呼吸机相关肺损伤
呼吸机相关性肺损伤的预防及护理措施

呼吸机相关性肺损伤的预防及护理措施
呼吸机相关性肺损伤是重症患者面临的严峻挑战之一,因此,
预防和护理是非常关键的。
以下是预防呼吸机相关性肺损伤的措施:
1. 降低呼吸机潮气量:限制呼吸机潮气量可以减少气压伤害和
肺泡萎陷等情况。
因此,医生要根据患者的情况,调整潮气量至最
低有效限度。
2. 缩短呼气时间:缩短呼气时间可以有效避免呼吸机相关性肺
损伤。
当呼气时间缩短时,气道内的气体不容易积聚并造成肺泡的
破裂。
3. 给予呼吸机休息:呼吸机休息是非常重要的。
当患者的呼吸
状况稳定时,可以适当停止使用呼吸机,并给予患者自主呼吸的机会。
4. 及时拔除呼吸机:必须在适当的时候拔除呼吸机。
拔除呼吸
机需要严密监测患者的状况、观察并记录拔管后的情况。
针对呼吸机相关性肺损伤的护理措施:
1. 改变体位:调整患者的体位有助于防止肺部积液和肺不张的
发生。
检查患者的身体压力点,避免压迫患者的肺部。
2. 注意营养:合理的饮食结构可以为患者的康复提供营养支持。
3. 注意口腔卫生:及时清洁患者口腔和鼻腔内的分泌物,有助
于防止呼吸机相关性肺损伤。
通过实施上述预防和护理措施,可以显著降低患者发生呼吸机
相关性肺损伤的风险。
呼吸机相关性肺损伤的炎症机制研究进展

机 分 为 两 组 , 组 接 受 传 统 机 械 通 气 模 式 f 均 潮 气 量 l. 一 平 11 m /g Lk ,平 均 气 道 平 台峰 压 3 m 1c H O,平 均 呼 气 末 正 压 通 气
统计 , II的发生 率在 机械 通气 患者 中高达 1 %,而且在 临 VL 5
给机 体 大潮 气量通 气时 , 可产 生一个过度 牵拉 的作 用 , 其
主要 作用 于肺 泡上皮细胞周 围基质 . 基质再把作 用力传给 所黏 附的细胞 , 其发生 变形 , 生剪切 力。细胞受外力作用后 , 使 产 首 先作用 于细胞 骨架和 细胞膜 。实验证 明 , 当对 细胞进行 3 %幅
致 C 的 大 量 内流 .细 胞 内 C 浓 度 升 高致 使 血 管 通 透 性 升
的浓度 明显低 于常规组 患者 .血浆 中的 I- 平在低潮 气量 L6水
高 PE E P组 患者 中亦明显较 低【5 Te b ̄ 等 r用 高潮 气量 ] rm l I 6 ] (0mlk ) P E 4 _ g 无 E P为 大 鼠 通 气 2h后发 现 , 鼠 肺 泡 灌 洗 液 d 大 中的 T F仪、L1 N 一 I B和 I- 广 L6明显增加 ,降低潮 气量 至 1 5mUk g
(E P . e 2 , P E )65 mH0] 另一 组接 受低 潮气 量高 P E E P机械 通 气 ( 平均 潮气量 76m g 平均气道 平 台峰 压 2 . c H O, . Uk , 46 m 平均 P E 48e 2 ,并且 连续 3 E P 1 . mH0) 6h检测 两组病人血 浆和肺 泡 灌洗液 中的 细胞 因子 , 结果发 现 . 低潮 气量 高 P E E P组 患者肺 泡灌 洗液 中的 中性粒 细胞 ,N 一 、L 1 、L6和 I 一 因子 T F仅 I一B I- L8等
呼吸机相关性肺损伤

物理疗法
04
如电刺激、超声波治疗等物理疗法,促进肺部 炎症吸收和肺组织修复。
患者教育
疾病知识教育
向患者及家属介绍呼吸 机相关性肺损伤的发病 机制、治疗和护理要点
等知识。
自我管理教育
指导患者学会自我监测 病情、调整呼吸机参数
等自我管理技能。
饮食与运动指导
指导患者合理饮食、适 量运动,增强体质和免
疫力。
02
呼吸机相关性肺损伤的病理 生理
炎症反应
1 3
炎症反应
呼吸机相关性肺损伤会导致炎症反应,引发肺部炎症细胞浸 润和炎症介质释放,进一步加重肺组织损伤。
