高中一年级数学试题

合集下载

2022-2023学年湖北省武汉市江岸区高一年级上册学期期末数学试题【含答案】

2022-2023学年湖北省武汉市江岸区高一年级上册学期期末数学试题【含答案】

2022-2023学年湖北省武汉市江岸区高一上学期期末数学试题一、单选题1.已知集合{}11A x x =-<,{}B x x a =<,若A B ⊆,则a 的取值范围( ) A .0a ≤ B .2a ≥ C .2a > D .2a ≤【答案】B【分析】根据集合间的包含关系求参数的取值范围. 【详解】由11x -<解得111x -<-<即02x <<, 所以{}02A x x =<<, 因为A B ⊆,所以2a ≥, 故选:B.2.命题“x +∀∈R ,都有x e +∈R ”的否定是( ) A .x +∃∈R ,使得x e +∉R B .x +∃∉R ,使得x e +∉R C .x +∃∈R ,使得x e +∈R D .x +∃∉R ,使得x e +∈R【答案】A【分析】全称改存在,再否定结论即可.【详解】命题“x +∀∈R ,都有x e +∈R ”的否定是“x +∃∈R ,使得x e +∉R ”. 故选:A3.已知cos140m ︒=,则tan50︒等于( )AB C D 【答案】B【分析】利用诱导公式化简,求出sin50,cos50︒︒,然后利用同角三角函数的商数关系即可求得. 【详解】()cos140cos 9050sin500m ︒=︒+︒=-︒=<,则sin50m ︒=-,cos50∴︒sin 50tan 50cos50︒∴︒==︒.故选:B.4.已知函数()tan 4(,R)f x a x a b =+∈且3(lg log 10)5f =,则(lglg3)f =( )A .-5B .-3C .3D .随,a b 的值而定【答案】C【分析】先推导()()8f x f x +-=,再根据3lg log 10lg lg 30+=求解即可【详解】由题意,()()()tan 4tan 48f x a x a x f x =+++-+=-,又3lg10lg log 10lg lg3lg lg3lg10lg3⎛⎫+=⋅== ⎪⎝⎭,故3(lg log 10)(lg lg3)8f f +=.又3(lg log 10)5f =,故(lg lg3)853f =-= 故选:C5.已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( )A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B【分析】分函数()f x 在R 上的单调递减和单调递增求解.【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数, 所以函数()f x 在R 上不可能是增函数, 综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B6.已知m 为正实数,且22tan 15sin m x x +≥对任意的实数ππ,2x x k k ⎛⎫≠+∈ ⎪⎝⎭Z 均成立,则m 的最小值为( ) A .1B .4C .8D .9【答案】D 【分析】()22222max tan 1515sin tan sin sin ≥mx m x x x x+⇒≥-,后利用同角三角函数关系及基本不等式可得答案. 【详解】由22tan 15sin m x x +≥对任意的实数ππ,2x x k k ⎛⎫≠+∈ ⎪⎝⎭Z 均成立, 可得()222max 15sin tan sin m x x x ≥-.()()()22422222221cos sin 15sin tan sin 151cos 151cos cos cos x xx x x x x xx--=--=--2211716179cos cos x x ⎛⎫ ⎪⎝⎭=-+≤-=,当且仅当22116cos cos x x=,即21cos 4x =时取等号.则9m ≥.故选:D7.设sin7a =,则( )A .222log aa a <<B .22log 2a a a <<C .22log 2aa a << D .22log 2aa a <<【答案】D【分析】分别判断出21142a <<2a <211log 2a -<<-,即可得到答案. 【详解】()sin7sin 72a π==-.因为7264πππ<-<,所以12a <<所以21142a <<;因为2x y =在R 1222a =<<因为2log y x =在()0,∞+上为增函数,且12a <<2221log log log 2a <<211log 2a -<<-;所以22log 2aa a <<.故选:D8.设函数()()()cos cos f x m x n x αβ=+++,其中m ,n ,α,β为已知实常数,x ∈R ,若()π002f f ⎛⎫== ⎪⎝⎭,则( )A .对任意实数x ,()0f x =B .存在实数x ,()0f x ≠C .对任意实数x ,()0f x >D .存在实数x ,()0f x <【答案】A【分析】根据π(0)()02f f ==,可推出cos cos ,sin sin m n m n αβαβ=-=-,整理化简后可得m n =或m n =-,分类讨论,结合三角函数诱导公式化简,即可判断答案.【详解】由题意知π(0)()02f f == ,即cos cos sin sin 0m n m n αβαβ+=--= ,即cos cos ,sin sin m n m n αβαβ=-=- ,两式两边平方后可得 22m n =,故m n =或m n =-,若0m n =≠ ,则cos cos sin sin αβαβ=-=-, ,故π2π,Z k k αβ=++∈, 此时()cos(π2π)cos()cos()cos()0f x m x k m x m x m x ββββ=++++=-++=++ , 若0m n =-≠ ,则cos cos ,sin sin αβαβ== ,故2π,Z k k αβ=+∈ , 此时()cos(2π)cos()0f x m x k m x ββ=++-+= ,若0m n == 或0m n =-= ,则()0f x = ,故对任意实数x ,()0f x =, 则A 正确,B,C,D 错误, 故选:A【点睛】关键点点睛:解答本题的关键在于根据已知等式化简得到m 和n 之间的关系,然后分类讨论,化简即可解决问题.二、多选题9.下列三角函数值为负数..的是( ) A .3tan 4π⎛⎫-⎪⎝⎭B .tan505︒C .sin7.6πD .sin186︒【答案】BCD【分析】根据诱导公式,逐个选项进行计算,即可判断答案. 【详解】对于A ,33tan tan (1)144ππ⎛⎫-=-=--= ⎪⎝⎭,故A 为正数; 对于B ,tan505tan(360)tan145tan350145+︒︒=︒=︒=-︒<,故B 为负数; 对于C ,sin7.6π2sin(80.4)sin05πππ=-=-<,故C 为负数;对于D ,sin186sin(1806)sin 60︒=︒+︒=-︒<,故D 为负数; 故选:BCD10.下列计算或化简结果正确的是( ) A .若1sin cos 2θθ⋅=,cos tan 2sin θθθ+= B .若1tan 2x =,则2sin 2cos sin x x x =- C .若25sin 5α=,则tan 2α= D .若α为第二象限角,则22cos sin 21sin 1cos αααα+=-- 【答案】AB【分析】利用22sin sin cos 1,tan cos ααααα+==,结合三角函数在各个象限的符号,逐项进行化简、求值即得.【详解】对于A 选项:1sin cos 2θθ=,cos sin cos 1tan 2sin cos sin sin cos θθθθθθθθθ∴+=+==,故A 正确; 对于B 选项:1tan 2x =,则122sin 2tan 221cos sin 1tan 12x x x x x ⨯===---,故B 正确; 对于C 选项:∵α范围不确定,∴tan α的符号不确定,故C 错误; 对于D 选项:α为第二象限角, sin 0,cos 0αα∴><,22cos sin cos sin cos sin =0cos sin cos sin 1sin 1cos αααααααααααα∴++=-+=--,故D 错误. 故选:AB.11.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确的有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD【解析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论.【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解; 当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD.【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.12.已知函数()()211x x f x x x =->-,()()2log 11xg x x x x =->-的零点分别为α,β,给出以下结论正确的是( ) A .1αβ+= B .αββα=+C .32αβ-<-D .2αβ->-【答案】BD【分析】先说明,11xy x x =≠-的图象关于直线y x =对称,由题意可得2log ,2ααββ==,且21ααβα=-=,化简可得αββα=+,判断B;写出αβ+的表达式,利用基本不等式可判断4αβ+>,判断A;利用零点存在定理判断出322α<<,写出αβ-的表达式,由此设函数13,(2)1()12x h x x x <<-=--,根据其单调性可判断C,D . 【详解】对于函数,11xy x x =≠- ,有,11y x y y =≠-, 即函数,11xy x x =≠-的图象关于直线y x =对称, 由题意函数()()211x x f x x x =->-,()()2log 11x g x x x x =->-的零点分别为α,β, 可知α为(),21,1x xy y x x ==>-的图象的交点的横坐标, β为()2,log ,11xy y x x x ==>-的图象的交点的横坐标, 如图示,可得2(,2),(,log )A B ααββ,且,A B 关于直线y x =对称,则2log ,2ααββ==,且21ααβα=-=, 故1)(0ααβ--=,即αββα=+,故B 正确; 由题意可知1,10αα>∴-> , 所以11(111122241)11ααααβαααα+=-+=-+-++≥-⋅≥--, 由于()22221220,2f α=-≠-∴-≠=,即4αβ+>,A 错误; 因为32332232123220f ⎛⎫=- ⎪⎝=-->⎭,()22202221f =-=-<-, 且()()21111x f x x x =-+>-为单调减函数, 故()()211x x f x x x =->-在3(,2)2上存在唯一的零点 ,即322α<< ,故13,(2)1112αβαααααα-=-=--<<--, 设13,(2)1()12x h x x x <<-=--,则该函数为单调递增函数, 故3311()122322212()h h x >=--=->--,且1(2)211()02h h x =--=-<,故3202αβ-<-<-<, 故C 错误,D 正确, 故选:BD【点睛】关键点点睛:解答本题要注意到函数图象的特点,即对称性的应用,解答的关键在于根据题意推得2(,2),(,log )A B ααββ,且,A B 关于直线y x =对称,从而可得2log ,2ααββ==,且21ααβα=-=,然后写出αβ+以及αβ-的表达式,问题可解.三、填空题13.已知()()()()π3πsin cos tan π22tan πsin πf θθθθθθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=---.若π163f θ⎛⎫-= ⎪⎝⎭,则5π6f θ⎛⎫+ ⎪⎝⎭的值为_________. 【答案】13-【分析】利用三角函数的诱导公式化简()f θ,结果为cos θ,结合π163f θ⎛⎫-= ⎪⎝⎭可得π1cos()63θ-=,再利用诱导公式化简5π6f θ⎛⎫+ ⎪⎝⎭为πcos()6θ--,即得答案.【详解】由题意()()()()π3πsin cos tan π(cos )sin (tan )22cos tan πsin π(tan )(sin )f θθθθθθθθθθθθ⎛⎫⎛⎫-+- ⎪ ⎪--⎝⎭⎝⎭===-----, 由π163f θ⎛⎫-= ⎪⎝⎭可得π1cos()63θ-=,故5π5πππ1cos cos[π()]cos()66663f θθθθ⎛⎫⎛⎫+=+=--=--=- ⎪ ⎪⎝⎭⎝⎭,故答案为:13-14.若正数a ,b 满足24log log 8a b +=,48log log 2a b +=,则82log log a b +的值为__________. 【答案】523-【分析】根据对数的运算性质列出方程组求出22log 20log 24a b =⎧⎨=-⎩即可求解.【详解】因为24log log 8a b +=,所以221log log 82a b +=,又因为48log log 2a b +=,所以2211log log 223a b +=,联立22221log log 8211log log 223a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得22log 20log 24a b =⎧⎨=-⎩,所以8222152log log log log 33a b a b +=+=-,故答案为:523-. 15.已知实数,[0,2]a b ∈,且844a b +=,则22b a -的最大值是_______________. 【答案】2【分析】由已知可得22b a-=,令2a x =,构造函数()[1,4]f x x =∈,根据函数的单调性,即可求出最大值. 【详解】解:由844a b +=,可知()()()()22844222222b a b a b a b a =-=-=+-, 则82222b a b a -=+,且有2b =22b a ∴-=,令2a x =,[0,2]a ∈()[1,4]f x x =∈,可知()f x 在[1,4]上单调递减,max 8()(1)24f x f ∴====,即22b a -的最大值是2, 故答案为:2.16.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系为0ektP P -=,其中0P ,k 是正的常数.如果在前5h 消除了10%的污染物,那么经过_______h 污染物减少50%(精确到1h )?取lg 0.50.3=-,lg 0.90.045=- 【答案】33【分析】代入给定的公式即可求解. 【详解】由题知, 当0=t 时,解得0P P =,当5t =时,()500110%ekP P P -=-=,解得:1ln 0.95k =-, 所以500.9t P P =, 当050%P P =时,则有:50000.950%0.5tP P P ==, 即50.90.5t=,解得:0.9lg 0.50.35log 0.55533lg 0.90.45t -==⨯=⨯≈-. 故答案为:33.四、解答题17.若α,π0,2β⎛⎫∈ ⎪⎝⎭,且()21sin sin sin cos cos αβααβ+=.(1)解关于x 的不等式2tan cos tan 0x x βαβ-+<的解集(解集用α的三角值表示); (2)求tan β的最大值.【答案】(1)1|sin sin x x αα⎧⎫<<⎨⎬⎩⎭【分析】(1)根据题意2sin cos tan 1sin ααβα=+,用α的三角函数值替换β的三角函数值,从而解一元二次不等式即可; (2)利用基本不等式求解. 【详解】(1)2sin cos tan 1sin ααβα=+,∴()22sin 1sin sin 0x x ααα-++<, ()()sin 1sin 0x x αα⋅--<,因为1sin sin αα<所以1sin sin x αα<<, ∴原不等式解集1|sin sin x x αα⎧⎫<<⎨⎬⎩⎭;(2)222sin cos tan tan 2sin cos 2tan 1αααβααα===++当且仅当22tan 1α=即tan α=时取得等号.18.中国最早用土和石片刻制成“土主”与“日暑”两种计时工具,成为世界上最早发明计时工具的国家之一.铜器时代,使用青铜制的“漏壶”,东汉元初四年张衡发明了世界第一架“水运浑象”,元初郭守敬、明初詹希元创制“大明灯漏”与“五轮沙漏”,一直到现代的钟表、手表等.现在有人研究钟的时针和分针一天内重合的次数,从午夜零时算起,假设分针走了min t 会与时针重合,一天内分针和时针重合n 次.(1)建立t 关于n 的函数关系;(2)求一天内分针和时针重合的次数n .【答案】(1)72011t n =. (2)22次. 【分析】(1)计算出分针以及时针的旋转的角速度,由题意列出等式,求得答案;(2)根据时针旋转一天所需的时间,结合(1)的结果,列出不等式,求得答案. 【详解】(1)设经过min t 分针就与时针重合,n 为两针一天内重合的次数.因为分针旋转的角速度为()2ππrad/min 6030=, 时针旋转的角速度为()2ππrad/min 1260360=⨯,所以ππ2π30360t n ⎛⎫-= ⎪⎝⎭, 即72011t n =. (2)因为时针旋转一天所需的时间为24601440⨯=(min ),所以720144011n ≤,于是22≤n , 故时针与分针一天内只重合22次.19.在平面直角坐标系xOy 中,O 是坐标原点,角α的终边OA 与单位圆的交点坐标为()1,02A m m ⎛⎫-< ⎪⎝⎭,射线OA 绕点O 按逆时针方向旋转θ弧度..后交单位圆于点B ,点B 的纵坐标y 关于θ的函数为()y f θ=.(1)求函数()y f θ=的解析式,并求π3f ⎛⎫- ⎪⎝⎭的值;(2)若()f θ=()0,πθ∈,求4πtan 3θ⎛⎫- ⎪⎝⎭的值. 【答案】(1)()7πsin 6f θθ⎛⎫=+ ⎪⎝⎭,12(2) 【分析】(1)根据特殊值对应的特殊角及三角函数的定义,结合函数值的定义即可求解;(1)根据(1)的结论及诱导公式,利用同角三角函数的平方关系及商数关系即可求解.【详解】(1)因为1sin 2α=-,且0m <,所以7π6α=,由此得()7πsin 6f θθ⎛⎫=+ ⎪⎝⎭ ππ7π5π1sin sin 33662f ⎛⎫⎛⎫⎛⎫-=-+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)由()f θ=知7ππsin sin 664θθ⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,即πsin 6θ⎛⎫+= ⎪⎝⎭ 由于()0,πθ∈,得ππ7π,666θ⎛⎫+∈ ⎪⎝⎭,与此同时πsin 06θ⎛⎫+< ⎪⎝⎭,所以πcos 06θ⎛⎫+< ⎪⎝⎭由平方关系解得:πcos 6θ⎛⎫+= ⎪⎝⎭ππsin cos 4π36tan tan ππ33cos sin 36θθπθθθθ⎛⎫⎛⎫---+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭-=-=== ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭-+ ⎪ ⎪⎝⎭⎝⎭20.已知函数()lg 52lg 52x x x x f x a --=-++(a 为常数).(1)当1a =,求12f ⎛⎫- ⎪⎝⎭的值;(参考数据:lg30.5=,lg50.7=) (2)若函数()f x 为偶函数,求()f x 在区间[]2,1--上的值域.【答案】(1)0.3 (2)999lg ,lg 11101⎡⎤⎢⎥⎣⎦【分析】(1)结合指数和对数运算公式计算;(2)根据偶函数的性质列方程求a ,判断函数的单调性,利用单调性求值域.【详解】(1)当1a =时,()lg 254x x f x -=-,此时1122119lg 254lg 2lg 2lg3lg510.70.3255f -⎛⎫-=-=-==-=-= ⎪⎝⎭(2)函数()lg 52lg 52x x x x f x a --=-++的定义域为()(),00,∞-+∞,()110110lg 52lg 52lg lg 55x xx x x x x x f x a a ---+-=-++=+()lg 110lg5lg 110lg5x x x x a =--++- ()101101lg 52lg 52lg lg 22x x x x x x x xf x a a ---+=-++=+ ()lg 101lg2lg 110lg2x x x x a =--++-由偶函数的定义得恒有()()=f x f x -即:lg5lg5lg 2lg 2x x x x a a --=--也就是恒有()lg2lg5lg5lg2x x x xa -=-,所以1a =-当[]2,1x ∈--时,()()()1102lg 25lg 52lg lg 1101101x x x x x x x f x ---⎛⎫=--+==-+ ⎪++⎝⎭, 因为函数101x y =+为[]2,1--上的增函数,所以()f x 在[]2,1--单调递减,∴[]2,1x ∈--,()999lg ,lg 11101f x ⎡⎤∈⎢⎥⎣⎦故()f x 在[]2,1--上值域999lg ,lg 11101⎡⎤⎢⎥⎣⎦. 21.武汉城市圈城际铁路,实现了武汉城市圈内半小时经济圈体系.据悉一辆城际列车满载时约为550人,人均票价为4元,十分适合城市间的运营.城际铁路运营公司通过一段时间的营业发现,每辆列车的单程营业额Y (元)与发车时间间隔t (分钟)相关;当间隔时间到达或超过12分钟后,列车均为满载状态;当812t ≤≤时,单程营业额Y 与60412t t-+成正比;当58t ≤≤时,单程营业额会在8t =时的基础上减少,减少的数量为()2408t -.(1)求当512t ≤≤时,单程营业额Y 关于发车间隔时间t 的函数表达式;(2)由于工作日和节假日的日运营时长不同,据统计每辆车日均120t 次单程运营.为体现节能减排,发车间隔时间[]8,12t ∈,则当发车时间间隔为多少分钟时,每辆列车的日均营业总额R 最大?求出该最大值.【答案】(1)2151603,812406401100,58t t Y t t t t ⎧⎛⎫-+≤≤⎪ ⎪=⎝⎭⎨⎪-+-≤≤⎩. (2)10t =时,max 22080R =,【分析】(1)由题意设当812t ≤≤时的函数表达式,由12t =时满载求得比例系数,进而求得当58t ≤≤时表达式,写为分段函数形式,即得答案;(2)由题意可得6012040412R t t t ⎛⎫=-+⋅ ⎪⎝⎭,[]8,12t ∈,采用换元并结合二次函数性质,求得答案. 【详解】(1)当812t ≤≤时,设60412Y a t t ⎛⎫=-+ ⎪⎝⎭,a 为比例系数, 由12t =时满载可知55042200Y =⨯=, 即6041212220012a ⎛⎫⨯-+= ⎪⎝⎭,则40a =, 当8a =时,6040481214608Y ⎛⎫=⨯-+= ⎪⎝⎭, 故当58t ≤≤时,()221460408406401100Y t t t -+=--=-, 故2151603,812406401100,58t t Y t t t t ⎧⎛⎫-+≤≤⎪ ⎪=⎝⎭⎨⎪-+-≤≤⎩. (2)由题意可得6012040412R t t t⎛⎫=-+⋅ ⎪⎝⎭,[]8,12t ∈, 化简得211192001531R t t ⎛⎫=-⋅+⋅+ ⎪⎝⎭,[]8,12t ∈, 令111,,812u u t ⎡⎤=∈⎢⎥⎣⎦,则()2192001531R u u =-++, 当312(15)10u =-=-,即10t =时,[]108,12∈符合题意,此时max 22080R =. 22.已知函数()32x a f x x =+,1,22x ⎡⎤∈⎢⎥⎣⎦,a 是常数. (1)若()0f x ≥恒成立,求a 的取值范围;(2)设函数()()2log g x f x a x =-,试问,函数()g x 是否有零点,若有,求a 的取值范围;若没有,说明理由.【答案】(1)⎡⎫+∞⎪⎢⎪⎣⎭(2)答案见解析【分析】(1)利用分离参数法解决函数恒成立问题,结合定义法证明函数的单调性及单调性与最值的关系即可求解;(2)根据已知条件及函数零点的定义,结合函数最值即可求解.【详解】(1)若()0f x ≥恒成立,即恒有32x a x ≥-⋅设()2x h x x =-⋅,任取121,,22x x ⎡⎤∈⎢⎥⎣⎦,且满足12x x <,由于1222x x <,由不等式性质可得121222x x x x -⋅>-⋅,即()()12h x h x >, 所以函数()g x 在1,22x ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()max 12h x h ⎛⎫== ⎪⎝⎭,所以3a ≥a ≥;所以a 的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭. (2)由题意可知232log 0x a a x x +-=,即232log 0x a x x ⎛⎫+-= ⎪⎝⎭, 当1,22x ⎡⎤∈⎢⎥⎣⎦时,函数2x y =单调递增,23log y x x =-单调递减, 所以231log ,72x x ⎡⎤-∈⎢⎥⎣⎦,当0a ≥时,232log 0x a x x ⎛⎫+-> ⎪⎝⎭; 当a<0时,2312log ,,22x y a x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦单调递增,2312log 7,42x y a x a a x ⎛⎫⎤=+-∈+ ⎪⎥⎝⎭⎦,70a >或1402a +<即07a <<或8a <-时,()g x 没有零点;当8a -≤≤()g x 有一个零点.综上,a >8a <-时,()g x 没有零点;当8a -≤≤()g x 有一个零点.。

