初中数学专题ppt课件

合集下载

初中数学全套课件ppt课件ppt

初中数学全套课件ppt课件ppt
调递增。
二次函数
二次函数的概念
二次函数是函数的一种,其解析式为 $y = ax^2 + bx + c$,其中 $a$、$b$ 和 $c$ 是 常数,且 $a neq 0$。
二次函数的图像
二次函数的图像是一个抛物线,其开口方向由系数 $a$ 决定,当 $a > 0$ 时,抛物线开 口向上;当 $a < 0$ 时,抛物线开口向下。
分式
分式的概念
分式是两个整式的商,表 示为分数形式的代数式。
分式的性质
分式具有分子的性质和分 母的性质,如约分、通分 等。
分式的运算
分式的运算包括加法、减 法、乘法和除法等。
方程式
方程式的概念
方程式是用等号将两个代数式连接起 来的数学表达式。
方程式的解法
方程式的应用
方程式在日常生活和科学研究中有着 广泛的应用,如工程、物理、化学等 领域。
概率计算
通过长期实验或观察,可以计算随机事件的概率 。例如,抛硬币正面朝上的概率为0.5。
3
概率性质
概率具有可加性和有限可加性,即对于互斥事件 ,其概率之和为1;对于任意事件,其概率不超 过1。
统计初步
统计定义
统计是对数据进行收集、整理、分析和推断的科学,目的是从数据中获取有用的信息。
统计方法
常见的统计方法包括描述性统计和推断性统计。描述性统计是对数据进行整理和描述,如计算平均数、中位数、众数 等;推断性统计则基于样本数据对总体进行推断,如进行假设检验和回归分析。
反比例函数
反比例函数的概念
反比例函数是函数的一种,其解 析式为 $y = frac{k}{x}$,其中 $k$ 是常数,且 $k neq 0$。
反比例函数的图像

初三数学课件ppt

初三数学课件ppt

包括一元一次不等式的性质和解法, 以及不等式组的性质和解法。
函数
函数的定义和性质
包括函数的定义、函数的表示方法、函数的单调性、奇偶性和周 期性等。
一次函数和反比例函数
包括一次函数和反比例函数的定义、性质和图像,以及它们的实际 应用。
函数的应用
通过实例和问题解决,让学生了解函数在实际生活中的应用,如路 程、速度和时间的关系等。
01
点、线、面的关系
理解点、线、面在三维空间中的关系,如点在面上、线在面上、线与线
相交、线与线平行等。
02
立体图形的分类与性质
了解常见的立体图形,如长方体、正方体、球体、圆柱体等,理解其性
质和特点。
03
立体图形的表面积与体积计算
掌握立体图形的表面积和体积计算公式,理解表面积与体积的关系。
03
概率与统计初步
数据中获取有用的信息。
统计方法
常见的统计方法包括描述性统计 和推断性统计,其中描述性统计 是对数据进行整理和描述,而推 断性统计则是对数据进行推理和
预测。
统计应用
统计在各个领域都有广泛的应用 ,如经济学、社会学、医学等。
数据处理与图表
数据处理
数据处理是指对数据进行清洗、去重、排序、筛选等操作 ,以便更好地利用数据进行分析和预测。

圆的性质
掌握圆的基本性质,如圆上任一点到圆心的距离等于半径,圆心 角与圆周角的关系等。
圆的周长与面积计算
掌握圆的周长和面积计算公式,理解周长与直径、半径的关系,面 积与半径的关系。
圆与三角形、四边形的关系
理解圆与三角形、四边形在面积和周长计算中的关系,如圆内接三 角形、外切三角形等。
立体几何初步

