等待时间都小于20分钟”.由题意知,乘客A 乘车等待时间小于20分钟的频率为0.0120.0400.048)50.5(++⨯=,故()P M 的估计值为0.5.乘客B 乘车等待时间小于20分钟的频率为0.0160.0280.036)50.4(++⨯=,故()P N 的估计值为0.4.又121()()()()255P C P MN P M P N ==⋅=⨯=. 故事件C 的概率为15.………………………………………………………….6分 (Ⅱ)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为0.4,所以乙站乘客乘车等待时间小于20分钟的概率为25. 显然,X 的可能取值为0,1,2,3且2(3,)5~X B .所以033327(0)()5125P X C ===;1232354(1)()55125P X C ==⋅=; 2232336(2)()55125P X C ==⋅=;33328(3)()5125P X C ===.故随机变量X 的分布列为26355EX =⨯= .……………….13分 17.(本小题满分14分)解:(Ⅰ)证明:因为ADEF 为正方形,所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD ,且平面ADEF平面ABCD AD =,所以AF ⊥平面ABCD . 所以AF CD ⊥.………………4分(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以(0,0,0),(1,0,0),(1,3,0),(0,1,0),(0,1,1),(0,0,1)A B C D E F , 所以(1,0,1),(1,2,0),(0,0,1)BF DC DE =-==.设平面CDE的一个法向量为(,,x y=n则0,0.DCDE⎧⋅=⎪⎨⋅=⎪⎩nn即20,0.x yz+=⎧⎨=⎩令2x=,则1y=-,所以(2,1,0)=-n.设直线BF与平面CDE所成角为θ,则sin|cos,|BFθ=〈〉==n.……………….9分(Ⅲ)设 ([0,1])BMBDλλ=∈,设()111,,M x y z,则()1111,,(1,1,0)x y zλ-=-,所以1111,,0x y zλλ=-==,所以()1,,0Mλλ-,所以()1,,0AMλλ=-.设平面AFM的一个法向量为000(,,)x y z=m,则0,0.AMAF⎧⋅=⎪⎨⋅=⎪⎩mm因为()0,0,1AF=,所以00(1)0,0.x yzλλ-+=⎧⎨=⎩令xλ=,则1yλ=-,所以(,1,0)λλ=-m.在线段BD上存在点M,使得//CE平面AFM等价于存在[0,1]λ∈,使得0CE⋅=m.因为()1,2,1CE=--,由0CE⋅=m,所以2(1)0λλ---=,解得2[0,1]3λ=∈,所以线段BD上存在点M,使得//CE平面AFM,且23BMBD=.……………….14分18.(本小题满分13分)解:(Ⅰ)当1a=时,ln()xf xx=.所以21ln()xf xx-'=.因为(1)1,(1)0f f'==,所以曲线()y f x=在(1,(1))f处的切线方程为1y x=-.……………….3分1a=-ln()()xf x-=函数()f x 的定义域为(,0)-∞. 不等式()1f x x ≥+成立⇔ln()1x x x-≥+成立⇔2ln()0x x x ---≤成立. 设2()ln()g x x x x =---((,0))x ∈-∞,则2121(21)(1)()21x x x x g x x x x x--+-++'=--==.当x 变化时,()g x ',()g x 变化情况如下表:所以()(1)g x g ≤-.因为(1)0g -=,所以()0g x ≤,所以ln()1x x x-≥+.………………………………………………………………….8分 (Ⅲ)求导得21ln()()ax f x x -'=. 令()0f x '=,因为0a ≠可得ex a=.当0a >时,()f x 的定义域为()0,+∞.当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极大值e ()eaf a =,无极小值. 当0a<时,()f x 的定义域为(),0-∞,当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极小值e ()ea f a =,无极大值.……………………………………………….13分19. (本小题满分14分)解:(Ⅰ)由题意a =1b =,1c =所以离心率c e a ==,左焦点(1,0)F -.………………………………………….4分 (Ⅱ)当00y =时直线l 方程为x =x =,直线l 与椭圆C 相切.当00y ≠时,由22001,222x y x x y y ⎧+=⎪⎨⎪+=⎩得22220000(2)4440y x x x x y +-+-=, 由题知,220012x y +=,即220022x y +=, 所以 22220000(4)4(2)(44)x y x y ∆=-+- 220016[2(1)]x y =--=220016(22)0x y +-=. 故直线l 与椭圆C 相切.………………………………………………………….8分 (Ⅲ)设11(,)Ax y ,22(,)B x y ,当00y =时,12x x =,12y y =-,1x =2211(1)FA FB x y ⋅=+-2211(1)6(1)x x =+-+-21240x =-=, 所以FA FB ⊥,即90AFB ∠=.当00y ≠时,由2200(1)6,22x y x x y y ⎧-+=⎪⎨+=⎪⎩ 得22220000(1)2(2)2100y x y x x y +-++-=, 则20012202(2)1y x x x y ++=+,2012202101y x x y -=+, 2001212122220001()42x x y y x x x x y y y =-++2002054422x x y --+=+. 因为1122(1,)(1,)FA FB x y x y ⋅=+⋅+1212121x x x x y y =++++2222000000220042084225442222y y x y x x y y -++++--+=+++ 2200205(2)10022x y y -++==+. 所以FA FB ⊥,即90AFB ∠=.故AFB ∠为定值90. ………………………………………………………….14分20. (本小题满分13分)解:(I)9101000,1,1a a a ===..………………………………………………………….3分 (II)反证法:假设i ∀,0.i a ≠由于错误!未找到引用源。

相关文档
最新文档