四川省雅安市2023-2024学年高一下学期期末考试数学试题(含答案)

四川省雅安市2023-2024学年高一下学期期末考试数学试题(含答案)

雅安市2023-2024学年下期期末教学质量检测高中一年级数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、座位号和准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数所表示的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.从小到大排列的数据1,2,3,7,8,9,10,11的第三四分位数为()A .B .9C .D .103.复数满足,则( )A .B .C .D .4.如图,在梯形ABCD 中,,E 在BC 上,且,设,,则( )A .B .C .D .5.已知m ,n 表示两条不同直线,表示平面,则( )A .若,,则B .若,,则C .若,,则D .若,,则()3i 1i -172192z 1i 22i z z +-=+z =31i 515--31i 515-+11i 155-11i 155+2AB DC =12CE EB =AB a = AD b = DE = 1233a b + 1233a b - 2133a b + 2133a b - αm α⊥n α∥m n⊥m α∥n α∥m n ∥m α⊥m n ⊥n α∥m α∥m n ⊥n α⊥6.一艘船向正北航行,在A 处看灯塔S 在船的北偏东方向上,航行后到B 处,看到灯塔S 在船的北偏东的方向上,此时船距灯塔S 的距离(即BS 的长)为( )AB .C .D .7.在复平面内,满足的复数对应的点为Z ,复数对应的点为,则的值不可能为()A .3B .4C .5D .68.已知下面给出的四个图都是正方体,A ,B 为顶点,E ,F 分别是所在棱的中点,① ②③ ④则满足直线的图形的个数为()A .1个B .2个C .3个D .4个二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.为普及居民的消防安全知识,某社区开展了消防安全专题讲座.为了解讲座效果,随机抽取14位社区居民,让他们在讲座前和讲座后各回答一份消防安全知识问卷,这14位社区居民在讲座前和讲座后问卷答题的得分如图所示,下列说法正确的是( )30︒10nmile 75︒5i 11iz --=-z 1i --0Z 0Z Z AB EF ⊥A .讲座前问卷答题得分的中位数小于70B .讲座后问卷答题得分的众数为90C .讲座前问卷答题得分的方差大于讲座后得分的方差D .讲座前问卷答题得分的极差大于讲座后得分的极差10.若平面向量,满足,则( )A .B .向量与的夹角为C .D .在上的投影向量为11.如图,在棱长为1的正方体中,M 是的中点,点P 是侧面上的动点,且平面,则( )A .P 在侧面B .异面直线AB 与MP 所成角的最大值为C .三棱锥的体积为定值D .直线MP 与平面所成角的正切值的取值范围是第II 卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分.a b 2a b a b ==+= 2a b ⋅=- a a b - π3a b -= a b - a 32a 1111ABCD A B C D -11A B 11CDD C MP ∥1AB C 11CDD C π21A PB C -12411ABB A ⎡⎣12.某学校高中二年级有男生600人,女生400人,为了解学生的身高情况,现按性别分层,采用比例分配的分层随机抽样方法抽取一个容量为50的样本,则所抽取的男生人数为________.13.已知的内角A ,B ,C 的对边分别为a ,b ,c ,且,,BC 边上,则________.14.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体.如图是以一个正方体的各条棱的中点为顶点的多面体,这是一个有8个面为正三角形,6个面为正方形的“阿基米德多面体”,包括A ,B ,C 在内的各个顶点都在球O 的球面上.若P 为球O 上的动点,记三棱锥体积的最大值为,球O 的体积为V ,则________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数,(其中).(1)若为实数,求m 的值;(2)当时,复数是方程的一个根,求实数p ,q 的值.16.(15分)已知向量,.(1)若与垂直,求实数k 的值;(2)已知O ,A ,B ,C 为平面内四点,且,,.若A ,B ,C 三点共线,求实数m 的值.17.(15分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间ABC △()πsin π2A A ⎛⎫-=- ⎪⎝⎭6b =c =P ABC -1V 1V V=12i z m =-2i z m =-m ∈R 12z z 1m =12z z ⋅220x px q ++=()1,2a =- ()3,2b =2ka b - 2a b + 2OA a b =+ 3OB a b =+ ()3,2OC m m =-,,…,分成5组,得到下图所示的频率分布直方图.(1)求图中a 的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?18.(17分)从①;②;③.这三个条件中任选一个补充在下面问题中,并解答该题.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知________.(1)求角C 的大小;(2)若点D 在AB 上,CD 平分,,,求CD 的长;(3a 的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.19.(17分)我国古代数学名著《九章算术》在“商功”一章中,将“底面为矩形,一侧棱垂直于底面的四棱锥”称为“阳马”.现有如图所示一个“阳马”形状的几何体,底面ABCD 是正方形,底面ABCD ,,E 为线段PB 的中点,F 为线段BC 上的动点[)50,60[)60,70[]90,10085%()in cos s a C C a B +=+πsin 62a b c B +⎛⎫+= ⎪⎝⎭()s sin s in in C A B A -=-ABC △ACB ∠2a =c =PA ⊥PA AB =(1)平面AEF 与平面PBC 是否垂直?若垂直,请证明,若不垂直,请说明理由;(2)求二面角的大小;(3)若直线平面AEF ,求直线AB 与平面AEF 所成角的正弦值.B PCD --PC ∥数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分.1.C 2.C 3.B 4.D 5.A 6.B 7.A 8.D二、选择题:本题共3小题,每小题6分,共18分.9.11题选对1个得2分,选对2个得4分,全部选对的得6分,有选错的得0分;10题选对1个得3分,全部选对的得6分,有选错的得0分.9.ACD10.AD11.ABD三、填空题:本题共3小题,每小题5分,共15分.12.3013.314四、解答题:本题共5小题,共77分.15.(13分)【解析】(1),因为为实数,所以,解得.故为实数时,m 的值为.(2)当时,,,则复数,因为是方程的一个根,所以,化简得,由解得()()()2122232i 2i i 2i i 11m m m m z m m m m z +--+-===-++12z z 220m -=m =12z z 1m =12i z =-21i z =-()()1221i =1-3i z i z =--⋅13i -220x px q ++=()()2213i 13i 0p q -+-+=()16123i 0p q p +--+=()160,1230,p q p ⎩+-=-+⎧⎨=4,20.p q ⎧⎨⎩=-=16.(15分)【解析】(1),则,因为与垂直,所以,解得.(2),,,,因为A ,B ,C 三点共线,所以.所以,解得.17.(15分)【解析】(1)由直方图可得,样本落在,,…,的频率分别为,,0.2,0.4,0.3,由,解得.则样本落在,,…,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.方法1:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,设为,则,解得.所以,每天应该进苹果.()()()21,223,26,42ka b k k k -=--=--- ()()()221,23,25,2a b +=-+=- 2ka b - 2a b +()()562420k k ----=229k =()()()21,223,27,2OA a b =+=-+= ()()()331,23,26,4OB a b =+=-+=- ()()()6,47,21,6AB OB OA =-=--=-- ()()()3,27,237,22AC OC OA m m m m =-=--=--- AB AC∥()()22637m m ---=-⨯-2m =[)50,60[)60,70[]90,10010a 10a 10100.20.40.31a a ++++=0.005a =[)50,60[)60,70[]90,100()506060707080809090100005005020403835kg 22..222....+++++⨯+⨯+⨯+⨯+⨯=85%85%90kg 10031007..-⨯=85%[]90,100()kg x ()0.031000.15x ⨯-=()95kg x =95kg方法2:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进苹果.18.(17分)【解析】(1)若选条件①,依题意,得,根据正弦定理得,因为,所以,则,,所以.又,则,所以.若选条件②.由正弦定理得,所以,,,即.因为,所以,所以.若选条件③在中,因为,,所以,90kg 10.03100.7-⨯=85%[]90,10085%()g .0.8507901095k 10.7-+⨯=-95kg cos sin a A C a +=sin sin cos si n A A C C A +=π02A <<sin 0A >i 1cos n C C +=1c os C C -=1122cos C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭0πC <<ππ=66C -π3C =2sin sin s n πsin i 6A B C B +⎛⎫+= ⎪⎝⎭()sin sin sin 2s sin 1in c 2os 2B A B C B B B C ⎫++++==⎪⎪⎭sin cos cos 2sin sin B C B C B ++=i sin sin cos s n cos cos sin sin C B C B B C B C B +=++i sin s n cos sin C B B C B =+1c os C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭()0,πC ∈ππ=66C -π3C =ABC △()s sin s in in C A B A -=-πA B C ++=()()n s s s n i i in C A C A A +-=-即,化简得.又,则,故.因为,所以.(2)依题意,,即,则,在中,根据余弦定理,有,即,解得或(舍去),所以.(3)依题意,的面积,所以.又为锐角三角形,且,则,所以.又,则,所以.由正弦定理,得,所以,所以所以a 的取值范围为.19.(17分)【解析】(1)平面平面PBC.理由如下:因为平面ABCD ,平面ABCD ,sin cos cos sin sin sin cos cos sin C A C A A C A C A +-=-sin co 2s sin A C A =()0,πA ∈sin 0A ≠cos 12C =0πC <<π3C =1π1π1πsin sin sin 262623D a b a CD b C ⋅+⋅=⋅⋅⋅()b CD a b ⋅+=CD =ABC △22222π2cos3c a b ab a b ab =+-=+-2742b b =+-3b =1a =-CD ==ABC △sin 1122ABC S C ab ab ===△4ab =ABC △π3C =2ππ0,32A B ⎛⎫=-∈ ⎪⎝⎭π2π63B <<π02B <<ππ62B <<tan B >sin sin B a b A =sin sin A Bb a =221s sin sin s 2in π4sin 223B a B ab B BB ⎫⎛⎫+⎪- ⎪⎝⎭⎝⎭===228a <<a <<AEF ⊥PA ⊥BC ⊂所以,因为,又.所以平面PAB ,故.在中,,E 为PB 的中点,所以.因为平面PBC ,平面PBC ,,所以平面PBC .又平面AEF ,所以平面平面PBC .(2)不妨设,计算可得,,又,,,所以,则,作于G ,连结DG ,又,,可知,所以,所以是二面角的平面角.在中,由,,则,,连结BD ,知中,根据余弦定理,得,所以.(3)因为直线平面AEF ,平面PBC ,平面平面,所以直线直线EF .又E 为线段PB 的中点,所以F 为线段BC 上的中点.由(2)知,所以.设BG 与EF 交点为H ,连结AH ,由(1)知,平面平面PBC ,平面平面,PA BC ⊥BC AB ⊥PA A AB = BC ⊥BC AE ⊥PAB △PA AB =AE PB ⊥PB ⊂BC ⊂PB BC B = AE ⊥AE ⊂AEF ⊥1AB =PB PD ==PC ==PB PD =BC DC =PC PC =PBC PDC △≌△PCB PCD =∠∠BG PC ⊥BC DC =CG CG =GBC GDC △≌△90DGC BGC ∠=∠=︒BGD ∠B PC D --Rt PBC △C P P BG C B B =⋅⋅1=BG =DG =BD =GBD △2221cos 22BG D D BGD DG G B BG +-=∠⋅==-120BGD ∠=︒PC ∥PC ⊂PBC AEF EF =PC ∥BG PC ⊥BG EF ⊥AEF ⊥AEF PBC EF =所以平面AEF .所以直线AB 与平面AEF 所成角为.又由EF ,F 为BC 上的中点,可得H 为BG 的中点,可知,,又,所以.直线AB 与平面AEFBH ⊥BAH ∠PC ∥12BH BG ===1AB =sin A BA BH H B =∠=。

