介质薄膜的性质-半导体薄膜的性质

合集下载

薄膜的基本性质

薄膜的基本性质

电介质膜
• 电介质多数是化合物,由它们制备的薄膜是作为
绝缘体使用的,但其中包含的缺陷比金属膜要多 得多,且组成成分得差异也很大,因此,在多数 场合下,绝缘性和介电特性都比整块材料要差。 为了除去这些缺陷,在薄膜制成之后,需要进行 热处理。 从制法上来说,溅射方法容易得到电介质膜。将 电介质直接进行溅射时,可得到100~200nm/s的 电介质直接进行溅射时,可得到100~200nm/s的 沉积速率。也可以利用其它的反应性溅射来制造 电介质膜。
电子必须以某种方法通过微晶体之间的空间,因此,在膜 电子必须以某种方法通过微晶体之间的空间,因此, 层较薄时,电阻率是非常大的。当膜厚增加达到数百埃, 层较薄时,电阻率是非常大的。当膜厚增加达到数百埃, 电阻率就会急剧地减小;但是, 电阻率就会急剧地减小;但是,因晶粒界面的接触电阻起 很大的作用,所以和整块材料时相比, 很大的作用,所以和整块材料时相比,电阻率还是要大的 晶粒界面上会吸附气体,发生氧化, 多。晶粒界面上会吸附气体,发生氧化,当这些地方为半 导体时,甚至会出现随温度的升高电阻减小的情况。 导体时,甚至会出现随温度的升高电阻减小的情况。 单晶膜是在高温下生成的,没有晶粒界面的问题, 单晶膜是在高温下生成的,没有晶粒界面的问题,所以一 般说来电阻率小些。如果蒸镀和溅射比较, 般说来电阻率小些。如果蒸镀和溅射比较,溅射的膜由于 核的密度较高,电阻率也较小些。 核的密度较高,电阻率也较小些。
• (3)空位的消除 • 在薄膜中经常含有许多晶格缺陷,其中空位和孔隙等缺陷经 在薄膜中经常含有许多晶格缺陷,
过热退火处理,原子在表面扩散时消灭这些缺陷可使体积发 过热退火处理, 生收缩,从而形成拉应力性质的内应力。 生收缩,从而形成拉应力性质的内应力。
• (4)界面失配 • 当薄膜材料的晶格结构与基体材料的晶格结构不同时,薄膜 当薄膜材料的晶格结构与基体材料的晶格结构不同时,

薄膜的性质

薄膜的性质

几点讨论:
(1)从上式看出,要消除薄膜中的热应力,最根本 的办法就是选用热胀系数相同的薄膜和基片材料。 其次是让成膜温度与薄膜的测量或使用温度相同。 (2)通常情况,Td>T, 若薄膜的弹性常数与温度无 关,薄膜和基片的热胀系数不随温度发生变化、为 常数时,薄膜的热应力随温度作线性变化。
F S 时,热应力为正,即是为张应力。反 (3) 之,热应力为负,即为压应力。
热应力 当薄膜的形成温度和测量或使用温度不同时,由于薄 膜和基片的热胀系数不同而引起的内应力,是一种可 逆的应力。
薄膜热应力的表达式为
F E ( F S ) Td T 1
E 弹性模量, F 薄膜的热胀系数, S 基片的热胀系数 Td 薄膜淀积温度,T 测量温度
④ 淀积方式 对薄膜附着力的影响非常明显。对于同样的薄膜/基 片组合,用溅射方法淀积的薄膜一般比用蒸发方法 制造的薄膜附着牢。 ⑤ 淀积速率 淀积速率增大,表示单位时间内入射的原子数目增 多,因而相对减少了成膜真空室中残留的氧分子的 入射几率,结果在薄膜与基片界面上生成的氧化物 中间层减少,导致薄膜附着力下降。 高速淀积的薄膜结构疏松,内应力较大,也导致附 着性能变差。
② 基片状态的影响 如果基片不经过清洁处理,将在其表面上留有一个 污染层,使基片表面的化学键达到饱和,故淀积上 薄膜以后,膜的附着力很差。因此,在制造薄膜时, 为了提高其附着性能,必须先对基片进行清洁和活 化处理(如离子轰击)。 ③ 基片温度 提高基片温度,有利于薄膜和基片间的原子扩散, 并且还会加速其化学反应,从面有利于形成扩散附 着和通过中间层的附着,所以附着力增大。但会使 薄膜晶粒增大,增加热应力,故不能过分提高基片 温度。
⑥ 淀积气氛 对薄膜附着力的影响,主要发生在薄膜的成长初期。 这时,在制膜的真空室内若有一定量的残留氧气或 水蒸气,氧和水蒸气将与入射的淀积原子相化合, 生成氧化物中间层,从而增强薄膜的附着。 若能增强氧和水蒸气的化学活性,例如使其处于电 离状态,则更能增强薄膜的附着。 成膜以后,若氧从外部或从薄膜和基片内部继续向 薄膜和基片间的界面扩散,则该界面随着时间的进 展,将继续发生氧化,使附着逐渐变强,一直达到 其强度饱和值。这种现象被称为附着力的时间效应。