炎症细胞激活
2
炎症细胞如巨噬细胞、中性粒细胞等在呼吸机相关性肺损伤
中激活,释放炎症因子,引起肺部炎症。
炎症介质作用
炎症介质如细胞因子、趋化因子等在呼吸机相关性肺损伤中 发挥重要作用,可导致肺部炎症和组织损伤。
呼吸机相关性肺损伤的治疗方法
目前主要采用药物治疗、机械通气治疗和康复治疗等方法,但治疗效果有限,仍需进一步 探索更有效的治疗方法。
研究热点与挑战
呼吸机相关性肺损伤的预防措施
目前对呼吸机相关性肺损伤的预防措施研究较少,如何通过改善机械通气参数、使用保 护性通气策略等方法降低肺损伤的发生率是研究的热点之一。
定义
呼吸机相关性肺损伤是指机械通 气过程中由于各种原因导致的肺 部损伤。
分类
根据损伤程度和性质,可分为轻 度、中度和重度呼吸机相关性肺 损伤。
发病机制
气压伤
由于呼吸机参数设置不当或患者 自身条件限制,导致肺泡内压力 过高,引起肺泡破裂或萎陷。
炎症反应
机械通气过程中,肺部受到刺激 ,引发炎症反应,导致肺部组织
呼吸机相关性损伤

机械通气的并发症2011-04-20 13:52阅读:3261 来源:爱爱医责任编辑:iam[导读]机械通气是重要的生命支持手段之一,但机械通气也会带来一些并发症,甚至是致命的并发症[53]。
合理应用机械通气将有助于减少甚至避免并发症的产生。
因此,了解机械通气的并发症,具有重要的临床意义。
机械通气是重要的生命支持手段之一,但机械通气也会带来一些并发症,甚至是致命的并发症[53]。
合理应用机械通气将有助于减少甚至避免并发症的产生。
因此,了解机械通气的并发症,具有重要的临床意义。
1.人工气道相关的并发症人工气道是将导管直接插入或经上呼吸道插入气管所建立的气体通道。
临床上常用的人工气道是气管插管和气管切开管。
1.1 导管易位插管过深或固定不佳,均可使导管进入支气管。
因右主支气管与气管所成角度较小,插管过深进入右主支气管,可造成左侧肺不张及同侧气胸。
插管后应立即听诊双肺,如一侧肺呼吸减弱并叩浊提示肺不张,呼吸音减低伴叩诊呈鼓音提示气胸。
发现气胸应立刻处理,同时摄X光片确认导管位置。
1.2 气道损伤困难插管和急诊插管容易损伤声门和声带,长期气管插管可以导致声带功能异常,气道松弛。
注意插管时动作轻柔,准确,留管时间尽可能缩短可减少类似并发症的发生。
气囊充气过多、压力太高,压迫气管,气管粘膜缺血坏死,形成溃疡,可造成出血。
应使用低压高容量气囊,避免充气压力过高,有条件监测气囊压力,低于25cmH2O能减低这类并发症[54]。
1.3 人工气道梗阻人工气道梗阻是人工气道最为严重的临床急症,常威胁患者生命。
导致气道梗阻的常见原因包括:导管扭曲、气囊疝出而嵌顿导管远端开口、痰栓或异物阻塞管道、管道坍陷、管道远端开口嵌顿于隆突、气管侧壁或支气管。
采取措施防止气道梗阻可能更为重要,认真的护理、密切的观察、及时的更换管道及有效的人工气道护理,对气道梗阻起着防患于未然的作用。
一旦发生气道梗阻,应采取以下措施:调整人工气道位置、气囊气体抽出、试验性插入吸痰管。
呼吸机操作步骤及使用方法

呼吸机操作步骤及使用方法呼吸机是一种生命支持装置,被广泛应用于各种疾病的治疗和康复工作。
由于使用呼吸机的患者大部分都身患重病或呼吸衰竭,因此呼吸机操作步骤及使用方法尤为重要。
本文将从呼吸机操作流程、呼吸机使用注意事项以及呼吸机维护等几个方面,对呼吸机的使用进行详细的介绍和阐述。
一、呼吸机操作流程1、准备工作①检查呼吸机的工作状态,确保呼吸机处于正常工作状态并连接正确的管路。
检查呼吸机连接的管路、面罩、氧气管等是否松动或堵塞。
②清洁呼吸机,包括清洁呼吸机外壳、吸氧、呼氧管路等设备。
③准备好呼吸机设备所需的供气、电源等设备,使其保持充足的供氧和电源,不会因为断电等事故导致患者的生命安全受到威胁。