高一年级数学期末测试试卷

高一年级数学期末测试试卷

高一年级数学期末测试试卷数学试题一、 单选题1.若集合{}2320A x ax x =-+=至多含有一个元素,则a 的取值范围是( ).A .(]9,0,8⎡⎫-∞⋃+∞⎪⎢⎣⎭B .{}90,8⎡⎫⋃+∞⎪⎢⎣⎭ C .90,8⎡⎤⎢⎥⎣⎦ D .90,8⎛⎤⎥⎝⎦2.①0∈∅,①{}∅∈∅,①{}0∅=,①满足{}1,2A ⊆ {}1,2,3,4的集合A 的个数是4个,以上叙述正确的个数为() A .1 B .2 C .3 D .43.已知a ∈R ,b ∈R ,若集合{}2,,1,,0b a a a b a ⎧⎫=-⎨⎬⎩⎭,则20192020a b +的值为( )A .-2B .-1C .1D .24.已知命题:R p x ∀∈,220x x a +->.则p 为假命题的充分不必要条件是( )A .1a >-B .1a <-C .1a ≥-D .1a ≤-5.已知正数x 、y 满足22933x y xy ++=,则3x y +的最大值为( )A .1 BC .2 D6.已知函数()2211,2,21x ax x f x a x x ⎧---≤⎪=⎨>⎪-⎩满足对任意12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围是()A .[]3,2--B .[)3,0-C .(],2-∞-D .(],0-∞7.若1sin cos 3x x +=,ππ,22x ⎛⎫∈- ⎪⎝⎭,则sin cos x x -的值为( )A .BC .D .138.已知()f x 为定义在R 上的偶函数,对于()12,0,x x ∀∈+∞且12x x ≠,有()()1221210x f x x f x x x ->-,()216f =,142f ⎛⎫=- ⎪⎝⎭,()00f =,则不等式()80f x x ->的解集为( )A .()(),22,∞∞--⋃+B .1,00,22⎛⎫-⋃ ⎪⎝⎭() C .()1,2,2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .()1,02,2⎛⎫-⋃+∞ ⎪⎝⎭ 二、多选题9.(多选){}260A x x x =+-=,{}10B x mx =+=,且A B A ⋃=,则m 的可能值为( ) A .13- B .13 C .0 D .12- 10.下列推理正确的是( )A .若a b >,则22a b >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b >D .若a b c >>,则a c b c a b a c-->-- 11.下列说法正确的是( )A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,4B .()12x f x x +=+图象关于点()2,1-成中心对称C .函数1y x =的单调递减区间是()(),00,∞-+∞D .幂函数()()23433m f x m m x -=-+在()0,∞+上为减函数,则m 的值为1 12.若函数244y x x =--的定义域为[]0,m ,值域为[]8,4--,则实数m 的值可能为( ).A .2B .3C .4D .5 三、填空题13.函数()221log 5428xy x x =+-+-的定义域_____ 14.已知π1cos 62α⎛⎫-= ⎪⎝⎭,则4πsin 3α⎛⎫+= ⎪⎝⎭___________. 15.若函数()()22log 3f x x ax a =-+在区间[)1,+∞上单调递增,则实数a 的取值范围是______.16.设函数()23y g x =-+是奇函数,函数()132x f x x -=+的图像与()g x 的图像有2022个交点,则这些交点的横,纵坐标之和等于_________ 四、解答题17.已知非空集合{|121}P x a x a =+≤≤+,{|25}Q x x =-≤≤.(1)若3a =,求R ()P Q ⋂;(2)若“x P ∈”是“x ∈Q ”的充分不必要条件,求实数a 的取值范围.18.若函数2()21(0)g x ax ax b a =-++>在区间[2,3]上有最大值4和最小值1,设()()g x f x x =. (1)求a 、b 的值;(2)若不等式()220x x f k -⋅≥在[1,1]x ∈-上有解,求实数k 的取值范围;19.已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数()33x f x a -=--(0a > 且1a ≠)的定点M .(1)求sin 2cos +tan ααα-的值;(2)求()()()()3πsin πcos 2tan 3πcos 2πsin ααααα⎛⎫++- ⎪⎝⎭-+-+-的值.20.某食品公司拟在下一年度开展系列促销活动,已知其产品年销量x 万件与年促销费用t 万元之间满足3x -与1t +成反比例,当年促销费用0=t 万元时,年销量是1万件.已知每一年产品的设备折旧、维修等固定费用为3万元,每生产1万件产品需再投入32万元的生产费用,若将每件产品售价定为:其生产成本的150%与“平均每件促销费的一半”之和,则当年生产的商品正好能销完.(1)求x 关于t 的函数;(2)将下一年的利润y (万元)表示为促销费t (万元)的函数;(3)该食品公司下一年的促销费投入多少万元时,年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)21.已知函数()222y ax a x =-++,a R ∈(1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同实根,求实数a 的取值.22.已知函数2()1|1|f x x k x =---,k ①R .(1)若()y f x =为偶函数,求k 的值;(2)若()y f x =有且仅有一个零点,求k 的取值范围;(3)求()y f x =在区间[0,2]上的最大值.。