薄膜物理与技术

薄膜物理与技术

薄膜物理与技术Physics and Technology of Thin Films课程编号:07370110学分:2学时:30(其中:讲课学时: 30 实验学时:0 上机学时:0)先修课程:大学物理,普通化学适用专业:无机非金属材料工程(光电材料与器件)教材:《薄膜物理与技术》,杨邦朝,王文生主编,电子科技大学出版社,1994年1月第1版开课学院:材料科学与工程学院一.课程的性质与任务薄膜科学是现代材料科学中及其重要且发展非常迅速的一个分支,已成为微电子学、固体发光、光电子学等新兴交叉学科的材料基础,同时薄膜科学研究成果转化为生产力的速度愈来愈快,国内外对从事薄膜研发和生产的人才需求也日益强劲。

本门课程就是为适应学科发展,学生适应市场需求而设置的专业课程。

课程的基本任务是:1、基本掌握各种成膜技术的基本原理和方法;2、了解并初步掌握薄膜的形成、结构与缺陷,薄膜的电学、力学、半导体、磁学等物理性质。

二.课程的基本内容及要求第一章真空技术基础1、教学内容(1)真空的基本知识(2)稀薄气体的基本性质(3)真空的获得及测量2、教学要求理解真空的基本知识和稀薄气体的基本性质,掌握真空的获得、主要手段和真空度策略方法,了解实用真空系统。

第二章真空蒸发镀膜1、教学内容(1)真空蒸发原理(2)蒸发源的蒸发特性及膜厚分布(3)蒸发源的类型(4)合金及化合物的蒸发(5)膜厚和沉积速率的测量与监控2、教学要求掌握真空蒸发原理,掌握真空镀膜的特点和蒸发过程,理解饱和蒸汽压和蒸发源的发射特性,熟练掌握蒸发速率、薄膜厚度的测量和控制,了解蒸发镀膜的常用方法(电阻加热和电子束加热),了解合金膜及化合物摸的蒸镀。

第三章溅射镀膜1、教学内容(1)溅射镀膜的特点和基本原理(2)溅射镀膜的类型2、教学要求掌握溅射镀膜的基本原理和特点,理解表征溅射特性的参量及其影响因素,了解溅射机理及溅射镀膜的各种类型第四章离子镀膜1、教学内容(1)离子镀的原理和特点(2)离子轰击的作用(3)离子镀的类型2、教学要求掌握离子镀的基本原理和特点,理解离子轰击的作用,了解离子镀的类型。

薄膜材料

薄膜材料

薄膜材料:1、金属薄膜金属薄膜具有反射率高,截止带宽、中性好,偏振效应小的特点。

复折射率n-ik n折射率,k消光系数。

垂直入射时,R=((1-(n-ik))/(1+(n-ik))2=((1-n)2+k2)/((1+n)2+k2)倾斜入射时,下面介绍几种最常用的金属膜特性。

(1)Al唯一从紫外(0.2mm)到红外(30mm)具有很高反射率的材料,在大约波长0.85mm处反射率出现一极小值,其反射率为86%。

铝膜对基板的附着力比较强,机械强度和化学稳定性也比较好,广泛用作反射膜。

新淀积的Al膜暴露在大气中后,薄膜立即形成一层非晶的高透明Al2O3膜,短时间内氧化物迅速生长到15~20A0。

在紫外区一般采用MgF2膜作为保护膜,可见区采用SiO作为初始材料,蒸发得到以Si2O3为主的SiOx 膜作为Al保护膜。

制备条件:高纯镀的Al(99.99%);在高真空中快速蒸发(50~100nm/s);基板温度低于50℃。

(2)Ag银适用于可见区和红外区波段,具有很高的反射率。

可见区的反射率可以达到95%,红外区反射率99%,紫外区反射率很低。

Ag层需加保护膜,Al2O3与Ag有很高的附着力,SiOx具有极强的保护性能,所以常用结构为G|Al2O3-Ag-Al2O3-SiOx|A Al2O3膜层厚度为20~40nm,SiOx膜补足设计波长的二分之一。