初中数学专题讲座课件

初中数学专题讲座课件

学生在计算函数值时,可能因为对函数表 达式处理不当而导致结果不正确。
05
初中数学学习方法与建议
Chapter
如何提高数学学习兴趣
01
02
03
发现数学的乐趣
尝试从数学中找到乐趣, 例如解决难题、探索数学 规律等。
结合实际应用
将数学与实际生活联系起 来,理解数学在生活中的 重要性。
参与数学活动
参加数学竞赛、数学俱乐 部等,与同学一起学习和 讨论数学问题。
03
初中数学解题技巧与策略
Chapter
代数解题技巧
01
代数方程求解
掌握一元一次方程、 一元二次方程的解法 ,理解方程的根与系 数的关系。
02
因式分解法
利用提取公因式、十 字相乘法等方法对多 项式进行因式分解, 简化计算。
03
分式化简
掌握分式的约分、通 分、化简技巧,理解 分式的基本性质。
04
二次根式化简
如何制定有效的学习计划
确定学习目标
明确学习目标,知道自己 要达到什么水平。
分配时间
根据学习目标,合理分配 学习时间,确保每个知识 点都得到充分复习。
制定学习计划
制定详细的学习计划,包 括每天的学习任务、每周 的学习重点等。
如何进行有效的复习与总结
及时复习
学完新知识后,及时复习巩固, 避免遗忘。
总结归纳
Chapter
代数易错题解析
总结词
代数是初中数学的重要组成部 分,学生在解决代数问题时容
易出现混淆和错误。
方程式解法混淆
学生在解方程时容易混淆等式 的性质和解方程的步骤,导致 解出的答案不正确。
变量代换错误
在解决复杂代数问题时,学生 可能不正确地代换变量,导致 后续计算出现错误。

初中数学专题 PPT课件 图文

初中数学专题 PPT课件 图文

然后利用“整体代入法”求代数式的值.
[对应训练]
.(·龙岩)若-=π,则-+π=.
π
转化思想
【例 2】 (2015·深圳)解方程:2xx-3+3x5-2=4. 解:去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得: 3x2-2x+10x-15=24x2-52x+24,即 7x2-20x+13=0,分解因式
解:(1)y=3[30000x--32(00xx-=1100)0x-,2(000]≤x=x≤-130x,2+且13x0为x(整1数0<)x≤30, 且x为整数)
(2)在 0≤x≤10 时,y=100x,当 x=10 时,y 有最大值 1000;在 10
<x≤30 时,y=-3x2+130x,当 x=2123时,y 取得最大值,∵x 为整数, 根据抛物线的对称性得 x=22 时,y 有最大值 1408.∵1408>1000,∴顾客
得:(x-1)(7x-13)=0,解得:x1=1,x2=173,经检验 x1=1 与 x2 =173都为分式方程的解
【点评】本题考查了解分式方程,解分式方程的基本思想是“转化 思想”,把分式方程转化为整式方程求解.解分式方程一定注意要 验根.
[对应训练] .(·枣庄)图①所示的正方体木块棱长为 ,沿其相邻三个面的对角 线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图② 的几(3 何2+ 体3表面6)从顶点爬提高解题 能力根本之所在.因此,在复习时要注意体会教材例题、习题以及 中考试题中所体现的数学思想和方法,培养用数学思想方法解决问 题的意识.
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中 一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学 思想方法有:整体思想、转化思想、方程与函数思想、数形结合思 想、分类讨论思想等.