2022-2023学年天津市高一年级上册学期期末数学试题【含答案】

2022-2023学年天津市高一年级上册学期期末数学试题【含答案】

2022-2023学年天津市第一中学高一上学期期末数学试题一、单选题1.若{}24xA x =<,{}12B x x =∈-<N ,则A B =( )A .{}12x x -<<B .{}0,1C .{}1D .{}13x x -<<【答案】B【分析】分别解指数不等式与绝对值不等式,列举法写出集合B ,再求交集可得结果. 【详解】∵242x x <⇒<,|1|213x x -<⇒-<< ∴{|2}A x x =<,{0,1,2}B = ∴{0,1}A B =. 故选:B.2.命题“x ∃∈R ,210x x ++<”的否定为( ) A .x ∃∈R ,210x x ++≥ B .x R ∃∉,210x x ++≥ C .x ∀∈R ,210x x ++≥ D .x R ∀∉,210x x ++≥【答案】C【分析】将存在量词改为全程量词,结论中范围改为补集即可得解. 【详解】“x ∃∈R ,210x x ++<”的否定为“x ∀∈R ,210x x ++≥”, 故选:C.3.已知3cos 65πα⎛⎫-= ⎪⎝⎭,则2sin 3πα⎛⎫-= ⎪⎝⎭( )A .35B .45C .35 D .45-【答案】C【分析】利用诱导公式化简所求表达式,结合已知条件得出正确选项. 【详解】因为23sin sin cos cos 362665πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=--=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 故选:C.【点睛】本小题主要考查利用诱导公式进行化简求值,考查化归与转化的数学思想方法,属于基础题4.已知在三角形ABC 中,1sin 3A =,则()cosBC +的值等于( )A B .C .D .89【答案】C【分析】利用三角形内角和定理、诱导公式和同角三角函数的基本关系即可求解. 【详解】因为在三角形ABC 中,πA B C ++=,则πC B A +=-, 所以()cos =cos(π)cos B C A A +-=-,又1sin 3A =,所以cos A ==所以()cos =B C +± 故选:C .5.若0.62a =,πlog 3b =,22πlog sin 3c =,则a 、b 、c 的大小关系为( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >>【答案】A【分析】利用指数、对数的单调性,以及三角函数特殊值,即可得出结果. 【详解】解:0.60221a =>=, πππ0log 1log 3log π1=<<=,01b <<,2222log sin πlog log 103c ==<=,∴a b c >>, 故选:A.6.要得到函数()sin(2)4f x x π=+的图象,可将函数()cos2g x x =的图象( )A .向左平移4π个单位 B .向左平移8π个单位 C .向右平移4π个单位D .向右平移8π个单位【答案】D【分析】先将cos2x 转化为sin[2()]4x π+,由此根据三角函数图像变换的知识判断出正确选项.【详解】()cos2sin(2)sin[2()]24g x x x x ππ==+=+,()sin[2()]8f x x π=+,因为()()848x x πππ+=+-,所以需要将()g x 的图象向右平移8π个单位. 故选:D【点睛】本小题主要考查三角函数诱导公式,考查三角函数图像变换,属于基础题.7.已知函数()()sin 2f x x ϕ=+,0πϕ≤<2,若对x ∀∈R ,()π3f x f ⎛⎫≤ ⎪⎝⎭恒成立,则ϕ=( )A .π6B .5π6C .7π6D .11π6【答案】D【分析】根据题意可知,函数()()sin 2f x x ϕ=+在π3x =时取最大值,所以2ππ22π,Z 3k k ϕ⨯+=+∈,根据0πϕ≤<2即可求得ϕ的值.【详解】由函数()()sin 2f x x ϕ=+对x ∀∈R ,()π3f x f ⎛⎫≤ ⎪⎝⎭恒成立可知函数()()sin 2f x x ϕ=+在π3x =时取最大值,即ππsin 2133f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭所以,2ππ22π,Z 3k k ϕ⨯+=+∈,即π2ππ2π2π,Z 236k k k ϕ=-+=-+∈ 又因为0πϕ≤<2, 所以1k =时,π611ϕ= 故选:D 8.函数()sin 2cos x xf x x=-的图象可能为( )A .B .C .D .【答案】A【分析】分析函数()f x 的奇偶性及其在0,2π⎛⎫⎪⎝⎭上的函数值符号,结合排除法可得出合适的选项.【详解】对任意的x ∈R ,2cos 0x ->,则函数()f x 的定义域为R ,()()()()sin sin 2cos 2cos x x x xf x f x x x---===---,则函数()f x 为偶函数,排除BC 选项,当02x π<<时,sin 0x >,则()sin 02cos x xf x x=>-,排除D 选项.故选:A.9.已知函数()()πsin 2cos 206f x x x ωωω⎛⎫=++> ⎪⎝⎭在[]0,π内有且仅有3个零点,则ω的取值范围是( ) A .411,36⎡⎫⎪⎢⎣⎭B .411,36⎛⎫ ⎪⎝⎭C .513,36⎛⎫ ⎪⎝⎭D .513,36⎫⎡⎪⎢⎣⎭【答案】A【分析】先化简函数式,然后根据x 的范围求出π23x ω+的范围,()f x 在[]0,π有且仅有3个零点,再利用正弦函数相关知识求ω的范围.【详解】πππ3π()sin(2)cos2sin 2cos cos2sin cos 2cos2)66623f x x x x x x x x ωωωωωωωω=++=++++,因为当[]0,πx ∈时,πππ2,2π333x ωω⎡⎤+∈+⎢⎥⎣⎦,又因为()f x 在[]0,π上有且仅有3个零点,所以π3π2π4π3ω+<,综上:43611ω<, 故选:A10.已知函数()11,02lg ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在不相等的实数a ,b ,c ,d 满足()()()()f a f b f c f d ===,则+++a b c d 的取值范围为( ) A .()0,+∞B .812,10⎛⎤- ⎥⎝⎦C .612,10⎛⎤- ⎥⎝⎦D .810,10⎛⎤ ⎥⎝⎦【答案】C【分析】将问题转化为y m =与|()|f x 图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为y m =与|()|f x 的图象有四个交点,1,221,20|()|2lg ,01lg ,1xx xx f x x x x x ⎧--≤-⎪⎪⎪+-<≤=⎨⎪-<≤⎪⎪>⎩,则在(,2]-∞-上递减且值域为[0,)+∞;在(2,0]-上递增且值域为(0,1];在(0,1]上递减且值域为[0,)+∞,在(1,)+∞上递增且值域为(0,)+∞;|()|f x 的图象如下:所以01m <≤时,y m =与|()|f x 的图象有四个交点,不妨假设a b c d <<<, 由图及函数性质知:142011010a b c d -≤<-<≤<≤<<≤,易知:4a b +=-,101(2,]10c d +∈, 所以61(2,]10a b c d +++∈-. 故选:C二、填空题11.120318(π1)lg2lg52-⎛⎫+--++= ⎪⎝⎭___________.【答案】4【分析】根据指数对数运算性质化简计算即可【详解】120318(π1)lg2lg52-⎛⎫+--++ ⎪⎝⎭()()()21313212lg 25--=+-+⨯4121=+-+ 4=故答案为:4.12.古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的部分多为扇环.已知某扇形的扇环如图所示,其中外弧线的长为60cm ,内弧线的长为20cm ,连接外弧与内弧的两端的线段均为18cm ,则该扇形的中心角的弧度数为____________.【答案】209【分析】根据扇形弧长与扇形的中心角的弧度数为α的关系,可求得9cm OC =,进而可得该扇形的中心角的弧度数. 【详解】解:如图,依题意可得弧AB 的长为60cm ,弧CD 的长为20cm ,设扇形的中心角的弧度数为α 则,AB OA CD OC αα=⋅=⋅,则60320OA OC ==,即3OA OC =. 因为18cm AC =,所以9cm OC =,所以该扇形的中心角的弧度数209CD OC α==. 故答案为:209. 13.已知tan 2θ=,则2sin cos sin sin θθθθ++的值为______.【答案】2310【分析】进行切弦互化即可求值【详解】22222sin sin tan 4cos 1sin θθθθθ===-,∴24sin 5θ=,∴22sin cos 11423sin 1sin 1sin tan 2510θθθθθθ++=++=++=.故答案为:231014.函数()2sin cos f x x x =+在区间2,43ππ⎡⎤⎢⎥⎣⎦上的最小值是______.【答案】14##0.25【分析】由题得()2cos cos 1f x x x =-++,转化为求函数()21g t t t =-++,12[]2t ∈-的最小值得解.【详解】解:()221cos cos cos cos 1f x x x x x =-+=-++,设π212cos ,[,π],[432t x x t =∈∴∈-,所以()21g t t t =-++,12[2t ∈-.二次函数抛物线的对称轴为112(1)2t =-=⨯-, 由于111112424g ⎛⎫-=--+= ⎪⎝⎭,212211124g +=-=>⎝⎭.所以函数的最小值是14.故答案为:1415.已知函数()()21ln 11f x x x=+-+,若实数a 满足()()313log log 21f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是______. 【答案】1,33⎡⎤⎢⎥⎣⎦【分析】根据奇偶性定义可判断出()f x 为定义在R 上的偶函数,从而将所求不等式化为()()32log 21f a f ≤;根据复合函数单调性的判断以及单调性的性质可确定()f x 在[)0,∞+上单调递增,由偶函数性质可知()f x 在(],0-∞上单调递减,由此可得3log 1a ≤,解不等式即可求得结果. 【详解】()f x 的定义域为R ,()()()21ln 11f x x f x x-=+-=+, f x 为定义在R 上的偶函数,()()()()313333log log log log 2log f a f a f a f a f a ⎛⎫∴+=+-= ⎪⎝⎭;当0x ≥时,21y x =+单调递增,()2ln 1y x ∴=+在[)0,∞+上单调递增;又11y x=+在[)0,∞+上单调递减,f x 在[)0,∞+上单调递增,()f x 图象关于y 轴对称,f x 在(],0-∞上单调递减;则由()()32log 21f a f ≤得:3log 1a ≤,即31log 1a -≤≤,解得:133a ≤≤,即实数a 的取值范围为1,33⎡⎤⎢⎥⎣⎦.故答案为:1,33⎡⎤⎢⎥⎣⎦.16.已知关于x 函数()322253sin x tx x x tf x x t++++=+在[]2022,2022-上的最大值为M ,最小值N ,且2022+=M N ,则实数t 的值是______.【答案】1011【分析】先利用常数分离法化得函数3253sin ()x x x f x t x t ++=++,再构造函数()3253sin x x xg x x t++=+,判断得()g x 为奇函数,从而利用奇函数的性质求解即可.【详解】因为()()233222253sin 53sin t x t x x x x tx x x t f x x t x t++++++++==++3253sin x x x t x t ++=++,[]2022,2022x -∈,令()3253sin x x xg x x t++=+,[]2022,2022x -∈,则()()f x g x t =+,因为()g x 定义域关于原点对称,()33225()3()sin()53sin ()()x x x x x xg x g x x t x t-+-+-----===--++, 所以()g x 是在[]2022,2022-上的奇函数, 故由奇函数的性质得()()max min 0g x g x +=,所以()()max min max min ()()2022M N f x f x g x t g x t +=+=+++=, 所以22022t =,则1011t =. 故答案为:1011.【点睛】关键点睛:由于奇函数的图像关于原点对称,所以其最大值与最小值也关于原点对称,这一性质是解决本题的关键所在.三、解答题17.已知0,022ππαβ<<<<,且3cos ,cos()510ααβ=+=. (1)求sin 24πα⎛⎫+ ⎪⎝⎭的值;(2)求β的值.【答案】 (2)4πβ=.【分析】(1)由同角平方关系可得4sin 5α,再由二倍角正余弦公式有7cos 225α=-、24sin 225α=,最后利用和角正弦公式求值.(2)由题设可得sin()αβ+=,根据()βαβα=+-,结合差角余弦公式求出β对应三角函数值,由角的范围确定角的大小. 【详解】(1)由02πα<<,3cos 5α=,则4sin 5α, 所以27cos 22cos 125αα=-=-,24sin 22sin cos 25ααα==,而17sin 22cos 2)425αααπ⎛⎫+=+= ⎪⎝⎭(2)由题设0αβ<+<π,而cos()αβ+=sin()10αβ+=,而cos cos[()]cos()cos 3sin (45)si 5n βαβααβααβα=+-=+++==又02βπ<<,则4πβ=.18.已知函数ππ())cos()sin(2π)(0)44f x x x x ωωωω=+⋅+-+>,且函数()f x 的最小正周期为π.(1)求函数()f x 的解析式; (2)若将函数()f x 的图象向右平移π3个单位长度,得到函数()g x 的图象,求函数()g x 在区间π[0,]2上的最大值和最小值,并指出此时x 的值.【答案】(1)()2sin(2)3f x x π=+(2)0x =时,最小值为 512x π=时,最大值为 2.【分析】(1)利用三角恒等变换可得π()2sin(2)3f x x ω=+,再由最小正周期可得解;(2)利用三角函数的图象变换可得π()2sin(2)3g x x =-,再利用整体法可得解.【详解】(1)∵函数ππ())cos()sin(2π)44f x x x x ωωω=+⋅+-+ππ)sin 22sin 22sin(2)23x x x x x ωωωωω=++=+=+的最小正周期为π,∴2ππ2ω=,解得1ω=,π()2sin(2)3f x x ∴=+. (2)将函数()f x 的图象向右平移π3个单位长度, 得到函数πππ()2sin 2()2sin(2)333g x x x ⎡⎤=-+=-⎢⎥⎣⎦的图象,由π0,2x ⎡⎤∈⎢⎥⎣⎦,可得ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,故当233x ππ-=-,即当0x =时,函数()g x 取得最小值为当ππ232x -=,即当5π12x =时,函数()g x 取得最大值为 2.19.已知函数()2cos 2cos f x x x x =+. (1)求函数()f x 的周期和单调递减区间;(2)将()f x 的图象向右平移6π个单位,得到()g x 的图象,已知()02313g x =,0,32x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 值.【答案】(1)π,()2,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z(2)【分析】(1)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得; (2)首先根据三角函数的平移变换规则求出()g x 的解析式,根据()02313g x =,得到05sin 2613x π⎛⎫-= ⎪⎝⎭,再根据同角三角函数的基本关系求出0cos 26x π⎛⎫- ⎪⎝⎭,最后根据两角和的余弦公式计算可得;【详解】(1)解:∵()2cos 2cos f x x x x =+2cos 21x x =++122cos 212x x ⎫=++⎪⎪⎝⎭2sin 216x π⎛⎫=++ ⎪⎝⎭,即()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,所以函数的最小正周期22T ππ==, 令()3222262k x k k πππππ+≤+≤+∈Z ,解得()263k x k k ππππ+≤≤+∈Z . 故函数()y f x =的单调递减区间为()2,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)解:由题意可得()2sin 212sin 216666g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=-++=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∵()002sin 2163231g x x π⎛⎫=-+= ⎪⎝⎭,∴05sin 2613x π⎛⎫-= ⎪⎝⎭,∵0,32x ππ⎡⎤∈⎢⎥⎣⎦,所以052266x πππ≤-≤,则012cos 2613x π⎛⎫-==- ⎪⎝⎭,因此0000cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦125113132=-⨯=. 20.已知函数2()1mx nf x x +=+是定义在[]1,1-上的奇函数,且()11f =.(1)求()f x 的解析式;(2)已知0a >,0b >,且128a b+=,若存在a ,b 使()2b f t a >+成立,求实数t 的取值范围.【答案】(Ⅰ)22()1x f x x =+;(Ⅱ)(2⎤⎦. 【解析】(1)根据题意分析可得()()0011f f ⎧=⎪⎨=⎪⎩,解可得m 、n 的值,则可得出函数()f x 的解析式; (2)因为128a b +=,所以112282b b a a a b ⎛⎫⎛⎫+=++ ⎪⎪⎝⎭⎝⎭,展开利用基本不等式可得122b a +≥, 则只需使1()2f t >,然后求解不等式即可解得实数t 的取值范围. 【详解】解:(1)根据题意,函数2()1mx n f x x +=+是定义在[]1,1-上的奇函数, 则(0)0f =,可得0n =,则2()1mx f x x =+, 又由()11f =得,则12m =,可得2m =, 则22()1x f x x =+. (2)因为0a >,0b >,且128a b+=,所以1121211222828282b b b a a a a b a b ⎛⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝,当且仅当22b a a b =,即14a =,12b =时,等号成立, 若存在a ,b 使()2b f t a >+成立,则1()2f t >,即22112t t >+,解得:22t <[]1,1t ∈-,所以实数t 的取值范围是(2⎤⎦.【点睛】本题主要考查根据函数奇偶性求解函数的解析式,考查基本不等式的运用,解答本题时注意以下几点:(1)当奇函数()f x 在0x =处有意义时,则有()00f =;(2)若存在a ,b 使()2b f t a >+成立,只需使min ()2b f t a ⎛⎫>+ ⎪⎝⎭,然后根据128a b +=,利用基本不等式求解2b a +的最小值.。

