复变函数论作业及答案
复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。
《复变函数论》答案

第1页《复变函数论》答案一、单项选择题1.在复平面上方程|z -i|=|z +i|表示( A ) A .直线 B .圆周 C .椭圆周D .抛物线2.在复平面上方程|z +1|=4表示( B )A .直线B .圆周C .椭圆周D .抛物线3.arg(1=( C )A. 3π- B. 6π- C. 56π D. 2,6k k ππ+∈Z4.arg(1)i +=( B )A.4π- B. 4π C. 54π D. 2,4k k ππ+∈Z5.在z 平面上处处解析的函数是( B ) A. 31()f z z =B. 3()f z z = C. ()f z z = D. ()R e f z z z =6.下列函数中( A )是整函数. A.1()1f z z =- B. ()1f z z =- C. 2()f z z = D. ()I m f z z =7.2||2sin (1)z zdz z ==-⎰( C ) A. 0 B.sin1- C. 2cos1i π D. 2sin1i π-8.2||1cos (2)z zdz z ==-⎰( A ) A.0 B. 2sin 2i π- C. 2cos 2i π D. 2sin 2i π-第2页9.幂级数112nnn n n z z ∞∞==+∑∑的收敛半径是( A )A. 1B. 2C.14 D.1210.在复平面上不等式|z -2|<3表示( C )A .直线B .圆周C .圆D .正方形 11.arg()i -=( A )A.2π- B. 2π C. 32π D. 32,2k k ππ+∈Z12.在z 平面上处处解析的函数是( C ) A. 21()1f z z =+ B. ()f z z = C. 2()1f z z =- D. ()Im f z z =13.||2sin 1z zdz z ==-⎰( D ) A. 0 B.2sin1i π- C. 2cos1i π D. 2sin1i π14.幂级数1!n n n z ∞=∑的收敛半径是( A )A. 0B. 1C. 2D. e15.幂级数21nn z n∞=∑的收敛半径是( B )A.0B. 1C.2D.416.0z =是2cos ()zf z z =的( C )极点A.0B. 1C.2D.417.1z =是2cos ()zf z z=的( D )A.零点B. 极点C.孤立奇点D.解析点第3页18.下列等式中,成立的是( C )A.22Lnz Lnz =B.rg(2)arg()A i i -=-C.10Ln =D.Re()z z z z ⋅=⋅ 19.在复平面上,下列命题中,不正确的是( B )A. 22sin cos 1z z +=B. 0z e >C.cos sin iz e z i z =+D. 10i π是()5z f z e =的周期20.下列等式中,不正确的是( C ) A.33lnz lnz = B.arg(2)arg()i i =-- C.0zLn z= D.Im()0z z ⋅= 二、填空题1. Im(1+i)4=_ _0______.2. Re(1+i)4=____-4______.3.345iz -=,则z = 1 . 4.1z =,则z = 2 . 5.方程41z =-在复数域中共有_ 4 个根. 6.方程21z =-在复数域中共有_ 2 个根. 7.设ω是1的n 次根,1ω≠,则21n ωωω-+++= -18.设31ie πω=,32ieπω-=,则12ωω+= 1 .9.设22()(1)z f z z e =-,则0z =是()f z 的____4____阶零点. 10.设()1z f z e z =--,则0z =是()f z 的____2____阶零点. 11.()f z 以z=a 为m 级极点,则z=a 为2()f z 2m 级极点.12.(),()f z g z 以z=a 为3级和4级极点,则z=a 为()()f z g z +的 4 级极点.第4页13.(),()f z g z 以z=a 为5级和2级极点,则z=a 为()()f zg z 3 级极点. 14.()f z 以z=a 为m 阶零点,且m 0>,则z=a 是()f z '的__m-1___阶零点.15.()zf z e =,则()f z 在0z =的邻域内泰勒展式为212!n z z z n +++++.16.21()1f z z=-,则()f z 在0z =的邻域内泰勒展式为2421n z z z +++++.17. 