2、正确连接管路①首先将正常呼吸机的供氧管路连接到呼吸机的出气口上,并检查管路连接是否紧固。
连接后启动呼吸机,并等待呼吸机从待机状态转换为工作状态。
②将面罩、鼻导管、气管插管等插入患者鼻腔、喉咙或口中,做好患者与呼吸机的连接。
连接时需注意面罩、鼻导管、气管插管等器械的选择及使用方法。
面罩、鼻导管等设备需要选择正确的型号和尺寸,且连接到患者身体部位后,不能出现气漏。
③确保氧气管路、呼氧管路连接正确,无口径不匹配、松脱等情况,并检查氧气流量是否正常。
3、设置呼吸机参数设置呼吸机参数一般需要根据患者的情况来进行,医生或护士根据实际情况进行设置。
①安全检查:检查呼吸机设置是否正确,警报设置是否正确,防护措施是否正确,如过滤器是否更换或清洗。
②设置控制模式:根据患者的情况设置控制模式,选用MMV、SIMV、PRVC、PCV、A/C 等控制模式。
③设置呼吸频率:呼吸机可以调节呼吸频率,根据患者的情况选择呼吸频率,并将呼吸频率设置到相应的数值上。
④设置氧气浓度:呼吸机可以通过控制氧气浓度来给予患者适当的氧气,根据患者的病情和需求来设置氧气浓度。
⑤设置吸气时间、呼气时间:吸气时间由吸气流量、气道压力等因素决定,一般为 0.6 秒至 1.2 秒;呼气时间一般为吸气时间的两倍以上,需要根据患者的实际情况来调整。
呼吸机相关性肺损伤与肺表面活性物质

Vo . 8 No. 12 1 Fe . 0 6 b2 0
呼 吸 机相 关 性肺 损伤 与 肺 表面 活 性 物质
武 荣 。 红飞 潘 ( 江民族 医学院附属 医院儿科 , 右 广西 百色 53 0 ) 3 00
关键词 :呼吸, 人工 ; 呼吸窘 迫综合征 ; 表面活性 物质相关蛋 白类 肺 中图分 类号 :R 6 . 538 文献标识码 :A 文章编号 :10 —5 1 (0 6 0 —0 2 —0 0 1 8 7 2 0 )1 1 7 2 呼吸机相关 性肺损 伤 (eta r n ue n jr , 称 vni t —i cdl gi uy 简 lo d u n VI1, L)亦称为机械通气相关性肺 损伤 , 是指应 用呼 吸机过程 中 由于机械通气 因素 和肺部 原 发病变 共 同作用 导致 的肺 组织 损 伤。机械通气是抢救急性呼 吸窘 迫综合 征 ( R ̄ ) 者必不 可 At 患 少的治疗手段 , 然而 呼 吸机 参数 设 置 不合 理 时如 呼气 末 正 压 ( E P 或吸气 峰压 ( I ) PE) P P 过高 及潮 气量 过 大 , 可导致 肺损 伤 , 发现或处理不及时可导致患者死亡 。
2 VI l L 的发 生机 理
2 13 细胞 膜的破坏 细胞 结构 的破 坏会诱 发炎症反 应 , ._ 维 持细胞膜 的完整性对于细胞 内外的信息传递起重要作用 。Hn i . ma t认 为机 械通气 时 , n5 ] 过大 的潮气 量可 以造 成肺泡 Ⅱ型上皮 细胞胞 膜的破坏 , 导致 细胞 内游离 ( 2 二 大量外流 , a 细胞外 C 2 a 浓 度升 高 , 通过细胞问的单层裂 隙可 以流 人未受 损的 Ⅱ型上皮 细胞 , 导致其 内 c 2 a 浓度增 高 , 进而激 活 P C, 终激 活 do。 K 最 s 通过 d s o 途径引 发肺 内炎症 反 应 , 引起 肺 损伤 。另外 。 膜损 胞 伤性 的断裂能介 导核 因子 N B活化。NF. v B是一种重 要的转 录因子 , 对许多炎性细胞因子 的表达起重 要调控 作用[I 6。一旦 被激 活就可 以从胞浆转移 到细胞核 内 , 结合 到 I 一6 I I 、L一8 I 、L 1 和 T F—a p N 等细胞 因子基 因的启动子 序列上 , 导致基 因表 达 和合成 , 引起肺内炎症反应。 