2022-2023学年江苏省南京市高淳中学高一年级上册学期期末考试数学试题【含答案】

2022-2023学年江苏省南京市高淳中学高一年级上册学期期末考试数学试题【含答案】

高淳中学2022-2023学年高一上学期期末考试数学试题第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,则( ){}{}1,2,3,2A B x N x ==∈≤∣A B ⋃=A. B. C. D.{}2,3{}0,1,2,3{}1,2{}1,2,32.命题“”的否定是( )0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭A. B.0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭0,,sin 2x x x π⎛⎫∀∈> ⎪⎝⎭C. D.0,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭3.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()3π6πB. C. D.13π23π43π4.,不等式恒成立,则的取值范围为()x R ∀∈2410ax x +-<a A.B.或4a <-4a <-0a =C.D.4a ≤-40a -<<5.已知,则( )0.50.5e ,ln5,log e a b c -===A.B.c a b <<c b a <<C.D.b a c <<a b c <<6.已知函数是定义在上的奇函数,,且,则()f x R ()()4f x f x =+()11f -=-()()()20202021f f +=A. B.0 C.1D.21-7.已知函数的零点分别为,则的大小顺序为(()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+,,a b c ,,a b c )A.B.c b a <<b a c <<C.D.a c b <<c a b <<8.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为( ()()sin f x A x ωϕ=+)A.B.122y f x ⎛⎫=+ ⎪⎝⎭()21y f x =+C.D.122x y f ⎛⎫=+ ⎪⎝⎭12x y f ⎛⎫=+ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列函数中,既是偶函数又在区间上是增函数的是( )()0,∞+A. B.21y x =+3y x =C. D.23y x =3xy -=10.若,则下列不等式正确的是( )110a b <<A. B.a b <a b<C. D.a b ab +<2b a a b +>11.若函数,则下列选项正确的是( )()tan 23f x x π⎛⎫=+ ⎪⎝⎭A.最小正周期是πB.图象关于点对称,03π⎛⎫ ⎪⎝⎭C.在区间上单调递增7,1212ππ⎛⎫ ⎪⎝⎭D.图象关于直线对称12x π=12.设,用表示不超过的最大整数,则称为高斯函数,也叫取整函数.令x ∈R []x x []y x =,以下结论正确的是( )()[]22f x x x =-A.()1.10.8f -=B.为偶函数()f x C.最小正周期为()f x 12D.的值域为()f x []0,1第II 卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)5log 25+=14.请写出一个同时满足下列两个条件的函数:__________.(1),若则12,x x R ∀∈12x x >()()12f x f x >(2)()()()121212,,x x R f x x f x f x ∀∈+=15.在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆相交于,两xOy Ox ,αβP Q 点,的纵坐标分别为.则的终边与单位圆交点的纵坐标为__________.,P Q 34,55αβ+16.已知函数,使方程有4个不同的解:,则()2log ,04,2cos ,482x x f x t R x x π⎧<<⎪=∃∈⎨≤≤⎪⎩()f x t =1234,,,x x x x 的取值范围是__________;的取值范围是__________.1234x x x x 1234x x x x +++四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题10.0分)求值:(1)22log 33582lg2lg22+--(2)251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭18.(本小题12.0分)已知全集,集合,集合.U R ={}2120A x x x =--≤∣{}11B x m x m =-≤≤+∣(1)当时,求;4m =()U A B ⋃ (2)若,求实数的取值范围.()U B A ⊆ m 19.已知函数的部分图象如图.()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)求函数的解析式;()f x (2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将所得图象向左平移个单位,()f x 6π得到函数的图象,当时,求值域.()g x ,6x ππ⎡⎤∈-⎢⎥⎣⎦()g x 20.(本小题12.0分)已知函数()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭(1)化简;()f α(2)若,求的值.()1,052f παα=-<<sin cos ,sin cos αααα⋅-21.(本小题12.0分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要500m 500m ⨯建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.S(1)分别用表示和的函数关系式,并给出定义域;x y S (2)怎样设计能使取得最大值,并求出最大值.S 22.(本小题12.0分)已知函数.()1ln1x f x x -=+(1)求证:是奇函数;()f x (2)若对于任意都有成立,求的取值范围;[]3,5x ∈()3f x t >-(3)若存在,且,使得函数在区间上的值域为(),1,αβ∞∈+αβ<()f x [],αβ,求实数的取值范围.ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦m 高淳中学2022-2023学年高一上学期期末考试数学试题参考答案)第I 卷(选择题共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.【答案】B【解析】【分析】先求出集合,再求.B A B ⋃【详解】因为,所以.{}{}1,2,3,0,1,2A B =={}0,1,2,3A B ⋃=故选:B2.【答案】D【解析】【分析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,0,,sin 2x x x π⎛⎫∀∈≤ ⎪⎝⎭按照改量词否结论的法则,所以否定为:,0,,sin 2x x x π⎛⎫∃∈> ⎪⎝⎭故选:D3.【答案】B【解析】【分析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.326ππ=12233ππ⋅⋅=故选:B4.【答案】A【解析】【分析】先讨论系数为0的情况,再结合二次函数的图像特征列不等式即可.【详解】,不等式恒成立,x R ∀∈2410ax x +-<当时,显然不恒成立,0a =所以,解得:.0Δ1640a a <⎧⎨=+<⎩4a <-故选:A.5.【答案】A【解析】【分析】借助指对函数的单调性,利用中间量0或1比较即可.【详解】因为,0.500.50.50e e 1,ln5lne <1,log e log 10a b c -<===>==<=所以,c a b <<故选:A.6.【答案】C【解析】【分析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值.()()4f x f x =+【详解】是奇函数,,()f x ()()()00,111f f f ∴==--=又是周期函数,周期为4.()()()4,f x f x f x =+∴.()()()()2020202101011f f f f ∴+=+=+=故选:C.7.【答案】C【解析】【分析】利用数形结合,画出函数的图象,判断函数的零点的大小即可.【详解】函数的零点转化为与()()()e ,ln ,sin x f x x g x x x h x x x =+=+=+e ,ln ,sin x y y x y x ===的图象的交点的横坐标,因为零点分别为,y x =-,,a b c 在坐标系中画出与的图象如图:e ,ln ,sin x y y x y x ===y x =-可知,0,0,0a b c <>=满足.a cb <<故选:C.8.【答案】B【解析】【分析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把()1y f x =+的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,()1y f x =-12所以如图的图象所对应的解析式为.()21y f x =+故选:B 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.【答案】AC【解析】【分析】利用函数的奇偶性和单调性的概念进行判断.【详解】对于A :22()11y x x =-+=+函数是偶函数,在上是增函数,故A 正确;∴21y x =+()0,∞+对于:B 33()y x x =-=- 函数是奇函数,故错误;∴3y x =B 对于:C 2233()y x x=-= 是偶函数,在上是增函数,故C 正确;23y x ∴=()0,∞+对于:D 33x x y ---== 是偶函数,在上是减函数,故错误.3xy -∴=()0,∞+D 故选:AC10.【答案】BCD【解析】【分析】利用不等式的基本性质求解即可【详解】由于,则,故错误;110a b <<0b a <<a b <正确;正确;,正确0a b ab +<<a b <2222,2a b a b ab b a b a ab ab a b ++=>=∴+>故选:BC D.11.【答案】BC【解析】【分析】利用正切函数的周期,对称中心,函数的单调性,判断选项即可.【详解】函数,函数的最小正周期为:错误;tan 23y x π⎛⎫=+ ⎪⎝⎭,A 2π令,2,3246k k x x k Z ππππ+=⇒=-∈当时,,所以图象关于点对称,正确;2k =3x π=,03π⎛⎫ ⎪⎝⎭B 因为,解得,当时,,所2,232k x k k Z πππππ-<+<+∈5,212212k k x ππππ⎛⎫∈-+ ⎪⎝⎭1k =7,1212x ππ⎛⎫∈ ⎪⎝⎭以在区间上单调递增,C 正确;又正切函数不具有对称轴,所以D 错误7,1212ππ⎛⎫ ⎪⎝⎭故选:B C.12.【答案】AC【解析】【分析】根据高斯函数的定义逐项检验即可,对于,直接求解即可,对于,取,检验可得反A B 1.1x =-例,对于,直接求解即可;对于,要求的值域,只需求时的C ()12f x f x ⎛⎫+= ⎪⎝⎭D ()f x 102x ≤<()f x 值域即可.【详解】对于A ,,故A 正确.()[]1.1 2.2 2.2 2.230.8f -=---=-+=对于,取,则,而,B 1.1x =-()1.10.8f -=()[]1.1 2.2 2.2 2.220.2f =-=-=故,所以函数不偶函数,故B 错误.()()1.1 1.1f f -≠-()f x 对于,则,故C 正确.C [][]()1212121212f x x x x x f x ⎛⎫+=+-+=+--= ⎪⎝⎭对于,由的判断可知,为周期函数,且周期为,D C ()f x 12要求的值域,只需求时的值域即可.()f x 102x ≤<()f x 当时,则,0x =()[]0000f =-=当时,,102x <<()[]()222020,1f x x x x x =-=-=∈故当时,则有,故函数的值域为,故错误.102x ≤<()01f x ≤<()f x [)0,1D 故选:A C.第II卷(非选择题共90分)三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置)13.【答案】6【解析】【分析】利用根式性质与对数运算进行化简.,5log 25426+=+=故答案为:614.【解析】【分析】由条件(1),若则.可知函数为上增函数;12,x x R ∀∈12x x >()()12f x f x >()f x R 由条件(2).可知函数可能为指数型函数.()()()121212,,x x R f x x f x f x ∀∈+=()f x 【详解】令,()2x f x =则为上增函数,满足条件(1).()2x f x =R 又()()()12121212122,222x x x x x x f x x f x f x +++==⨯=故()()()1212f x x f x f x +=即成立.()()()121212,,x x R f x x f x f x ∀∈+=故答案为:等均满足题意()()()(2,3,4x x x f x f x f x ===)15.【答案】1【解析】【分析】根据任意角三角函数的定义可得,再由展开3443sin ,cos ,sin ,cos 5555ααββ====()sin αβ+求解即可.【详解】以轴为始边作两个锐角,它们的终边分别与单位圆相交于两点,的纵坐标分别Ox ,αβ,P Q ,P Q 为34,55所以是锐角,可得,3sin ,5αα=4cos 5α=因为锐角的终边与单位圆相交于点,且纵坐标为,βQ 45所以是锐角,可得,4sin ,5ββ=3cos 5β=所以,()3344sin sin cos cos sin 15555αβαβαβ+=+=⨯+⨯=所以的终边与单位圆交点的纵坐标为1.αβ+故答案为:1.16.【答案】①.②.()32,354⎝⎭【解析】【分析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把()f x 12,x x 34,x x 和转化成只有一个自变量的代数式,再去求取值范围即可.1234x x x x +++1234x x x x 【详解】做出函数的图像如下:()2log ,042cos ,482x x f x x x π⎧<<⎪=⎨≤≤⎪⎩在单调递减:最小值在单调递增:最小值0,最大值2;()f x (]0,1()0;f x []1,4在上是部分余弦型曲线:最小值,最大值2.()f x []4,82-若方程有4个不同的解:,则()f x t =1234,,,x x x x 02t <<不妨设四个解依次增大,则12341145,784x x x x <<<<<<<<是方程的解,则,即;12,x x 2log (04)x t x =<<2122log log x x =-121x x =是方程的解,则由余弦型函数的对称性可知.34,x x ()2cos 482x t x π=≤≤3412x x +=故,()()212343433312636x x x x x x x x x ==-=--+由得即345x <<()233263635x <--+<12343235x x x x <<1234121111212x x x x x x x x +++=++=++当时,单调递减,1114x <<()112m x x x =++则1116514124x x <++<故答案为:①;②()32,354⎝⎭四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(1)解:;()()22log 33582lg 2lg243lg5lg22lg27lg5lg27162+--=+---=-+=-=(2)解:251013sincos tan 634πππ⎛⎫-+- ⎪⎝⎭sin 4cos 3tan 3634ππππππ⎛⎫⎛⎫⎛⎫=+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.11sin cos tan 1063422πππ=+-=+-=18.解:(1)集合,{}34A x x =-≤≤∣当时,或,4m ={}35,{3U B x x B x x =≤≤=<∣∣ 5}x >所以或;(){4U A B x x ⋃=≤∣ 5}x >(2)由题可知或,{3U A x x =<-∣ 4}x >由可得或,U B A ⊆ 13m +<-14m ->解得或,4m <-5m >故的取值范围为或.m {4mm <-∣5}m >19.(1)由图象可知,的最大值为2,最小值为,又,故,()f x 2-0A >2A =周期,则,452,,03123T πππππωω⎡⎤⎛⎫=--=∴=> ⎪⎢⎥⎝⎭⎣⎦2ω=从而,代入点,得,()()2sin 2f x x ϕ=+5,212π⎛⎫ ⎪⎝⎭5sin 16πϕ⎛⎫+= ⎪⎝⎭则,即,52,Z 62k k ππϕπ+=+∈2,Z 3k k πϕπ=-+∈又,则.2πϕ<3πϕ=-.()2sin 23f x x π⎛⎫∴=- ⎪⎝⎭(2)将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,()f x 故可得;2sin 3y x π⎛⎫=- ⎪⎝⎭再将所得图象向左平移个单位,得到函数的图象6π()g x 故可得;()2sin 6g x x π⎛⎫=- ⎪⎝⎭,5,,,sin 66366x x x ππππππ⎡⎤⎡⎤⎡⎤⎛⎫∈-∴-∈--∈⎢⎥ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦ 的值域为.()2sin 2,6x g x π⎛⎫⎡⎤-∈∴ ⎪⎣⎦⎝⎭2⎡⎤⎣⎦20.解(1)()()()()()sin cos sin cos 2cos tan sin 2f πααπαπααπααα-+-=+-⎛⎫- ⎪⎝⎭()sin cos sin cos cos cos tan ααααααα-=+⋅-,sin cos αα=+故;()sin cos f ααα=+(2)由,()1sin cos 5f ααα=+=平方可得,221sin 2sin cos cos 25αααα++=即.242sin cos 25αα⋅=-所以,12sin cos 25αα⋅=-因为,249(sin cos )12sin cos 25αααα-=-=又,所以,2πα-<<sin 0,cos 0αα<>所以,sin cos 0αα-<所以.7sin cos 5αα-=-21.解:(1)由已知,其定义域是.30003000,xy y x =∴=()6,500,()()()46210S x a x a x a=-+-=-,150026,332y a y a x +=∴=-=- ,其定义域是.()150015000210330306S x x x x ⎛⎫⎛⎫∴=-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭()6,500(2),15000303063030303023002430S x x ⎛⎫=-+≤-=-⨯= ⎪⎝⎭当且仅当,即时,上述不等式等号成立,150006x x =()506,500x =∈此时,.max 50,60,2430x y S ===答:设计时,运动场地面积最大,最大值为2430平方米.50m,60m x y ==22.(1)证明:由函数,可得,()1lg 1x f x x -⎛⎫= ⎪+⎝⎭101x x ->+即,解得,故函数的定义域为,关于原点对称.101x x -<+11x -<<()1,1-再根据,可得是奇函数.()()11lg lg 11x x f x f x x x +-⎛⎫⎛⎫-==-=- ⎪ ⎪-+⎝⎭⎝⎭()f x (2)由(1)知,其定义域为.()1ln 1x f x x -=+()(),11,∞∞--⋃+.因为在上为增函数,()2ln 11f x x ⎛⎫=- ⎪+⎝⎭()211u x x =-+()1,∞+在上为增函数,当,时,()f x ()1,∞+[]3,5x ∈()ln2ln2ln3f x -≤≤-对任意都有成立,,即,[]3,5x ∈()3f x t >-ln23t ->-3ln2t <-的取值范围是.t (),3ln2∞--(3)由(2)知在上为增函数,()f x ()1,∞+又因为函数在上的值域为.()f x [],αβ11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以,且,0m >1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩所以1,121,12m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩则是方程的两实根,,αβ112x m mx x -=-+问题等价于放程在上有两个不等实根,211022m m mx x ⎛⎫--+-= ⎪⎝⎭()1,∞+令,对称轴()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭1124x m =-则,即解得.()2011124Δ14102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩0,20,522,9m m m m ⎧⎪>⎪⎪<<⎨⎪⎪><⎪⎩或209m <<。