制备条件:高真空、快速蒸发和低的基板温度。

(3)金Au在红外波段内具有几乎和银差不多的反射率,用作红外反射镜,金膜新蒸发时,薄层较软,大约一周后,金膜硬度趋于稳定,膜层牢固度也趋于稳定。

制备条件:高真空,蒸发速率30~50A/s,基板温度100~150℃。

需要在基板先打底,以Cr或Ti膜作底层。

常用Bi2O3,ThF4等作保护膜,以提高强度。

(4)铬CrCr膜在可见区具有很好的中性,膜层非常牢固,常用作中性衰减膜。

制备条件:真空度在1×10-2~2×10-4Pa,淀积速率95~300A/s。

薄膜物理与技术

薄膜物理与技术
离子镀
将气体在电场的作用下离化,形成离子束或等离子体,然后轰击材 料表面,使其原子或分子沉积在基底表面形成薄膜。
化学气相沉积(CVD)
常压化学气相沉积(APCVD)
在常压下,将反应气体在气相中发生化学反应,生成固态物质并沉积在基底表面形成薄膜 。
低压化学气相沉积(LPCVD)
在较低的压力下,将反应气体在气相中发生化学反应,生成固态物质并沉积在基底表面形 成薄膜。
等离子体增强化学气相沉积(PECVD)
利用等离子体激活反应气体,使其发生化学反应,生成固态物质并沉积在基底表面形成薄 膜。
液相外延(LPE)
溶胶-凝胶法
将金属盐溶液通过脱水、聚合 等过程转化为凝胶,然后在一
定条件下转化为薄膜。
化学镀
利用化学反应在基底表面沉积 金属或合金薄膜。
电镀
利用电解原理在基底表面沉积 金属或合金薄膜。
薄膜的特性与性能参数
特性
薄膜具有一些独特的物理和化学特性, 如高表面面积、高纯度、高密度等, 这些特性使得薄膜在电子、光学、磁 学等领域具有广泛的应用前景。
性能参数
评估薄膜性能的参数包括表面粗糙度、 透光性、导电性、硬度等,这些参数 决定了薄膜在不同领域的应用效果。
薄膜的形成与生长机制
形成
薄膜的形成通常是通过物理或化学方法将物质蒸发或溅射到基材表面,然后凝 结或反应形成薄膜。
涉及其他非主要性能的表征,如化学稳定性、热稳定性等。
详细描述
除了光学、力学和电学性能表征外,还有其他一些非主要性能的表征方法,如化学稳定 性表征和热稳定性表征等。这些性能参数对于评估薄膜在不同环境条件下的稳定性和耐 久性具有重要意义,尤其在化学反应容器制造和高温环境应用等领域中具有重要价值。

介质薄膜的性质半导体薄膜的性质

介质薄膜的性质半导体薄膜的性质

生长高品质Si外延薄膜需要考虑的问题:
(1)外延膜厚度均匀性、电阻率的均匀性 外延膜厚度分布均匀性受反应气体流速的影响。在CVD法制膜过程中:
1)气流速度过快,会形成不稳定的紊流,外延膜中间厚,边缘薄; 2)气流速度过慢,结果是膜的中间薄边缘厚。
此外, 外延膜电阻率均匀问题决定于薄膜形成时加入到反应气体中杂质的种类和数量。
电击穿时电子雪崩式增加产生大量焦耳热介质膜温度迅速上升介质膜电导随温度上升指数型增加进一步导致电流增大最后造成局部地区产生热分解挥发或熔化促成热击穿常见介质膜的击穿场强对于同一种介质膜因制造方法不同其击穿场强有较大的区别产生这种差异的原因是不同制造方法在介质薄膜制备过程中产生的针孔微裂痕纤维丝和杂质缺陷等不同
但因它属于异质外延生长,在SOS膜中还有缺点:如由于硅和蓝宝石热膨胀系数不 同,在膜中产生压应变、高密度晶格缺陷、在Si膜和蓝宝石基体间存在着过渡区、有 来自基体的Al自掺杂。
这些缺点对薄膜性质的影响表现在:
(1)热应变的影响
SOS膜的生长是在1000℃左右温度下进行。因室温下Si膜和蓝宝石基体的热膨 胀系数不同,在Si膜中产生压应力大约109dyn/cm2。由于压应力作用使Si膜导 带能量发生变化,从而引起电导率发生变化。
(2)自动掺杂效应 在外延膜生长过程中来自基体中的杂质掺杂称为自动掺杂效应。
抑制自动掺杂效应采取的措施: 减小外延膜生长时的气压(减压CVD),减小外延膜成长速率,增大气体流量使用低蒸气
压掺杂剂
(3)结构缺陷
在外延膜中的结构缺陷有位错、积层缺陷、析出物、杂质异物和氧化缺陷等。从广 义角度看,还有氧、碳及重金属杂质、原子空位和填隙原子等点缺陷。目前研究较 多的缺陷是硅氧化时从表面引入的积层缺陷。(衡量这种缺陷的参数是积层缺陷长 度L,它与氧化时间t及温度T有关)。