设sin cos z i αα=+,则z 的三角表示为cos sin 22i ππαα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭.18.设211)(z z f +=,则)(z f 的孤立奇点有___i ± . 19.设1()1f z z=+,则)(z f 的孤立奇点有___-1 .20.幂级数0nn z n∞=∑的收敛半径为____1_____ .21.幂级数0n n nz ∞=∑的收敛半径为____1_____ .22.4z 在点1z i =-23.3z 在点z i =-处的伸缩率为 3 . 24.z e 在点1z i =+处的伸缩率为 e . 三、完成下列各题 1.求16i ieπ-+解 161cos sin 6622ii iei ie e eπππ-+⎛⎫=+=-+ ⎪⎝⎭第5页2.求n L i .解 n 2,2L i i k i k ππ=+∈Z3. 求()34Ln i +解 ()434ln 5arctan2,3Ln i i k i k π+=++∈Z 4. 函数2()f z z =在复平面上何处可导?何处解析?解 仅在0z =处可导,处处不解析.5. 函数()()222()2f z x y i xy y =-+-,z x iy =+在复平面上何处可导?何处解析? 解 仅在直线0y =上可导,在复平面上处处不解析.6. 函数2()f z x iy =-,z x iy =+在复平面上何处可导?何处解析?解 仅在直线12x =-处可导,处处不解析. 7. 计算()211sin 1z z dz z π+=-⎰解 ()()2111sin sin 2011z z z z dz i z z πππ+==-=⋅=--⎰ 8. 计算211sin 41z z dz z π-=⎛⎫ ⎪⎝⎭-⎰ 解2111sin sin 442112z z z z idz i z z πππ-==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=⋅=-+⎰第6页9. 计算()211sin 1z z dz z π+=-⎰解()()2111sin sin 2011z z z z dz i z z πππ+==-=⋅=--⎰ 10. 将sin z 展开为z 的幂级数.解 ()()2101sin 21!nn n z z n +∞=-=+∑ (z <+∞)11. 将cos z 展开为z 的幂级数.解 ()()201c o s2!nn n z z n ∞=-=∑ (z <+∞)12. 将1z展开为1z -的幂级数.解 ()()()0111111n nn z z z ∞===---+∑ (11z -<)四、1. 用留数计算积分:312(1)(2)(4)(5)z dzi z z z z π=----⎰. 解()()()()()31212(1)(2)(4)(5)()()1113412311112612z z z dzi z z z z Res f z Res f z π===----=+=+-⋅-⋅-⋅-⋅-=-+=⎰第7页2. 用留数计算积分:912(1)(2)(5)(10)z dzi z z z z π=----⎰. 解()91012(1)(2)(5)(10)()()1098511985360z z z dzi z z z z Res f z Res f z π===∞----=-+⎛⎫=-+ ⎪⋅⋅⎝⎭=-=-⋅⋅⎰3. 用留数计算积分 ()222211z z z dz z =-+-⎰。
复变函数作业答案

2 ,0 r
i
3. 6 z
24 xy 2 z 3 6 y 2 z 。
j
+ (3xz 2 1)
F
( z 3 4 xy )
+ (6 y 2 x 2 )
k
则 F =0 , 故 存 在 函 数
u
,使
d u = ( z 3 4 xy )dx (6 y 2 x 2 )dy (3xz 2 1)dz 0 ,即微分方程的解为 u( x, y , z ) c, c 为常数 五.势函数 u 向量势为 G
1 = 1 ( 1 ) ( 1)n 1 nz 2 n 2 , R 1 ; 2 2 2 (1 z ) 2z 1 z n1
2 1 (1i ) z 2 22 n 2 n z 2 2. e sin z = (e e (1i ) z ) sin z ,R ; 2i 4 n 0 n!
2
3
3 0 0 2 0 1 sin 2 3 cos 2 1
四. 4a ,
2
五.
1 4 a 4
向量分析与场论作业 2 一. 1. 二.1.
x2 y2 z ;
b 三. 10 3
2. 0;
3. |grad u |.