2022-2023学年山东省菏泽市成武高一年级上册学期12月月考数学试题【含答案】

2022-2023学年山东省菏泽市成武高一年级上册学期12月月考数学试题【含答案】

2022-2023学年山东省菏泽市成武高一上学期12月月考数学试题一、单选题1.将分针拨快10分钟,则分针转过的弧度是( )A .B .C .D .π3π3-π6π6-【答案】B【分析】利用分针转一周为分钟,转过的角度为,得到分针是一周的六分之一,进而可得602π10答案.【详解】∵分针转一周为分钟,转过的角度为,将分针拨快是顺时针旋转,602π∴分针拨快10分钟,则分针所转过的弧度数为.10π2π603-⨯=-故选:B2.设,则的大小关系为( )0.30.20.212,,log 0.32a b c -⎛⎫=== ⎪⎝⎭,,a b c A .B .a b c <<b a c <<C .D .b<c<a c<a<b【答案】D【分析】可以根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.,,a b c ,,a b c 【详解】解:,,0.30.30.201()22212-=>>= 0.20.2log 0.3log 0.21<=∴.c<a<b 故选:D3.已知幂函数的图象过点,且,则的取值范围是( )()(1)nf x a x =-(2,8)(2)(12)f b f b -<-b A .B .C .D .(0,1)(1,2)(,1)-∞(1,)+∞【答案】C【解析】先根据题意得幂函数解析式为,再根据函数的单调性解不等式即可得答案.3()f x x =【详解】解:因为幂函数的图像过点,()(1)nf x a x =-(2,8)所以,所以,所以,1128n a -=⎧⎨=⎩23a n =⎧⎨=⎩3()f x x =所以,解得:.(2)(12)212f b f b b b -<-⇔-<-1b <故的取值范围是.b (,1)-∞故选:C.【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为待定系数求得解析式,进而根据单调性解不等式.14.sin 345︒=ABC .D.【答案】A【分析】直接利用诱导公式以及两角差的正弦公式即可求出.【详解】()()sin 345sin 36015sin15sin 4530︒=︒-︒=-︒=-︒-︒,故选A.12⎫=-=⎪⎪⎭【点睛】本题主要考查诱导公式和两角差的正弦公式应用.5.设函数在区间内有零点,则实数a 的取值范围是( )()32log x f x a x +=-()1,2A .B .C .D .()31,log 2--()30,log 2()3log 2,1()31,log 4【答案】C 【分析】令得,由复合函数单调性即可求解.()0f x =32log x a x +=【详解】令得,令,由复合函数单调性可知,当()0f x =32log x a x +=()3322log log 1x h x x x +⎛⎫==+ ⎪⎝⎭时,单减,,,故,要使在()1,2x ∈()h x ()32log 2h =()31log 31h ==()()3log 2,1h x ∈()32log x f x a x +=-区间内有零点,即.()1,2()3log2,1a ∈故选:C 6.已知函数,则其图象可能是( )()2cos 4x xf x x =-A .B .C.D.【答案】C【分析】从奇偶性,特殊点处的函数值的正负即可判断.【详解】函数的定义域为,其定义域关于原点对称,{}|2x x ≠±由函数的解析式可得:,()()f x f x -=-则函数图象关于坐标原点对称,选项B,D 错误;而,选项A 错误,C正确;06f π⎛⎫=< ⎪⎝⎭故选:C.7.已知函数,下列说法正确的有( )()tan 24f x x π⎛⎫=- ⎪⎝⎭①函数最小正周期为;()f x 2π②定义域为|R,,Z 28k x x x k ππ⎧⎫∈≠+∈⎨⎬⎩⎭③图象的所有对称中心为;()f x ,0,Z 48k k ππ⎛⎫+∈ ⎪⎝⎭④函数的单调递增区间为.()f x 3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭A .1个B .2个C .3个D .4个【答案】C【分析】根据正切函数的图象与性质,代入周期、定义域、对称中心和单调递增期间的公式即可求解.【详解】对①,函数,可得的最小正周期为,所以①正确;()tan 24f x x π⎛⎫=- ⎪⎝⎭()f x 2T π=对②,令,解得,2,Z42x k k πππ-≠+∈3,Z 82k x k ππ≠+∈即函数的定义域为,所以②错误;()f x 3{|,Z}82k x x k ππ≠+∈对③,令,解得,所以函数的图象关于点2,Z 42k x k ππ-=∈,Z 84k x k ππ=+∈()f x 对称,所以③正确;,0,Z 48k k ππ⎛⎫+∈⎪⎝⎭对④,令,解得,故函数的单调递2,Z242k x k k πππππ-<-<+∈3,Z 2828k k x k ππππ-<<+∈()f x 增区间为,所以④正确;3,,Z 2828k k k ππππ⎛⎫-+∈ ⎪⎝⎭故①③④正确;故选:C8.若函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈[﹣1,1]时,f (x )=1﹣x 2,已知函数g (x ),则函数h (x )=f (x )﹣g (x )在区间[﹣6,6]内的零点的个数为( )lg 0xx x e x ⎧=⎨⎩,>,<A .11B .12C .13D .14【答案】B【分析】由题意可判断函数y =f (x )在R 上是周期为2的函数,从而作出函数f (x )与g (x )的图象,得到交点的个数即可.【详解】∵f (x+2)=f (x ),故函数y =f (x )在R 上是周期为2的函数,作出函数f (x )与g (x )的图象如下,由于当时,,因此在轴左侧有6个交点;0x <01xe <<y [6,0)-当时,,,因此在轴右侧有6个交点;0x >max ()1f x =lg 61<y (0,6]综上可知函数h (x )=f (x )﹣g (x )在区间[﹣6,6]内的零点的个数为12个.二、多选题9.下列计算正确的有( )A .B .120318202072-⎛⎫++= ⎪⎝⎭522545log lg lg +-=C .D .()20.50.51log log=2=【答案】AB【分析】利用指数的运算性质可判断A ;利用对数的运算性质可判断B 、C ;由根式的性质可判断D.【详解】,正确;120318202024172-⎛⎫++=++= ⎪⎝⎭A ,B 正确;52254525421002220log lg lg lg lg lg +-=+-=-=-=,C 不正确;()20.520.510log log log ==,D 不正确.21122a a a =-+-=-故选:AB.10.下列函数中,最小正周期为的是( )π2A .B .cos y x=sin 46y x π⎛⎫=+ ⎪⎝⎭C .D .cos 24y x π=+⎛⎫ ⎪⎝⎭tan2y x=【答案】BD【分析】首先根据函数的性质判断出A 错误,然后再根据三角函数的周期计算公式可判断cos y x =选项C 错误,选项B 和D 正确.【详解】对于A ,由函数的性质可知:函数的最小正周期为,故选项A 错误;cos y x =cos y x=π对于B ,由正弦函数的周期公式可得:,最小正周期为,故选项B 正确;2ππ42T ==π2对于C ,由余弦函数的周期公式可得:,最小正周期为,故选项C 错误;2ππ2T ==π对于D ,由正切函数的周期公式可得:,最小正周期为,故选项D 正确;ππ22T ==π211.设函数,则下列结论正确的是( )()cos 3f x x π⎛⎫=+ ⎪⎝⎭A .的一个周期为B .的图象关于直线对称()f x 2π-()y f x =83x π=C .的一个零点为D .在上单调递减()f x π+6x π=()f x ,2ππ⎛⎫ ⎪⎝⎭【答案】ABC【分析】根据周期、对称轴、零点、单调性,结合整体思想即可求解.【详解】对于A 项,函数的周期为,,当时,周期,故A 项正确;2k π,0k k ∈≠Z 1k =-2T π=-对于B 项,当时,为最小值,此时的83x π=89cos cos cos cos3cos 13333x ππππ⎛⎫⎛⎫+=+=-π=π=- ⎪ ⎪⎝⎭⎝⎭()y f x =图象关于直线对称,故B 项正确;83x π=对于C 项,,,所以的一个零点为,故4()cos 3f x x ππ⎛⎫+=+⎪⎝⎭43cos cos 0632πππ⎛⎫+== ⎪⎝⎭()f x π+6x π=C 项正确;对于D 项,当时,,此时函数有增有减,不是单调函数,故D 项错2x ππ<<54633x πππ<+<()f x 误.故选:ABC.12.已知函数,则下列结论正确的是( )()25()log 23f x x x =--A .函数的单调递增区间是()f x [1,)+∞B .函数的值域是R()f x C .函数的图象关于对称()f x 1x =D .不等式的解集是()1f x <(2,1)(3,4)-- 【答案】BCD【解析】根据对数函数相关的复合函数的单调性,值域,对称性,及解对数不等式,依次判断即可得出结果.【详解】对于A:因为为增函数,所以求的单调递增区间即求()5log f x x=()25()log 23f x x x =--的单调递增区间,即.又对数函数的定义域有,解得.故函223t x x =--[)1,+∞2230x x -->()3,x +∈∞数的单调递增区间是.A 错误;()f x ()3,+∞对于B :,由对数函数的定义域解得:,则,由于,223t x x =--()(),13,x ∈-∞-+∞ 2log y t =0t >所以,即函数的值域是,B 正确;R y ∈()f x R 对于C:,关于对称,所以函数的图象关于对称,故C 正确;()222312t x x x =--=--1x =()f x 1x =对于D: ,即,解得:,故D 正确;()25log 231x x --<22230235x x x x ⎧-->⎨--<⎩(2,1)(3,4)x ∈-- 故选:BCD.三、填空题13.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.23π3π【答案】2π【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果.r 【详解】解:由于扇形的圆心角为,扇形的面积为,23απ=3π则扇形的面积,解得:,221123223S r r παπ==⨯⨯=3r =此扇形所含的弧长.2323l r παπ==⨯=故答案为:.2π14.已知函数的图象恒过点,且点在角的终边上,则的值()()log 130,1a y x a a =-+>≠A A αsin α为______.【分析】根据对数函数过定点的求法可求得点坐标,由三角函数定义可直接得到结果.A【详解】当时,,,.2x =log 133a y =+=()2,3A ∴sin α∴==15.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为________.()()f x f x x --【答案】(-1,0)∪(0,1)【分析】首先根据奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,得到f (-1)=0,且在(-∞,0)上也是增函数,从而将不等式转化为或,进而求得结果.0()0x f x >⎧⎨<⎩0()0x f x <⎧⎨>⎩【详解】因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数.因为=2·<0,()()f x f x x --()f x x 即或0()0x f x >⎧⎨<⎩0()0x f x <⎧⎨>⎩解得x ∈(-1,0)∪(0,1).故答案为:(-1,0)∪(0,1).【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与单调性的应用,属于简单题目.16.已知,且是第二象限角.则的值为__________.3cos 5α=-α()()()sin 6cos sin tan 2απαπααπ+-⎛⎫+- ⎪⎝⎭【答案】##-0.635-【分析】由诱导公式化简求值.【详解】由,∴.3cos 5α=-()()()sin 6πcos sin cos sin cos 3cos πcos tan sin 5sin tan π2αααααααααααα+-====-⎛⎫+- ⎪⎝⎭故答案为:35-四、解答题17.计算下列各式的值:(1);)21132330.0021028---⎛⎫-+-⨯+ ⎪⎝⎭(2)7log 2log lg25lg47++0.53954-⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭()281lg500lg lg6450lg2lg5+-++【答案】(1)1679 -(2)15 4(3)2 e3 +(4)52【分析】(1)(3)利用指数的运算性质化简可得所求代数式的值;(2)(4)利用对数的运算性质化简可得所求代数式的值.【详解】(1)解:原式())212123232331271315001021 85008----⎛⎫⎛⎫⎛⎫=-⨯+=+-⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4167201.99=+-+=-(2)解:原式143115log3lg100222.44-=++=-++=(3)解:原式.20.52211e e33⨯⎛⎫=-++=+⎪⎝⎭(4)解:原式.()2881lg500lg lg850lg10lg50050lg1005052558⎛⎫=+-+=⨯⨯+=+=⎪⎝⎭18.已知函数.()π2sin2,R4f x x x⎛⎫=-∈⎪⎝⎭(1)求函数的单调递增区间;()f x(2)求函数在区间上的值域.()f xππ,44⎡⎤-⎢⎣⎦【答案】(1)π3ππ,π,88k k k⎡⎤-++∈⎢⎥⎣⎦Z(2)⎡-⎣【分析】(1)根据复合函数的单调性可知,内层函数单调递增,找外层函数的单调递增区间整体代入化简求解.(2)根据的范围,求出内层函数的范围,根据内层函数的范围求函数的值域.xπ24x-【详解】(1)证明:令,πππ2π22π,242k x k k-+≤-≤+∈Z得π3πππ,.88k x k k -+≤≤+∈Z 所以函数的单调递增区间:.()f x π3ππ,π,88k k k ⎡⎤-++∈⎢⎥⎣⎦Z (2)因为,所以.ππ,44x ⎡⎤∈-⎢⎣⎦π3ππ2,444x ⎡⎤-∈-⎢⎥⎣⎦所以.πsin 24x ⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣当,即时,;ππ242x -=-π8x =-min ()2f x =-当,即时,.ππ244x -=π4x =max ()f x =所以函数在区间上的值域为.()f x ππ,44⎡⎤-⎢⎥⎣⎦⎡-⎣19.如图,在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边xOy αx 与单位圆交于点,11(,)P x y cos α=(1)求的值;1y (2)将射线绕坐标原点按逆时针方向旋转后与单位圆交于点,求的值;OP O π222(,)M x y 2x (3)若点与关于轴对称,求的值.N M x tan MON ∠【答案】(1)1y =(2)2x =(3)43-【分析】(1)由三角函数的定义得到,再根据且点在第一象限,即可求出;1x 22111x y +=P 1y (2)依题意可得,再由(1),即可得解;2πcos()sin 2x αα=+=-1sin y α=(3)首先求出的坐标,连接交轴于点,即可得到,再利用二倍角公式计N MN x Q tan 2MOQ ∠=算可得;【详解】(1)解:因为角的终边与单位圆交于点,且α11(,)P xy cos α=由三角函数定义,得.1x =因为,所以.22111x y +=221115y =-=因为点在第一象限,11(,)P x y 所以1y =(2)解:因为射线绕坐标原点按逆时针方向旋转后与单位圆交于点,OP O π222(,)M x y 所以.2πcos()sin 2x αα=+=-因为,1sin y α=所以.2x =(3)解:因为点与关于轴对称,N M x 所以点的坐标是.N (连接交轴于点,所以. MN x Q tan 2MOQ ∠=所以tan tan 2MON MOQ∠=∠.222tan 2241tan 123MOQ MOQ ∠⨯===--∠-所以的值是.tan MON ∠43-20.已知定义域为 的函数是奇函数.R 2()2xxb f x a -=+(1)求 的值;,a b (2)用定义证明 在上为减函数;()f x (,)-∞+∞(3)若对于任意 ,不等式 恒成立,求的范围.R t ∈()()22220f t t f t k -+-<k 【答案】(1),.1a =1b =(2)证明见解析.(3)1,3⎛⎫-∞- ⎪⎝⎭【分析】(1)根据函数为奇函数,利用奇函数性质即可求得答案.(2)根据函数单调性的定义即可证明结论.(3)利用函数的奇偶性和单调性将恒成立,转化为对任意的()()22220f t t f t k -+-<232k t t <-都成立,结合求解二次函数的最值,即可求得答案.R t ∈【详解】(1)为上的奇函数,,可得()f x R 002(0)02b f a -∴==+1b =又 , ,解之得,(1)(1)f f -=-11121222aa ----∴=-++1a =经检验当 且时, ,1a =1b =12()21xxf x -=+满足是奇函数,1221()()2112x x x xf x f x -----===-++故,.1a =1b =(2)由(1)得,122()12121x x xf x -==-+++任取实数 ,且,12,x x 12x x <则 ,()()()()()211212122222221212121x x x x x x f x f x --=-=++++,可得,且,故,12x x < 1222x x <()()1221210x x ++>()()()211222202121x x x x ->++,即,()()120f x f x ∴->()()12f x f x >所以函数在上为减函数;()f x (,)-∞+∞(3)根据 (1)(2)知,函数是奇函数且在上为减函数.()f x (,)-∞+∞不等式恒成立,∴()()22220f t t f t k -+-<即恒成立,()()()222222f t t f t k f t k-<--=-+也就是:对任意的都成立,2222t t t k ->-+R t ∈即对任意的都成立,232k t t <-R t ∈ ,当时取得最小值为,221132333t t t ⎛⎫-=-- ⎪⎝⎭ 13t =232t t -13-,即的范围是.13k ∴<-k 1,3⎛⎫-∞- ⎪⎝⎭21.已知函数的最小正周期.()2sin (0)6f x x πωω⎛⎫=+< ⎪⎝⎭π(1)求函数单调递增区间;()f x (2)若函数在上有零点,求实数的取值范围.()()g x f x m =-0,2π⎡⎤⎢⎥⎣⎦m 【答案】(1)5,,Z 36k k k ππππ⎡⎤++∈⎢⎥⎣⎦(2)[]2,1m ∈-【分析】(1)由最小正周期求得,函数式化简后由正弦函数的单调性求得结论;ω(2)转化为求在上的值域.()f x [0,]2π【详解】(1)因为函数的最小正周期,()2sin (0)6f x x πωω⎛⎫=+< ⎪⎝⎭π所以,由于,所以.2T ππω==0ω<2ω=-所以,()2sin 22sin 266f x x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭所以函数单调递增区间,只需求函数的单调递减区间,()f x 2sin 26y x π⎛⎫=- ⎪⎝⎭令,解得,3222,Z262k x k k πππππ+-+∈ 5,Z 36k x k k ππππ+≤≤+∈所以函数单调递增区间为.()f x 5,,Z 36k k k ππππ⎡⎤++∈⎢⎥⎣⎦(2)因为函数在上有零点,()()g x f x m =-0,2π⎡⎤⎢⎥⎣⎦所以函数的图像与直线在上有交点,()y f x =y m =0,2π⎡⎤⎢⎥⎣⎦因为,50,,2,2666x x ππππ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦故函数在区间上的值域为()f x 0,2π⎡⎤⎢⎥⎣⎦[]2,1-所以当时,函数的图像与直线在上有交点,[]2,1m ∈-()y f x =y m =0,2π⎡⎤⎢⎥⎣⎦所以当时,函数在上有零点.[]2,1m ∈-()()g x f x m =-0,2π⎡⎤⎢⎥⎣⎦22.已知函数.44()log (2)log (4)f x x x =++-(1)求的定义域;()f x (2)若函数,且对任意的,,恒成立,求实1()42x x g x a a +=⋅--1[5,6]x ∈2[1,2]x ∈()()12f x g x <数a 的取值范围.【答案】(1).(2)(2,+∞).(4,)+∞【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化为max min ()()f x g x <min ()g x 恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解.max ()()f x g x <【详解】(1)由题可知且,20x +>40x ->所以.>4x 所以的定义域为.()f x (4,)+∞(2)由题易知在其定义域上单调递增.()f x 所以在上的最大值为,()f x [5,6]x ∈4(6)log 162f ==对任意的恒成立等价于恒成立.1[5,6],x ∈2[1,2],x ∈()()12f x g x <max ()2()f x g x =<由题得.()2()222x x g x a a=⋅-⋅-令,则恒成立.2([2,4])x t t =∈2()22h t a t t a =⋅-->当时,,不满足题意.0a =1t <-当时,,a<022242482a a a a ⎧⋅-->⎨⋅-->⎩解得,因为,所以舍去.2a >a<0当时,对称轴为,0a >1t a =当,即时,,所以;12a <12a >2242a a ⋅-->2a >当,即时,,无解,舍去;124a ≤≤1142a ≤≤2122a a a a ⎛⎫⋅--> ⎪⎝⎭当,即时,,所以,舍去.14a >10a 4<<2482a a ⋅-->23a >综上所述,实数a 的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用.。