基本薄膜材料范文

基本薄膜材料范文

基本薄膜材料范文基本薄膜材料是一种非常薄的材料,通常厚度在纳米至微米的范围内。

它们广泛应用于电子设备、太阳能电池、可穿戴设备和医疗器械等领域。

基本薄膜材料具有很多优点,如轻质、柔韧、透明和高电导性等。

本文将介绍几种常见的基本薄膜材料。

1.氧化物薄膜材料:氧化物薄膜材料具有优异的电学、光学和磁学性质,在电子器件和能源转换领域具有广泛应用。

其中,氧化钇铈薄膜用于固态氧化物燃料电池,氧化锆薄膜用于陶瓷涂层,氧化铝薄膜用于绝缘材料。

2.碳化物薄膜材料:碳化物薄膜材料具有良好的机械性能和热传导性能,在涂层保护、陶瓷刀具和导热材料等领域有广泛应用。

其中,碳化硅薄膜用于涂层保护和光学镀膜,碳化钨薄膜用于硬质合金刀具。

3.金属薄膜材料:金属薄膜材料具有良好的导电性和热传导性,在电子器件、太阳能电池和导热界面材料等领域广泛应用。

其中,铜薄膜用于电子线路和导热材料,铝薄膜用于光学反射镜和电容器。

4.半导体薄膜材料:半导体薄膜材料具有特殊的电子能带结构和电学性质,在光电子学、光伏和集成电路等领域有广泛应用。

其中,硅薄膜用于太阳能电池和集成电路,化合物半导体薄膜材料如氮化物和磷化物用于光电子器件和激光器。

5.无机玻璃薄膜材料:无机玻璃薄膜材料具有很高的化学稳定性和光学透明性,在光学涂层、显示器件和光纤通信等领域广泛应用。

其中,氧化硅薄膜用于光学涂层和显示器件,氮化硅薄膜用于光纤通信。

6.有机薄膜材料:有机薄膜材料具有柔韧性、可塑性和可加工性等特点,在平板显示器、太阳能电池和柔性电子等领域有广泛应用。

其中,聚合物薄膜用于柔性显示器和太阳能电池,有机小分子薄膜用于有机发光二极管。

基本薄膜材料具有不同的特性和应用领域,其制备方法也存在差异。

一般来说,薄膜制备方法可分为物理气相沉积、化学气相沉积和溶液法等。

物理气相沉积包括蒸发、激光蒸发、磁控溅射和分子束外延等方法;化学气相沉积包括化学气相沉积和气相热解等方法;溶液法则包括旋涂、喷涂、浸渍和印刷等方法。

薄膜材料介绍课件

薄膜材料介绍课件
组织工程
薄膜材料可作为组织工程的支架材料,用于再生医学领域 。
其他领域
包装行业
薄膜材料在包装行业中 广泛应用,如食品包装 、药品包装等。
装饰行业
薄膜材料可用于制造各 种装饰品,如玻璃贴膜 、汽车贴膜等。
信息存储
薄膜材料可用于高密度 信息存储,如光盘和磁 记录介质。
05
薄膜材料的发展趋势与 挑战
新材料开发
分类
根据材料类型,薄膜材料可以 分为金属薄膜、绝缘体薄膜、 半导体薄膜、聚合物薄膜等。
根据制备方法,薄膜材料可以 分为物理气相沉积薄膜、化学 气相沉积薄膜、溶胶-凝胶法薄 膜等。
根据应用领域,薄膜材料可以 分为光学薄膜、电子薄膜、生 物薄膜、能源薄膜等。
通常具有较高的透明度,允许光线透过 ,适用于各种光学应用。
薄膜材料介绍课件
contents
目录
• 薄膜材料的定义与分类 • 薄膜材料的特性与性能 • 薄膜材料的制备方法 • 薄膜材料的应用领域 • 薄膜材料的发展趋势与挑战
01
薄膜材料的定义与分类
定义
01
薄膜材料是指厚度在微米至纳米 范围内的薄层材料,通常由一种 或多种材料组成。
02
薄膜材料可以具有各种不同的性 质,如光学、电学、磁学、力学 等,这使得它们在许多领域都有 广泛的应用。
能源领域
太阳能电池
薄膜太阳能电池是一种新型的太阳能电池,其特点是薄、轻、可弯 曲。
燃料电池
薄膜材料可用于制造燃料电池的电极和隔膜。
储能电池
薄膜材料在储能电池领域也具有广泛应用,如锂离子电池的电极材料 。
生物医学领域
生物传感器
薄膜材料可用于制造生物传感器,用于检测生物分子和细 胞。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在测量介质薄膜的电导时,需在介质膜的两面制作电 极,形成金属一介质一金属(MIM)结构,只有在电极 与介质的接触是欧姆接触时,测出的电导才是介质膜 的电导。
1.介质薄膜电导的分类