四. 1 ( 2 e 4 )
3
五.1. u 1 3
六.
f ( z ) 连 续 u, v 连 续 f ( z ) 连 续 ,
复变函数论作业 3 一.1.全平面, 二 . 1. b 三 . (2) (0,0), (
f ( z ) 3z 2 2i ; 2. 1, 3,3 ; 3. cos x cosh y i sin x sinh y
复变函数论习题及答案

第一章习题1.设12z -=,求||z 及Arg z .2.设12z z i ==,试用指数形式表 z 1 z 2及12z z .3.解二项方程440(0).z a a +=> 4.证明2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义。
5.设z 1、z 2、z 3三点适合条件: 1231230 |z ||||| 1.z z z z z ++=++=及试证明z 1、z 2、z 3是一个内接于单位圆周||1z =的正三角形的顶点。
6.下列关系表示的点z 的轨迹的图形是什么?它是不是区域? (1)1|212|||,()z z z z z z -=-≠;(2)|||4|z z ≤-;(3)111z z -<+;(4)0arg(1) 2Re 34z z π<-<≤≤且;(5)|| 2 z >且|3|1z ->; (6)Im 1 ||2z z ><且;(7)||2 0arg 4z z π<<<且;(8)131 2222i i z z ->->且.7.证明:z 平面上的直线方程可以写成 .az az c += (a 是非零复常数,c 是实常数)8.证明:z 平面上的圆周可以写成0Azz z z C ββ+++=.其中A 、C 为实数,0,A β≠为复数,且2||.AC β> 9.试证:复平面上的三点1,0,a bi a bi +-+共直线。
10.求下列方程(t 是实参数)给出的曲线: (1)(1)z i t =+; (2)cos sin z a t ib t =+;(3)i z t t =+; (4)22i z t t =+.11.函数1w z =将z 平面上的下列曲线变成w 平面上的什么曲线(,z x iy w u iv =+=+)?(1)224;x y +=(2)y x =;(3)x = 1; (4)( x -1)2+y 2=1. 12.试证:(1)多项式1010()(0)n n n p z a z a z a a -=+++≠在z 平面上连续;(2)有理分式函数101101()n n nm m m a z a z a f z b z b z b --+++=+++(000,0a b ≠≠)在z 平面上除分母为的点外都连续。
复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
(完整版)复变函数试题及答案

-5四123456五1一二三四2、、、、、、、、5、、、填(1611-计求将计计求设证使单判计B计证空e算函函算算将函明符选断算i1算明题n)9积数数积实单数:合题题题2题题(解,2分分积位在D条(((,((每不析fff2分圆件每每每z7每每小存zzz函CC3e小小小小小在题在zL数CIxz0=2题题题2题题区解的z221zzd1k402y321域2析z零226,共(Di分1k6a7,点分分分=1iD形0,x分z分80z且是zd,,,2,5内,c映,视))1满doC孤本共共共A±1解射iL答zs:足立质,2在…1析成题2134在的6的,x006C),z单情:2C所分分分(证,位a况f9有1i)))i y明圆的可23孤2711n:去)酌01C1立+w函52心情,1z奇iy数的邻给8点41D直域21的(2i,1线内n1f,分包9u,段分展zA式括,1,成也f0线15共洛在2性01n9朗)A变D21z0级处换内分数2的解1n)w留(析,数并nL指z1出,2 收敛)的域函数____________________________________________________________________________________________________________ f z
1 解: C 的参数方程为: z=i+t, 0 t 1 dz=dt
x
y
ix 2
dz =
1
t
1
it 2 dt =
1
i
C
0
23
2 解: z 1为 f z 一阶极点
z 1 为 f z 二阶极点
2
2k
1, 2 ) , 4 ei ln 2 e 4
(k=0, 1, 2 )
5
i , 6 0, 7
复变函数课后习题答案(全)

习题一答案之巴公井开创作1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 5. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥。
复变函数经典习题及答案

于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C
•