2022-2023学年山东省济南市高一年级上册学期期中数学试题【含答案】

2022-2023学年山东省济南市高一年级上册学期期中数学试题【含答案】

2022-2023学年山东省济南市高一上学期期中数学试题一、单选题1.已知集合{12}M x x =-<<∣,{N x y ==∣,则M N ⋃=( )A .{1}xx >-∣ B .{02}x x ≤<∣ C .{12}x x -<<∣ D .{0}xx ≥∣ A【分析】求出y =.【详解】{{}0N xy x x ==≥∣,所以{}1M N x x ⋃=>-. 故选:A2.已知命题:p x ∀∈R ,12x x+≥,则p ⌝为( ) A .x ∃∈R ,12x x +≥ B .x ∃∈R ,12x x +< C .x ∃∈R ,12x x+≤ D .x ∀∈R ,12x x+< B【分析】根据全称量词命题的否定为特称量词命题判断即可. 【详解】解:命题:p x ∀∈R ,12x x+≥为全称量词命题, 其否定为:x ∃∈R ,12x x+<. 故选:B3.下列函数中, 既是奇函数又是增函数的是( ) A .21y x =+ B .1y x=-C .3y x =D .2y xC【分析】根据基本初等函数的单调性与奇偶性判断即可.【详解】解:对于A :()21y f x x ==+,则()21f x x -=-+,故21y x =+为非奇非偶函数,故A 错误;对于B :1y x=-为奇函数,函数在(),0∞-,()0,∞+上单调递增,在定义域上不具有单调性,故B错误;对于C :3y x =为奇函数,且在定义域R 上单调递增,故C 正确;对于D :2y x 为偶函数,故D 错误;故选:C4.平板电脑屏幕面积与整机面积的比值叫电脑的“屏占比”,它是平板电脑外观设计中的一个重要参数,其值在(0,1)间,设计师将某平板电脑的屏幕面积与整机面积同时减少相同的数量,升级为一款“迷你”新电脑的外观,则该新电脑“屏占比”和升级前比( ) A .“屏占比”不变 B .“屏占比”变小 C .“屏占比”变大 D .“屏占比”变化不确定B【分析】设法列出升级前后的屏占比表达式,由作差法可比较大小. 【详解】设升级前屏幕面积为a ,整机面积为b ,则屏占比为()10a w a b b=<<,设减小面积为m ()0m a <<,则升级后屏占比为:2a mw b m-=-,则()()120m b a a a m w w b b m b b m ---=-=>--,即12w w >,屏占比变小.故选:B5.已知a ,b ∈R ,若0ab <,0a b +>,a b >,则下列不等式正确的是( ) A .11a b <B .0b aa b +>C .22a b >D .||a b <C【分析】由0ab <,0a b +>,a b >,可得0,0a b ><,再结合不等式的性质逐一判断即可. 【详解】解:因为0ab <,0a b +>,a b >, 所以0,0a b ><, 所以110a b>>,故A 错误; 则0,0b aa b <<,所以0b a a b+<,故B 错误; 由0a b +>得a b >-,即a b >,所以22a b >,故C 正确,D 错误. 故选:C.6.不等式()()2233131x x ->+的解为( ) A .1,13⎛⎫- ⎪⎝⎭B .()1,0-C .()0,1D .()(),01,-∞⋃+∞B22(1)(31)x x >-+,再根据二次不等式的解法即可得答案.【详解】解:()()2233131x x ->+∴22(1)(31)x x >-+,即:20x x +<,解得.10x -<< 所以不等式()()2233131x x ->+的解为()1,0- 故选:B .7.已知函数()f x 是定义在(,0)(0,)-∞+∞上的奇函数,且(1)0f -=,若对于任意两个实数1x ,2(0,)x ∈+∞且12x x ≠,不等式()()12120f x f x x x ->-恒成立,则不等式()0xf x >的解集为( ) A .(,1)(0,1)-∞-⋃ B .,1(),)1(-∞-⋃+∞ C .(1,0)(1,)-⋃+∞ D .(1,0)(0,1)-B【分析】由题意可得()f x 在()0,∞+上单调递增,再由函数为奇函数,可得()f x 在(),0∞-上单调递增,(1)0f -=且()()110f f =--=,由此可求出()0f x >和()0f x <的解集,从而可求得结果. 【详解】因为对于任意两个实数()12,0,x x ∈+∞且12x x ≠时,不等式()()12120f x f x x x ->-恒成立,所以()f x 在()0,∞+上单调递增,因为()f x 是定义在()(),00,∞-+∞上的奇函数,所以()f x 在(),0∞-上单调递增,因为()10f -=,所以()()110f f =--=,所以当10x -<<或1x >时,()0f x >;当01x <<或1x <-时,()0f x <, 所以当1x >或1x <-时,()0xf x >,所以不等式()0xf x >的解集为()(),11,-∞-⋃+∞. 故选:B .8.已知[]x 表示不超过实数x 的最大整数,若函数()[]f x x x =-,则下列说法正确的是( ) A .()f x 是奇函数B .()f x 是偶函数C .()f x 在[0,1]上单调递增D .()f x 的值域为[0,1)D【分析】由定义可作出函数图象,直接判断选项即可.【详解】因为()[]f x x x =-,故函数图象如图所示,易知选项ABC 错误,选项D 正确.故选:D二、多选题9.已知集合}{1,1,24M =-,,}{1,2,416N =,,请根据函数定义,下列四个对应法则能构成从M 到N 的函数的是( ) A .2y x = B .y x = C .2y x =+ D .2y xBD【分析】根据函数的概念逐一判断即可.【详解】A ,集合M 中1-在集合N 中没有对应元素,故A 不选.B ,由函数的定义集合M 中的每一个元素在集合N 中都有唯一元素与之对应,故B 可选;C ,集合M 中1、4在集合N 中没有对应元素,故C 不选.D ,由函数的定义集合M 中的每一个元素在集合N 中都有唯一元素与之对应,故D 可选; 故选:BD10.已知函数()1=+xf x x ,则下列说法正确的是( ) A .()f x 的对称中心为()1,1- B .()f x 的值域为RC .()f x 在区间()1,-+∞上单调递增D .111(1)(2)(3)(2022)232022f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为40432 ACD【分析】选项A ,利用函数的对称性定义验证即可;选项B ,计算值域即可;选项C ,根据函数的单调性运算判断单调性即可;选项D :找到()11111x f x f x x x ⎛⎫+=+= ⎪++⎝⎭,计算即可. 【详解】由题可知()1x f x x =+111x x +-=+111x =-+ 选项A :由题可知()222211x x f x x x --+--==--++,所以得()()22211x xf x f x x x +--+=+=++,故()f x 的对称中心为()1,1-,选项A 正确;选项B :因为()111f x x =-+,显然101x ≠+,所以()f x 的值域为{}1y y ≠,选项B 错误; 选项C :当1x >-时,11y x =+单调递减,所以11y x =-+单调递增,所以()111f x x =-+单调递增,选项C 正确;选项D :111111x f x x x ⎛⎫== ⎪+⎝⎭+,所以()11111x f x f x x x ⎛⎫+=+= ⎪++⎝⎭,所以有111(1)(2)(3)(2022)232022f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1111232022232022f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦202111112=++++40432=,选项D 正确. 故选:ACD11.若正实数a ,b 满足1a b +=,则下列说法正确的是( ) A B .22a b +最小值为12C .ab 最小值为14D .1122a b a b +++最小值为43ABD【分析】对A ,B ,C 选项,结合基本不等式进行求最值即可;D 选项将等式构造变形为()()()1133[22]133a b a b a b+=+++=与1122a b a b +++相乘化成能用基本不等式的形式即可. 【详解】对A 选项:由0,0ab >> ,1a b +=≥当且仅当12a b ==时等号成立,故A 正确;对B 选项;2222221()2()2()()222a b a b a b ab ab a b ++=+-≥+-⨯==+, 当且仅当12a b ==时等号成立,故B 正确; 对C 选项;因为0,0a b >>,1a b =+≥1124ab ⇒≤ 当且仅当12a b ==时等号成立,故C 不正确; 对D 选项;因为0,0a b >>,1a b +=,所以111111(33)[(2)(2)]322322a b a ba b a b a b a b a b ⎛⎫⎛⎫++=++++ ⎪ ⎪++++⎝⎭⎝⎭1221411232233a b a b a b a b ⎛++⎛⎫=+++≥⨯+= ⎪ ++⎝⎭⎝当且仅当12a b ==时等号成立,故D 正确; 故选:ABD.12.已知函数21,2()43,2x x f x x x x ⎧-≤=⎨-+->⎩,则下列说法正确的是( )A .()f x 的单调减区间为(,1][2,)-∞⋃+∞B .若()f x k =有三个不同实数根123,,x x x ,则12345x x x <++<C .若()()f x a f x +>恒成立,则实数a 的取值范围是9,4⎛⎫-∞- ⎪⎝⎭D .对任意的1234,,(,,2)x x x x ∈+∞,不等式()()()()12341234144x x x x f f x f x f x f x +++⎛⎫⎡⎤≥+++ ⎪⎣⎦⎝⎭恒成立 BCD【分析】对A :利用分段函数图象判断单调性;对B :根据题意结合图象、对称性分析运算;对C :根据图象结合图象平移分析运算;对D :先证()()22f m f n m n f ++⎛⎫≥⎪⎝⎭,再根据题意分析证明. 【详解】对A :作出()f x 的图象,如图1所示, 则()f x 的单调递减区间为(,1],[2,)-∞+∞,A 错误; 对B :不妨设123x x x <<,则12,x x 关于直线1x =对称, ∴()123,22,3x x x +=∈,则12345x x x <++<,B 正确;对C : 当0a =时,()()f x f x >显然不成立,0a =不合题意,舍去;当0a >时,()f x a +可以通过()f x 向左平移a 个单位得到,如图2,显然不成立,舍去;当0a <时,()f x a +可以通过()f x 向右平移a 个单位得到,如图3,以射线1y x a =-+-与2=+43y x x --相切为临界,即2143x a x x -+-=-+-,则2540x x a -+-=, ∴()()25440a ∆=--⨯-=,解得94a =-,则94a <-;综上所述:实数a 的取值范围是9,4⎛⎫-∞- ⎪⎝⎭,C 正确;对D :对任意的,(2,)m n ∈+∞,则(2,)2m n+∈+∞ ()()()()22243434322222m m n n f m f n m n m n m n f -+-+-+-⎡⎤++++⎛⎫⎛⎫⎛⎫-=--+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()204m n -=-≤,当且仅当m n =时等号成立,即()()022f m f n m n f ++⎛⎫-≤ ⎪⎝⎭,则()()22f m f n m n f ++⎛⎫≥ ⎪⎝⎭, ∴()()()()12343412,2222f x f x f x f x x x x x f f ++++⎛⎫⎛⎫≥≥⎪ ⎪⎝⎭⎝⎭, 又∵3412,(2,)22x x x x ++∈+∞,则()()()()341212343412222222222x x x x f x f x f x f x x x x x f f f ++⎛⎫⎛⎫++++⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭≥≥⎪⎪⎝⎭,∴()()()()12341234144x x x x f f x f x f x f x +++⎛⎫⎡⎤≥+++ ⎪⎣⎦⎝⎭,D 正确; 故选:BCD.三、填空题13.2038π+______. 7【分析】根据指数幂的运算法则求解即可.【详解】2203338(2)127π++=++= 故714.若“x k >”是“32x -≤<”的必要不充分条件,则实数k 的取值范围是______.(),3-∞-【分析】根据集合之间的包含关系,列出不等式,即可求得结果.【详解】根据题意,[)3,2-是(),k +∞的真子集,故可得3k <-,即(),3k ∈-∞-. 故答案为.(),3-∞-15.已知0a >,0b >,且3ab a b =++,则a b +的最小值为______. 6【分析】利用不等式()214ab a b ≤+,结合已知条件,即可求得a b +的最小值. 【详解】因为()2134ab a b a b =++≤+, 故可得:()()24120a b a b +-+-≥, 即()()620a b a b +-++≥, 解得:6a b +≥或2a b +≤-.因为0,0a b >>,故6a b +≥(当且仅当3a b ==时取得最小值) 故答案为.6四、双空题16.已知函数22,2(),2a ax x f x x ax x ⎧-<=⎨-≥⎩.①若[()]1f f a =,则a 的值为______.②若不等式()(2)f x f ≥对任意x ∈R 都成立,则实数a 的取值范围是______. 1± []2,4【分析】对①:根据题意,分类讨论当2a <和2a ≥时,代入分段函数,分别解方程即可;对②:根据题意可得函数()f x 的最小值为(2)f ,结合分段函数单调性分析运算.【详解】对①:当2a <时,则()2[()]01f f a f a ===,则1a =±;当2a ≥时,则()2[()]01f f a f a ===,则1a =±(舍去);综上所述:1a =±;对②:∵不等式()(2)f x f ≥对任意x ∈R 都成立,则函数()f x 的最小值为(2)f , ∴2022242a a a a a-≤⎧⎪⎪≤⎨⎪-≥-⎪⎩,解得24a ≤≤,故实数a 的取值范围是[]2,4; 故①1±;②[]2,4.五、解答题17.已知集合{}2230A xx x =+->∣,{50}B x x =-≤<∣,R 为实数集. (1)求A B ⋂; (2)求()()R RA B .(1)[)5,3-- (2)[]0,1【分析】(1)化简集合,A B ,由交集运算即可求解; (2)先求,A B 的补集,再求交集即可.【详解】(1){}{22303A xx x x x =+->=<-∣或}1x >,则[)5,3A B =--; (2)[]3,1R A =-,()[),50,R B =-∞-+∞,则()()[]0,1R RA B =.18.已知函数2()2f x x x a =++.(1)当5a =,[2,3]x ∈-时,求()f x 的值域;(2)若不等式()0f x <的解集中的整数解恰好有三个,求实数a 的取值范围. (1)[]4,20 (2)[)3,0-【分析】(1)当5a =时,由函数的单调性,求出函数在区间[]2,3-上的最值,得函数值域; (2)由2()2f x x x a =++的单调性及函数图象的对称性可知,若()0f x <的解集中整数解恰有三个,必为-2,-1,0,列出不等式组,解得a 的取值范围.【详解】(1)当5a =时,2()25f x x x =++在[]2,1--上单调递减,在[]1,3-上单调递增,所以()f x 的最小值为(1)4f -=,又因为(2)5f -=,(3)20f =,所以()f x 的最大值为20,函数值域为[]4,20. (2)2()2f x x x a =++在(),1-∞-上单调递减,在()1,-+∞ 上单调递增,根据图象的对称轴性,若()0f x <的解集中整数解恰有三个,这三个整数必为-2,-1,0,则(0)0(1)30f a f a =<⎧⎨=+≥⎩,解得[)3,0a ∈-.19.已知函数()y f x =是定义在(0,)+∞上的增函数,满足(2)1f =,且对任意的12,x x 都有()()()1212f x x f x f x =+.(1)求(4)f 的值;(2)求不等式()(2)2f x f x ++≤的解集. (1)2(2)(1⎤⎦【分析】(1)令122x x ==可直接求解;(2)易得()()()22f x f x f x x ++=+⎡⎤⎣⎦,结合定义域与增函数性质去“f ”建立不等式即可求解. 【详解】(1)令122x x ==,则()()()22222f f f ⨯=+=,即()42f =;(2)因为()()()22f x f x f x x ++=+⎡⎤⎣⎦,所以()(2)2f x f x ++≤等价于()()24f x x f +≤⎡⎤⎣⎦,因为()y f x =是定义在(0,)+∞上的增函数,所以()024020x x x x ⎧<+≤⎪>⎨⎪+>⎩,解得(1x ⎤∈⎦,故不等式()(2)2f x f x ++≤的解集为(1⎤⎦.20.济南高新区一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地租赁费为1y 万元,仓库到车站的距离为()0x x >km ,每月库存管理费为2y 万元,其中1y 与1x +成反比,2y 与x 成正比,若在距离车站9km 处建仓库,则120y =,272y =.(1)分别求出1y ,2y 关于x 的函数解析式;(2)该公司把仓库建在距离车站多远处,能使这两项费用之和最少,并求出最少费用(万元). (1)()12200(0),801y x y x x x =>=>+ (2)该公司把仓库建在距离车站4k m 处,能使这两项费用之和最少,为72万元【分析】(1)设12,1a y y kx x ==+,利用待定系数法求解即可; (2)根据两项费用之和为12y y +结合基本不等式即可得解.【详解】(1)解:设12,1a y y kx x ==+, 则20,97210a k ==,所以200,8a k ==, 所以()12200(0),801y x y x x x =>=>+; (2)解:两项费用之和()()12200200881811f x y y x x x x =+=+=++-++872≥=, 当且仅当()200811x x =++,即4x =时,取等号, 所以该公司把仓库建在距离车站4k m 处,能使这两项费用之和最少,为72万元. 21.定义两种新的运算:a b ⊕=a b ⊗=2()2(2)x f x x ⊕=-⊗. (1)求(1)f 的值;(2)求函数()f x 的定义域;(3)判断函数()f x的奇偶性,并用函数奇偶性的定义证明.(2)[)(]2,00,2-(3)()f x 为奇函数,证明见解析【分析】(1)根据所给定义求出()f x 的解析式,再代入计算可得;(2)根据分母不为零及偶次方根的被开方数大于等于0得到不等式组,解得即可;(3)根据函数的定义域将函数解析式化简,再根据奇偶性的定义判断即可.【详解】(1)解:因为2x ⊕22x x ⊗==-,所以()f x ==所以(1)f ==(2)解:因为()f x =240x -≥且220x --≠, 解得22x -≤≤且0x ≠,则函数()f x 的定义域为[)(]2,00,2-.(3)解:函数()f x 为奇函数,证明:由(2)可知函数的定义域为[)(]2,00,2-,定义域关于原点对称,当[)(]2,00,2x ∈-时,222(2)x x x --=--=,所以()f x =,又()()f x f x -===-,所以函数()f x 为奇函数. 22.若函数()y f x =自变量的取值区间为[,]a b 时,函数值的取值区间恰为33,b a ⎡⎤⎢⎥⎣⎦,就称区间[,]a b 为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当,()0x ∈+∞时,()4g x x =-+.(1)当(,0)x ∈-∞时,求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图象作为函数()y h x =的图像,是否存在实数t ,使集合21{(,)()}(,)2x y y h x x y y x t ⎧⎫=⋂=-+⎨⎬⎩⎭∣∣恰含有2个元素.若存在,求出满足条件的所有实数t 所构成的集合;若不存在,说明理由.(1)()4g x x =--(2)[]1,3 (3)72⎧⎫⎨⎬⎩⎭【分析】(1)结合奇函数定义直接求解;(2)由“和谐区间”定义解方程直接求解;(3)由“和谐区间”定义可求另一区间为[]3,1--,求出()h x ,令()()22x m x h x t =+-,分类讨论[]3,1x ∈--和[]1,3x ∈时()m x 与0的关系,即可求解.【详解】(1)当(,0)x ∈-∞时,()0,x -∈+∞,()()44g x x x -=--+=+,又()()g x g x -=-, 即()4g x x =--,所以当(,0)x ∈-∞时,()4g x x =--;(2)当,()0x ∈+∞时,()4g x x =-+,函数为单减函数,[],x a b ∈,()()3434g a a a g b b b ⎧=-+=⎪⎪⎨⎪=-+=⎪⎩, 解得1,3a b ==,所以()g x 在(0,)+∞内的“和谐区间”为[]1,3;(3)由“和谐区间”定义可知,当[,]x a b ∈,()33,g x b a ⎡⎤∈⎢⎥⎣⎦,则,a b 同号, 当0a b <<时,()()3434g a a a g b b b ⎧=--=⎪⎪⎨⎪=--=⎪⎩,解得3,1a b =-=-,故()4,314,13x x h x x x ---≤≤-⎧=⎨-+≤≤⎩, 若两交点全落在[]1,3x ∈对应图像上,必满足()2402x m x x t =-+-=在[]1,3x ∈有两解, ()m x 的对称轴为1x =,故不可能有两解,要使()h x 与212y x t =-+恰有两交点,则一交点必落在[]3,1x ∈--对应图象上, 另一交点必落在[]1,3x ∈对应图像上,令()()22x m x h x t =+-, 当[]3,1x ∈--时,()224422x x m x x t x t =--+-=---, 必满足()()933402111402m t m t ⎧-=+--≥⎪⎪⎨⎪-=+--≤⎪⎩,解得57,22t ⎡⎤∈-⎢⎥⎣⎦; 当[]1,3x ∈时,()224422x x m x x t x t =-++-=-+-,必满足()()111402933402m t m t ⎧=-+-≤⎪⎪⎨⎪=-+-≥⎪⎩,解得711,22t⎡⎤∈⎢⎥⎣⎦;综上,则只有一个实数72t=满足,故实数t构成的集合为72⎧⎫⎨⎬⎩⎭.。