2 2 机械 力对 细胞 内信 号转 导系统的激活 细胞感受外 部异 . 常的机械性的刺激后 , 细胞 内信 号转导 系统 激 活 , 包括 第 二信 使 的产生 、 白磷酸化 程度 的改 变 、 白酶级 联 系统 的放 大 以 蛋 蛋 及信号分子形成的复杂网络 中相互作 用 的加 强。其 中, 裂原 丝 活化蛋 白激酶( P 通路 是参 与 VI I MA K) L 发病 的一条 最为重 要 的受体信号转导机制 。细胞感受 机械力 刺激并传 人 细胞 内, 引
减少呼吸机相关性肺损伤的新方法

・ 综
述 ・
减少呼吸机相关性肺损伤的新方法
刘 龙 李新 华 李 强 0 3 0 0 0 1 山西 医科 大学 第 二 临床 医学 院 心胸 外科 , 山西太 原
[ 摘 要】 尽 管 了 解 AR DS的发 病 机制 及 其各 种 影 响 患者 预 后 的演 变 因 素 ,机 械通 气 支 持仍 然 是 治疗 AR D S的基 础, 但 是 机 械 通气 本 身 可 以通 过 多 种机 制 共 同加 重 或 引起 肺 部 损 伤 , 统 称 为呼 吸 机 相关 性 肺损 伤 ( VI L I ) 。随着 对A RD S更 深 入 的 了解 , V I L I 在 设 计肺 保 护 性通 气 策 略过程 中 已经 受 到重 视 , 目的是减 轻 V I L I 和 改善 预后 。本 文 旨在 阐 述 V I L I的病 理 生 理 机 制 , 讨 论 NA V A、 体外生命支持 、 抗 细 胞 因 子疗 法 等新 的减 轻 和 治 疗 V I L I的方 法, 并 通 过一 些 实验 研 究来 证 实 这些 观 念 。 【 关 键 词】 机械通气; 呼 吸机 相 关性 肺 损 伤 ; 神 经调 节 辅助 通 气
p r o t e c t i v e v e n t i l a t o y r s t r a t e g i e s a i me d a t a t t e n u a t i n g VI L 1 a n d i mp r o v i n g o u t c o me s .C o n s i d e r a b l e e f f o r t h a s b e e n ma d e t o e n h a n c e o u r me c h a n i s t i c u n d e r s t a n d i n g o f VI L I a n d t o d e v e l o p n e w v e n t i l a t o y s r t r a t e g i e s a n d t h e r a p e u t i c i n t e ve r n t i o n s t o p r e v e n t a n d a me l i o r a t e VI L 1 wi t h t h e g o a l o f i mp r o v i n g o u t c o me s i n p a t i e n t s wi t h ARDS .I n t h i s r e v i e w, we wi l l r e v i e w t h e p a t h o p h y s i o l o g y o f VI L I , d i s c u s s a n u mb e r o f n o v e l p h y s i o l o g i c l a a p p r o a c h e s f o r mi n i mi z i n g
呼吸机相关肺损伤

主要机理
3 气压伤及肺内菌群迁移(Barotrauma and bacterial translociation)