1)按载流子的性质:可分为离子型电导和电子 型电导。通常两种同时存在。
2)按载流子的来源分,离子电导和电子电导都 有两种来源:一种是来源于介质薄膜本身 的,称本征电导;另一种是由膜中的杂质 和缺陷引起的电导,称为杂质电导或非本 征电导。
五、介质薄膜的铁电效应
✓ 铁电体:某些晶体在一定温度范围内具有自发极化,且 这种自发极化方向可以随着电场方向而变化。
✓ 铁电体的特征: ① 具有电滞回线(极化强度P和外电场E间的特定关系) ②存在一个临界温度,即铁电居里温度 ③其介电性、热学、光学、弹性性质在在临界温度附近
出现反常现象。 目前研究较多的铁电薄膜主要是BaTiO3和PbTiO3
介质膜的本征击穿 本征击穿由电击穿和热击穿共同作用完成。
✓ 电击穿是介质膜中载流子在临界电场作用下产生电子 倍增而形成的击穿。
✓ 电击穿时电子雪崩式增加,产生大量焦耳热,介质膜 温度迅速上升,介质膜电导随温度上升指数型增加, 进一步导致电流增大,最后造成局部地区产生热分解、 挥发或熔化,促成热击穿。
✓ 带电粒子在应力作用下发生相对位移而极化,在晶体 两端产生符号相反的束缚电荷,电荷密度与应力成线 性关系。这种由于应力作用使表面产生极化电荷的现 象称为正压电效应。
✓ 当晶体受到电场作用时在它的某个方向发生应变,且 应变与场强成线性关系,称为负压电效应。 这两种效应综合在一起称为压电效应。目前应用最 多的压电薄膜有ZnO和AlN
➢ 压电薄膜的结构
为了产生极化电荷,要求: (1)离子晶体 (2)晶体结构没有对称中心 (3)所选材料各微晶基本上有相同取向 (4)微晶原子排列上要求立方晶结构闪锌矿或者
六方晶结构纤锌矿。
➢ 压电性能参数 ✓ 机电耦合系数κ
✓ 压电系数d 单位应力作用下产生的极化强度或者单
位电场作用下产生的应变
✓ 机械品质因数Qm 描述压电材料在谐振时机械能损
耗的数量 ✓ 电学品质因数Qe 描述损失的交变电流能量
无功电流
有功电流
四、介质薄膜的热释电性质
✓ 具有自发极化的晶体被加热时表面上出现电 荷的现场称为热释电效应。 当给热释电晶体施加电场时,会引起晶体温度 的变化,这称为电卡效应。
✓ 热释电晶体要求具有自发极化型,且结构上 没有对称中心。
➢ 介质薄膜的损耗
对薄膜施加交变电场后,由于电导和极化方面的原 因,必然产生能量损耗,用损耗角δ的正切值 tanδ(%)表示
介质薄膜的损耗由三部分构成
✓ 电导损耗。在低频下比较显著。
✓ 弛豫型损耗。与交变电场频率有密切关系,高 频显著。
✓ 非弛豫型损耗。由膜内Байду номын сангаас均匀性造成,与频 率几乎无关。
三、介质薄膜的压电性质
高温下为本征电导,中低温时
不同温度范围激活能不同。
➢ 介质薄膜的击穿
当施加到薄膜上的电场强度达到某一数值,它便立即 失去绝缘性能,这种现象叫做击穿。 ✓ 从击穿对薄膜造成的影响分类 1)如果击穿电场持续加在薄膜上,将有较大电流通 过将其烧毁,这种击穿成为硬击穿。
2)有些介质膜在击穿时并不烧毁而是长期稳定的工 作维持低阻态,这种膜的击穿成为软击穿。 ✓ 从击穿机理分类 1) 由于外加电场引起的击穿称为本征击穿 2) 因薄膜缺陷引起的击穿称为非本征击穿
➢ 半导体薄膜的发展与半导体器件及集成电路 的发展有着密切的关系,在各种半导体材料中, 半导体薄膜占有非常重要的地位。
➢ 首先得到应用的半导体材料就是半导体薄膜。 (氧化亚铜整流器、锗整流器件)
本节仅就单晶、多晶、非晶和氧化物半导体薄 膜等四种材料的性质作些扼要介绍。
1. 硅外延膜 2.SOS(Si on Sapphire)薄膜 3.Ⅱ—Ⅵ族化合物半导体薄膜 4.Ⅲ—Ⅴ族化合物半导体薄膜。
1)气流速度过快,会形成不稳定的紊流,外延 膜中间厚,边缘薄;
2)气流速度过慢,结果是膜的中间薄边缘厚。 此外, 外延膜电阻率均匀问题决定于薄膜形 成时加入到反应气体中杂质的种类和数量。
9.3 介质薄膜的电学性质 9.4 半导体薄膜的性质 9.5 薄膜的其他性质
2015.05.26
介 质
一、绝缘性质