O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1第一章 复数与复变函数1.11222z ==-求|z|,Argz 解:1232122=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=zArgz=arctan 212-+2k π=23k ππ+-, ,2,1,0±±=k2.已知211i z +=,=2z i -3,试用指数形式表示2121z z z z 及解:211i z +=i e 4π==2z i -3i e62π-=所以21z z =i e62π-ie4πie122π-=21z z ii i ie e e e 125)64(6421212πππππ===+- 3. 解二项方程440z a += )0(>a 解 由440z a +=得44z a =- 则二次方程的根为1k w a = (k=0,1,2,3) =24k i ea ππ+⋅(k=0,1,2,3)0w =4i ea π⋅=23441(1)2i i a w ea ea i πππ+⋅===-+542(1)2i a w ea i π==--743(1)2i a w ea i π==-4 .设1z 、2z 是两个复数,求证:),Re(2||||||212221221z z z z z z -+=-证明:()()2121221z z z z z z --=-()2122212121222112212221Re 2z z z z z z z z z z z z z z z z -+=--+=---=5. 设123z ,z ,z 三点适合条件:1230z z z ++=及1231z z z ===试证明123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点。
证明:设111z x iy =+,222z x iy =+,333z x iy =+因为1230z z z ++=∴1230x x x ++=,1230y y y ++= ∴123x x x =--,123y y y =--又因为1231z z z ===∴三点123z ,z ,z 在单位圆周上,且有222222112233x y x y x y +=+=+而()()2222112323x y x x y y +=+=+()()2223231x x y y ∴+++=()232321x x y y ∴+=-同理=+)(22121y y x x ()()131********x x y y x x y y +=+=-可知()()()()()()222222121223231313x x y y x x y y x x y y -+-=-+-=-+-即122313z z z z z z -=-=-123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点得证。
6.下列关系表示的点z 的轨迹是什么图形?他是不是区域? (1)111z z -<+ 令z x iy =+,由11z z -<+得()()2211z z <-+即()()2211x x <-+,所以0x >,故以虚轴为左界的右半平面;是区域 (2)0arg(1)4z π<-<且2Re 3z ≤≤ 解:由0arg(1)4z π<-<且2Re 3z ≤≤得:0arctan14y x π<<-且23x ≤≤ 即为如图阴影所示(不包括上下边界);不是区域。
7.证明:z 平面上的直线方程可以写成az az c +=(a 是非零复常数,c 是实常数)证明:设直线方程的一般形式为:ax+by+c=0 (a,b,c 均是实常数,a,b 不全为零)因为:x =2z z +, y = 2z z-代入简化得: ()()11022a bi z a bi z c -+++= 令()102a bi α-=≠得z z c αα+= 反之(逆推可得)设有方程z z c αα+=(复数α0≠,c 是常数) 用z x iy =+代入上式,且令()12a bi α=+化简即得。
8.试证:复平面上三点a+bi,0,1a bi-+共直线。
证明: 因为1()0()a bi a bi a bi -+-+-+=221a b+(实数) 所以三点共直线。
9.求下面方程给出的曲线z=()t i t a sin cos +解:令z= ()iy x +=()t i t a sin cos +得 x=()t a cos ,y=t b sin则有12222=+by a x ,故曲线为一椭圆.10.函数w=z1将z 平面上曲线变成w 平面上的什么曲线()iv u w iy x z +=+=,? (1)2x +2y =4解:由于2x +2y =2z = 4 ,又由于 w=z 1=iy x +1=22y x iy x +-=()iy x -41 所以4,4yv x u ==则()411612222=+=+y x v u这表示在w 平面上以原点为圆心,21为半径的一个圆周. (2)1=x解:将1=x 代入变换u iv +=1x iy+,得u iv +=11iy +=211iyy -+于是u =211y +,21y v y-=+, 且22222211.(1)1y u v u y y++===++故220u u v -+= 解得2211()24u v -+=这表示w 平面上的一个以(1,02)为圆心,12为半径的圆周.(3)221(1)x y +=-解:因为 221(1)x y +=- 即 2220x yx -+= 即.0z z z z --=将 1z w =及 1z w=代入得:1111.0w w w w --= 即 1..w w w w w w+=因此 1w w +=12u =(v 可任意取值) 表示w 平面上平行于虚轴的直线。