ARDS患者功能性肺组织明显减少,使用常 规机械通气治疗时导致气道高压,过高的气道 压力加重肺泡上皮的损害,使气体进入间质组 织,分布于纵隔,胸腹膜及皮下组织。
动物模型证实在高跨肺压将明显加速肺泡 内茵群向血液循环内迁移的速度,肺水的积聚、 表面活性物质的丧失等均是可能的诱因,由此 产生的菌血症将又可能产生新的损害。
整理ppt
通气策略
一、肺保护性通气
1、小潮气量通气和允许性高碳酸血症(PHC)
降低潮气量,则会导致动脉血二氧化碳分 压升高,即PHC。一般情况下,潮气量4~ 7ml/kg时,允许动脉血二氧化碳分压增高到 40~80mmHg,pH降低至7.10—7.20。在这 种情况下,患者通常能较好耐受。
整理ppt
主要机理
1 容积伤(Volutranma)
1 ARDS患者广泛肺泡萎陷和不张→ 2 能够进行有效通气的肺组织明显减少(所
谓“婴儿肺”,Baby lung) 3 正常标准潮气量的机械通气→ 4 剪切力增加→ 5 损伤肺泡上皮细胞及毛细血管内皮细胞
整理ppt
主要机理
2 萎陷伤(Atelectotrauma)
整理ppt
主要机理
一、生物化学性损伤
生化损伤(biotrauma)指的是伤害性刺激 介导的局部组织器官或全身性的炎性反应。
实际上,呼吸机相关性肺损伤的本质是生 物性肺损伤,诱发或加重局部和全身炎症反应, 加重ARDS,成为多器官功能障碍综合征(MODS) 的启动因素。
整理ppt
主要机理
动物研究结果: 在大鼠的高容量通气模型中发现,其肺泡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、气压伤(Barotrauma )
精品文档
精品文档
通气策略
应用:
在实施机械通气时,应使用呼气末正压 (PEEP)结合低潮气量的保护性通气方式。 PEEP 的选择大到足以“开肺”,即位于P-V 曲线的下拐点之上(一般以准静态P-V曲线下 拐点压力以上2~3cmH20作为最佳PEEP), 而潮气量的设定应以气道压力不超过上拐点为 宜。
精品文档
PHC降低ARDS患者吸气末平台压,避免 肺泡过度膨胀,具有肺保护作用。吸气末平台 压反映肺泡跨壁压,当平台压<35cmH2O时, 有利于防止呼吸机相关肺损伤。在临床上, PHC能够明显降低间质气肿和气胸的发生率。
精品文档
通气策略
2、PEEP(呼气末正压)
单纯应用PHC可加重生物性肺损伤。呼气 末大量塌陷的肺泡在吸气初突然开放产生的剪 切力,以及正常肺泡和萎陷肺泡之间的剪切力 损伤,是单纯应用PHC难以防止呼吸机相关肺 损伤的主要原因。有鉴于此,需要应用PEEP 防止肺泡塌陷,使更多的肺泡维持在开放状态。 因此,实施肺保护性通气策略,不仅应包括 PHC,而且需联合应用PEEP才能达到预防呼 吸机相关肺损伤和MODS的目的。
精品文档
通气策略
最佳PEEP PEEP通过呼气末肺泡内正压的支撑作用
防止肺泡塌陷,改善气体交换,其效应与 PEEP水平密切相关。最佳PEEP可以消除塌陷 肺泡反复复张产生的剪切力,减轻肺损伤,同 时增加功能残气量,改善通气/血流比例,从 而改善低氧血症。但过高水平的PEEP会导致 肺泡过度膨胀。选择最佳PEEP,既可防止呼 气末肺泡萎陷,又能避免肺泡过度膨胀。
主要机理
1 容积伤(Volutranma)
1 ARDS患者广泛肺泡萎陷和不张→ 2 能够进行有效通气的肺组织明显减少(所
谓“婴儿肺”,Baby lung) 3 正常标准潮气量的机械通气→ 4 剪切力增加→ 5 损伤肺泡上皮细胞及毛细血管内皮细胞
精品文档
2 萎陷伤(At主ele要cto机tra理uma)
由于ARDS患者不同肺区域之间顺应性的 显著差别所致的剪切力形成的这种肺损伤。