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

初三数学九年级上册:第28讲┃矩形、菱形、正方形 ppt教学课件

初三数学九年级上册:第28讲┃矩形、菱形、正方形 ppt教学课件
图26-4
第28讲┃矩形、菱形、正方形

(1)证明:∵BC的垂直平分线EF交BC于点D,
∴BF=FC,BE=EC.
又∵∠ACB=90°,∴EF∥AC.
∴BE∶AB=DB∶BC.
∵D为BC中点,∴DB∶BC=1∶2,
∴BE∶AB=1∶2,∴E为AB中点,即BE=AE.
∵CF=AE,∴CF=BE,∴CF=FB=BE=CE,
考点2 菱形
菱形 定义
有一组__邻__边____相等的平行四边形是菱形
菱形的 性质
对称性
菱形是轴对称图形,两条对角线所在 的直线是它的对称轴
菱形是中心对称图形,它的对称中心 是两条对角线的交点
定理
(1)菱形的四条边__相__等____; (2)菱形的两条对角线互相__垂__直____平
分,并且每条对角线平分一__组__对__角__
第28讲┃矩形、菱形、正方形
解 析∵BD、GE 分别是正方形 ABCD,正方形 CEFG 的对角线, ∴∠ADB=∠CGE=45°, ∠GDT=∠BDC=45°, ∠DTG=180°-∠GDT-∠CGE=180°-45°-45°=90°, ∴△DGT 是等腰直角三角形. ∵两正方形的边长分别为 4,8, ∴DG=8-4=4, ∴GT= 22×4=2 2.
顺次连接对角线互相垂直的四边形所得到的四边形是 __矩__形__
第28讲┃矩形、菱形、正方形
归类探究
探究一 矩形的性质及判定的应用
命题角度: 1. 矩形的性质; 2. 矩形的判定.. 例1 [2013·白银] 如图26-1,在△ABC中,D是BC边上的 一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点 F,且AF=BD,连接BF. (1)线段BD与CD有何数量关系,为什么? (2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理 由.