11. 求证:()arg (0)f z z z =≠在全平面除去原点和负实轴的区域上连续,在负实轴上不连续.证 设0z 为全平面除去原点和负实轴的区域上任意一点.考虑充分小的正数ε,使角形区域00arg arg z z εθε-<<+与负实轴不相交,从图上立即可以看出,以0z 为中心,0z 到射线0arg z θε=±的距离为半径所作的圆盘,一定落在上述角形区域内,这就是说,只要取00sin z δε<≤.那么当0z z ε-<时就有0arg arg z z ε-<.因此arg z 在0z 为连续.再由0z 的任意性,知()arg f z z =在所述区域内为连续.设1x 是负实轴上任意一点,则1Im 0limarg z z x z π≥→= 及 1Im 0limarg z z x z π<→=-故arg z 在负实轴上为不连续. (如下图)12.命函数()f z =()()22000xyz x y z ⎧=⎪+⎨⎪≠⎩试证:()f z 在原点不连续。
证明:()f z =()()22000xyz x y z ⎧=⎪+⎨⎪≠⎩当点z x yi =+沿y kx =趋于0z =时,()kkz f +→1 当k 取不同值时,()f z 趋于不同的数∴()f z 在原点处不连续。
13. 已知流体在某点M 的速度v=-1-i ,求其大小和方向。
解 大小:11+2 方向:arg v=arctan1314ππ--=--。
14. 412cos sin 244ii i e πππ⎫+=+=⎪⎭;21cos sin 22ii e πππ⎛⎫=⋅+= ⎪⎝⎭;()011cos0sin 0ii e ⋅=⋅+=;()22cos sin 2ii e πππ-=+=;233cos sin 322ii e πππ-⎡⎤⎛⎫⎛⎫-=-+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;还有22,1,1ik iii eee πππ-=-==-(k 为整数)15.将复数 1-cos +isin ϕϕ化为指数形式。
解 2=2sin +2isincos222ϕϕϕ原式 =2sin2φsin cos 22i φϕ⎡⎤+⎢⎥⎣⎦ =2sin2φcos sin 2222i πϕπϕ⎡⎤⎛⎫⎛⎫-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2sin 2φe22i πϕ⎛⎫- ⎪⎝⎭16.对于复数α.β,若αβ=0,则α.β至少有一为零.试证之。
证 若αβ=0,则必 |αβ|=0,因而 |α||β|=0.由实数域中的对应结果知|α|.|β|至少有一为零.所以α.β至少有一为零.17.解 因-8=-8(cos isin ππ+),故k 2cos 3k ππ++2sin 3k i ππ+).(k=0,1,2)当k=0时, 0sin )33i ππ+=12(122i+=+当k=1时, 12(cos sin )2;i ππ=+=-当k=2时, 2552(cos sin )2(cos sin )13333i i ππππ=+=-=- ,18.设1z 及2z 是两个复数,试证()212221221Re 2z z z z z z ++=+并应用此等式证明三角不等式(1.2)。
证:()()()()()212221212122212121221121212121221Re 2z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++=+++=+++=++=++=+ 其次,由所证等式以及()212121Re 2z z z z z z =≤就可导出三角不等式(1.2)。
19. 连接1z 及2z 两点的线段的参数方程为()121z z t z z =+-()01t ≤≤过 1z 及2z 两点的直线的参数方程为()121z z t z z =+-()t -∞<<+∞由此可知,三点1z 2z 3z 共线的充要条件为3121z z t z z -=- (t 为一非零实数) 3121Im 0z z z z ⎛⎫⎛⎫-⇔= ⎪ ⎪ ⎪-⎝⎭⎝⎭20.求证:三个复数1z ,2z ,3z 成为一个等边三角形的三个顶点的充要条件是它们适合等式211332232221z z z z z z z z z ++=++。
证 :321z z z ∆是等边三角形的充要条件为:向量21z z 绕1z 旋转3π或3π-即得向量31z z ,也就是()ie z z z z 31213π±-=-,即i z z z z 23211213±=--, 即i z z z z 23211213±=---,两端平方化简,即得211332232221z z z z z z z z z ++=++。
21.试证:点集E 的边界E ∂是闭集。
即证()E E ∂⊆'∂。