二、介电性质
膜 电
三、压电性质

四、热释电性质


五、铁电性质
介质薄膜绝缘性能的研究主要是为了制作薄膜电子 元器件中的绝缘层。对绝缘性能的研究主要是电导和 击穿特性
➢ 介质薄膜的电导
1. 硅外延薄膜
所谓“外延”(epitaxy)就是原子以单晶形式 排列在单晶基体上,使最后形成的薄膜层的晶格 结构恰好是基体晶格结构的延续(外延)。
硅外延薄膜是通过化学气相沉积法(CVD) 制造的。厚度在1m到20 m之间变化。
生长高品质Si外延薄膜需要考虑的问题:
(1)外延膜厚度均匀性、电阻率的均匀性 外延膜厚度分布均匀性受反应气体流速的影 响。在CVD法制膜过程中:
由于极化强弱与介质薄膜中总电荷数以及电 荷间相互作用强弱有关,所以介质薄膜介电 常数与原子序数有关。
介电薄膜的温度系数也是其介电性能的重要参数。 ①
在测量温度系数时必须在介质膜上制备欧姆接触电极, 构成一个片状电容器。在测量电容器温度系数后再推求 出介电常数的温度系数


③式中αd为薄膜厚度热膨胀系数,可直接测出。
2.介质膜的电导与场强和温度的关系
1)通常在低场强(E<105V/cm)下,离子电导符合 欧姆定律;例如当介质膜用于电子元器件中 作为隔离层或保护层使用时的情况。
2)而在高场强(E>106V/cm)下,电导为非欧姆 性的;例如介质膜用作电容器中的工作介质 时的情况。
3)在一般电场条件下,介质薄膜
的电导率随温度升高而增加。
常见介质膜的击穿场强
对于同一种介质膜,因制造方法不同其击穿场强有较 大的区别,产生这种差异的原因是不同制造方法在 介质薄膜制备过程中产生的针孔、微裂痕、纤维丝 和杂质缺陷等不同。
二、介质薄膜的介电性质
作为薄膜电容器使用时,其电学性质主要研究 的是介电常数和介质损耗。 ➢ 介质薄膜的介电常数 根据极化性质的不同,将介质薄膜分为极化 型介质薄膜和非极化型介质薄膜。
相关文档
最新文档