《中考数学专题讲座》课件

《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。

初中数学全部知识点和经典练习题 PPT课件 图文

初中数学全部知识点和经典练习题 PPT课件 图文

3.反比例函数
考试内容:
反比例函数;反比例函数的图像和性质;反 比例函数的应用。
考试要求 (1)结合具体情境体会反比例函数的意义,根据 已知条件确定反比例函数表达式。 (2)会画反比例函数的图像,根据图像和解析表 达式 探索并理解其性质(k>0或k<0时图像的变化 情况) (3)能用反比例函数解决简单的实际问题。
4.考查函数与其它知识点的联系
评:函数与方程、不等式等许多知识点的 结合,使函数的学习更加丰富而灵动。
5.考查函数的应用(1)代数应用
例1 (2008年安徽省)刚回营地的两个抢险分队又接 到救灾命令:一分队立即出发往30千米的A镇;二分 队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参 加救灾。一分队出发后得知,唯一通往A镇的道路在 离营地10千米处发生塌方,塌方地形复杂,必须由 一分队用1小时打通道路,已知一分队的行进速度为 5千米/时,二分队的行进速度为(4+a)千米/时。
库有粮食100吨,乙库有粮食80吨,而A库的容量为70
吨,B库的容量为110吨。从甲、乙两库到A、B两库的
路程和运费如下表(表中“元/吨·千米”表示每吨
粮食运送1千米所需人民币)
路程(千米) 运费(元/吨·千米)
甲库 乙库 甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
②①当若甲甲、库乙运两往库A库各粮运食往吨A、,B请两写库出多将少粮吨食粮运食往时A,、总B两运 费库最的省总,运最费省y(的元总)运与费x是(多吨少)?的函数关系式
③②①若当判平顶断行点△于MA轴B的M的坐的直标形线为状与(,抛-并物2说,线明-交理1于)由C时。、,D求两抛点物,线以 C的D解为析直式径,的并圆画恰出好该与抛轴物相线切的,大求致该图圆形的。圆心坐标。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3 2+3 6)
解:解析:如图所示:△BCD 是等腰直角三角形,
△ACD 是等边三角形,在 Rt△BCD 中,
CD= BC2+BD2=6 2 cm,∴BE=12CD=3 2 cm,在 Rt△ACE 中,AE
= AC2-CE2=3 6 cm,∴从顶点 A 爬行到顶点 B 的最短距离为(3 2+3 6)
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所 在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思 想和方法,培养用数学思想方法解决问题的意识.
2
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培 养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转 化思想、方程与函数思想、数形结合思想、分类讨论思想等.
初中数学专题
数学思想方法
1
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问 题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与 能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次 上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.
求代数式的值.
10
[对应训练]
.(·龙岩)若-=π,则-+π=.
π
11
转化思想
【例 2】 (2015·深圳)解方程:2xx-3+3x5-2=4. 解:去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得: 3x2-2x+10x-15=24x2-52x+24,即 7x2-20x+13=0,分解因式
直线与△的边相交于,两点.设线段的长度为,平移时间为,则下图中能较好反
映与的函数关系的图象是(
)
9
整体思想
【例】 (·十堰)当=时,++的值为-,则(+-)(--)的值为(
)
.- .- . .
【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是
隐含在题设中,首先应从题设中获取代数式(+)的值,然后利用“整体代入法”
15
(2)过点 M 作 MD⊥CB 于点 D,由题意得:DM=BMsinB=3t·160 =95t(cm),BD=BMcosB=3t·180=152t(cm),BM=3tcm,CN=2tcm, ∴ CD = (8 - 152 t)cm , ∵ AN ⊥ CM , ∠ ACB = 90 ° , ∴ ∠ CAN + ∠ACM=90°,∠MCD+∠ACM=90°,∴∠CAN=∠MCD,∵
(1)若△BMN 与△ABC 相似,求 t 的值; (2)连接 AN,CM,若 AN⊥CM, 求 t 的值.
14
解:(1)由题意知,BM=3tcm,CN=2tcm,∴BN=(8-2t)cm, BA= 62+82=10(cm),当△BMN∽△BAC 时,BBMA =BBNC,∴130t= 8-82t,解得:t=2110;当△BMN∽△BCA 时,BBMC =BBNA,∴38t=8-102t, 解得:t=2332,∴△BMN 与△ABC 相似时,t 的值为2110或3223
cm.故答案为:(3 2+3 6)
13
分类讨论思想
【例 3】 (2015·茂名)如图,Rt△ABC 中,∠ACB=90°,AC =6 cm,BC=8 cm.动点 M 从点 B 出发,在 BA 边上以每秒 3 cm 的 速度向定点 A 运动,同时动点 N 从点 C 出发,在 CB 边上以每秒 2 cm 的速度向点 B 运动,运动时间为 t 秒(0<t<130),连接 MN.
7
3.(2014·绵阳)如图,⊙O 的半径为 1 cm,正六边形 ABCDEF π
内接于⊙O,则图中阴影部分面积为_·娄底)已知 a2+2a=1,则代数式 2a2+4a-1 的值为
(
)
A.0 B.1 C.-1 D.-2
8
.(·邵阳)如图,在等腰△中,直线垂直底边,现将直线沿线段从点匀速平移至点,
4
()方程思想:用方程思想解题的关键是利用已知条件或公式、定理中的已知结 论构造方程(组).这种思想在代数、几何及生活实际中有着广泛的应用.
()函数思想:用运动和变化的观点,集合与对应的思想,去分析和研究数学问 题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题 、转化问题,从而使问题获得解决.运用函数思想要善于抓住事物在运动过程中 那些保持不变的规律和性质.
3
解题方法 ()整体思想:整体是与局部对应的,按常规不容易求某一个(或多个)未知量时 ,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从 而使问题得到解决. ()转化思想:在研究数学问题时,我们通常是将未知问题转化为已知的问题, 将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题 转化为数学问题. ()分类讨论思想:体现了化整为零、积零为整的思想与归类整理的方法.分类 的原则:①分类中的每一部分是相互独立的;②一次分类按一个标准;③分类讨 论应逐级进行.正确的分类必须是周全的,既不重复,也不遗漏.
5
()数形结合思想:从几何直观的角度,利用几何图形的性质研究数量关系,寻 求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解 决几何问题(以数助形).数形结合思想使数量关系和几何图形巧妙地结合起来, 使问题得以解决.
6
1.(2015·攀枝花)分式方程x-1 1=x+3 1的根为_____. 2.(2015·朝阳)一个足球被从地面向上踢出,它距地面的高度 h(m) 与足球被踢出后经过的时间 t(s)之间具有函数关系 h=at2+19.6 t,已 知足球被踢出后经过 4 s 落地,则足球距地面的最大高度是 _________m.
得:(x-1)(7x-13)=0,解得:x1=1,x2=173,经检验 x1=1 与 x2 =173都为分式方程的解
【点评】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分 式方程转化为整式方程求解.解分式方程一定注意要验根.
12
[对应训练] .(·枣庄)图①所示的正方体木块棱长为 ,沿其相邻三个面的对角线(图中虚线)剪 掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点爬行到顶 点的最短距离为.
相关文档
最新文档