当某一肺泡萎陷后,其周围的肺泡组织 将被迫承受更大的拉力,并且使萎陷肺泡复 张时所产生的剪切力将远大于气道压力,有 报道气道压力为30cmH2O 时,复张萎陷肺 泡产生的剪切力可高达140cmH2O。高剪切 力及对萎陷肺泡周围组织反复拉伸可造成明 显的肺损伤。
精品文档
主要机理
3 气压伤及肺内菌群迁移(Barotrauma and bacterial translociation)
ARDS患者功能性肺组织明显减少,使用常 规机械通气治疗时导致气道高压,过高的气道 压力加重肺泡上皮的损害,使气体进入间质组 织,分布于纵隔,胸腹膜及皮下组织。
动物模型证实在高跨肺压将明显加速肺泡 内茵群向血液循环内迁移的速度,肺水的积聚、 表面活性物质的丧失等均是可能的诱因,由此 产生的菌血症将又可能产生新的损害。
精品文档
通气策略
一、肺保护性通气
1、小潮气量通气和允许性高碳酸血症(PHC)
降低潮气量,则会导致动脉血二氧化碳分 压升高,即PHC。一般情况下,潮气量4~ 7ml/kg时,允许动脉血二氧化碳分压增高到 40~80mmHg,pH降低至7.10—7.20。在这 种情况下,患者通常能较好耐受。
精品文档
通气策略
既往的ARDS 治疗措施虽能在某种程度上缓 解临床症状,但均未证实可提高生存率。因此 保护性肺通气措施目前被认为是“第一个能有 效改善ARDS 预后的治疗方法”。
精品文档
通气策略
二、肺复张策略
尽管肺保护性通气策略是ARDS机械通气 的重大变革,仍存在一定的局限性。实施保护 性通气策略时,小潮气量使塌陷的肺泡难以复 张,而且肺泡通气量减少,动脉血二氧化碳分 压和肺内分流增加,往往使低氧血症恶化,重 度ARDS患者尤为突出,发生率达10%~20%。 因此,实施肺保护性通气策略的同时,有必要 采用有效措施促进塌陷肺泡复张。
呼吸机相关性肺损伤 与保护性肺通气策略
精品文档
万勇
概念
机械通气作为急性肺损伤(ALI) 与急 性呼吸窘迫综合症(ARDS)的主 要治 疗手段,其本身也可能在一定程度 上产生或加剧肺部的损伤,这种与机械 通气有关的肺部损伤被称为呼吸机相关 性肺损伤(Ventilator-Associated Lung Injury, VALI)
通过P-V曲线对肺组织顺应性的了解是目前 指导机械通气的有效手段,其中以测定不同潮 气量时的气道压获得的静态压力-容量曲线较为 常用。通过测定P-V 曲线的上拐点(气道压大 于此拐点代表肺处于过张状态)及下拐点(气 道压大于此拐点说明小气道开始开放),可将 气道压力调节在两拐点之间的陡直段变化,以 获得最佳的肺顺应性。
精品文档
通气策略
方法:
静态P-V曲线低位转折点法和最大氧输送 法是选择最佳PEEP常用的临床方法,但实用 性均较差。最近应用低流速(<8L/min)测定动 态肺P-V曲线,获得准静态P-V曲线,与静态PV曲线高度相关,使床边选择最佳PEEP成为可 能。
精品文档
通气策略
P-V曲线(压力-容量曲线)
ARDS患者的P-V曲线
精品文档
通气策略
2000 年ARDS Network 协作组进行了一 项大规模的临床研究,分别使用传统机械通气 与小潮气量加最佳PEEP的保护性肺通气措施对 患者进行通气治疗。发现保护性肺通气能明显 缩短呼吸机依赖的时间,并能显著降ARDS 患 者的死亡率(31%与39.8%,P<0.007 )。
精品文档
主要机理
一、生物化学性损伤
生化损伤(biotrauma)指的是伤害性刺激 介导的局部组织器官或全身性的炎性反应。
实际上,呼吸机相关性肺损伤的本质是生 物性肺损伤,诱发或加重局部和全身炎症反应, 加重ARDS,成为多器官功能障碍综合征(MODS) 的启动因素。
精品文档
主要机理
动物研究结果: 在大鼠的高容量通气模型中发现,其肺泡