河南省南阳市2023-2024学年高一下学期期末质量评估数学试题

河南省南阳市2023-2024学年高一下学期期末质量评估数学试题

2024年春期高中一年级期终质量评估数学试题一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.()AB .CD2.已知:,其中为虚数单位,则( )A .1B CD .23.如图是底面半径为1的圆锥,将其放倒在水平面上,使圆锥在此平面内绕圆锥顶点滚动,当这个圆锥在水平面内首次转回原位置时,圆锥本身恰好滚动了3周,则滚动过程中该圆锥上的点到水平面的距离最大值为()A .B .2C D4.已知:,,,若,则与的夹角为()A .30°B .60°C .120°D .150°5.在平面直角坐标系中,平面向量,将绕原点逆时针旋转得到向量,则向量在向量上的投影向量是( )A .B .C .D .6.如图,一个三棱锥容器的三条侧棱上各有一个小洞,,,经测量知,这个容器最多可盛原来水的()22cos 15sin 15︒-︒=12()11z i i -=+i z =O ()1,2a = ()2,4b =-- c = ()52a b c +⋅= a c xOy ()3,4OA = OA 23πOB OB OA322⎛+-⎝3,22⎛⎫⎪⎝⎭322⎛---+ ⎝3,22⎛⎫-- ⎪⎝⎭D E F :::2:1SD DA SE EB CF FS ===A.B .C .D .7.在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:定义为角的正矢,记作;定义为角的余矢,记作,则下列命题正确的是()A .函数的对称中心为B .若,则C .若,且,则圆心角为,半径为3的扇形的面积为D .若,则8.如图,在直角梯形中,已知,,,,现将沿折起到的位置,使二面角的大小为45°,则此时三棱锥的外接球表面积是()A .B .C .D .二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列有关复数内容表述正确的是()A .若复数满足,则一定为纯虚数B .对任意的复数均满足:C .设在复数范围内方程的两根为,,则D .对任意两个复数,,若,则,至少有一个为019272327293331351cos θ-θsin ver θ1sin θ-θcov ers θ()sin cov 1f x ver x ersx =-+,14k k ππ⎛⎫-∈ ⎪⎝⎭Z ()sin cov 1g x ver x ersx =⋅-()g x 1()sin 2cov 1h x ver x ersx =-+()1h α=02πα<<α43πsin 1cov 1ver x ersx -=-cov 311cov 13ers x ersx -=-ABCD AD BC 1AD AB ==90BAD ∠=︒45BCD ∠=︒ABD △BD PBD △P BD C --P BCD -83π143π4π6πz 0z z +=z z 22z z=24130x x -+=1x 2x 124x x +=1z 2z 120z z ⋅=1z 2z10.已知函数,且,则( )A .B .函数是偶函数C .函数的图像关于直线对称D .函数在区间上单调递减11.如图,在正三棱锥中,底面边长为,侧棱长为,点,分别为侧棱,上的异于端点的动点.则下列说法正确的是()A .若,则不可能存在这样的点,使得B .若,,则C .若平面,则D .周长的最小值是三、填空题(本大题共3小题,每小题5分,共15分.)12.已知向量,,点是线段的三等分点,则点的坐标是___________.13.如图,在中,,,,的角平分线交于,交过点且与平行的直线于点,则___________.14.设为函数图象上任意一点,的最大值是___________.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)(1)已知复数满足,求;()()sin cos 0f x a x b x ab =+≠44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭a b=4f x π⎛⎫-⎪⎝⎭()f x 54x π=()f x ,44ππ⎛⎫- ⎪⎝⎭A BCD -a 2a E F AC AD BE AC ⊥F EF AC⊥13AE AC = 23AF AD = 29E ABF B EFDCV V --=CD BEF EF CDBEF △52a ()1,2OA = ()2,1OB =-P AB P ABC △60ABC ∠=︒AC =2BC =ABC ∠AC D A BC E DE =(),P x y ()[]()sin cos 11,122f x x x x ππ⎛⎫=++∈- ⎪⎝⎭z 13z i z =+-()()1334i i z++(2)设,复数在复平面内对应的点在第三象限,求的取值范围.16.(本小题满分15分)已知为锐角,为钝角,且,.(1)求的值;(2)求的值.17.(本小题满分15分)在中,,.(1)求证:;(2)若,,求的值.18.(本小题满分17分)如图,平面,底面为矩形,,点是棱的中点.(1)求证:;(2)若,分别是,上的点,且,为上任意一点,试判断:三棱锥的体积是否为定值?若是,请证明并求出该定值;若不是,请说明理由.19.(本小题满分17分)x ∈R ()2121log 1log cos 2z x i x ⎛⎫=++⋅+ ⎪⎝⎭x αβsin α=1tan 7β=-sin 2β2βα-ABC △ABD α∠=DBC β∠=()sin sin sin BD BA BCαββα+=+AB AC =72C ∠=︒cos36︒PA ⊥ABCD ABCD 112PA AB BC ===E PB AE PC ⊥M N PD AC 2PM ANDM CN==Q MN P ABQ -已知在中,角,,所对应的边分别为,,.圆与的边及,的延长线相切(即圆为的一个旁切圆),圆与边相切于点.记的面积为,圆的半径为.(1)求证:;(2)若,,①求的最大值;②当时,求的值.ABC △AB C a b c M ABC △AC BA BC M ABC △M AC T ABC △S M r 2Sr a b c=-+3B π=8b =r r =AM AC ⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题:
1.下列说法正确的是
A 第一象限角是锐角
B -1200是钝角
C 1850和-1750是终边相同角
D 3
π
的终边相同的角是2k 3ππ+(k ∈R)
2.下列命题中,正确命题的个数为:
( 1 )c b a c b a ρ
ρρρρρ++=++)()(( 2 )a b b a ρϖρρ•=•
( 3 )c a b a c b a ϖϖρϖρρρ•+•=+•)( ( 4 )()()c b a c b a ρ
ρρρρρ••=••
个 个个 个
3.函数x
x
x x y cos cos sin sin +
=的值域是: A {2} B {0,2} C {-2,2} D {-2,0,2} 4设O 是正六边形ABCDEF 的中心,则下列命题中,正确命题的个数为: ①与 OF 共线②=③=④OB OE 2个 个 D. 4个 5.函数x y sin = 的最小正周期是:
A.
2
π
B. π
C. π2
D.π4 6函数 )6
2sin(π
-=x y 的一条对称轴是
A. 23πχ=
B.2πχ=
C. 3πχ=
D.6
π
χ=
7.已知等于:则均为锐角,且βαβαβα+==,3
1
tan ...21tan .
6
5........43........3........4..ππππD C B A 8.在三角形ABC 中,记在:则点若P R t b
b
a a t p p
b a ∈+====),(,,...,ρρρρρρρρ
所在直线上 B.角AOB 的角平分线上 C.线段AB 的中垂线上 边的中线上 9.已知函数)3(),1(),1(),)..(3
(sin 3)(f f f R x x x f -∈+
=比较π
χ的大小,正确的是: A f(-1)<f(2)<f(3) B f(-1)<f(3)<f(1) C f(3)<f(-1)<f(1) D f(3)<f(1)<f(-1)
10.在三角形ABC 中,a=4 ,c=23,B=1500 则b 等于: A 2 B 213 C 2327- D 2327+
11.已知A (-3,3),B (-1,1),C (1,y )三点共线,则y 等于: A -1 B 1 C 2 D 5
12.设函数 y=f(x) 的图像为 C 1 ,将C 1向右平移 4
π
个单位,可得曲线 C 2 ,若曲线 C 2与函数y=cos2x 的图像关于x 轴对称,那么y=f(x)的解析式可能是:
(x)=sin2x (x)=cos2x C. f(x)=-sin2x (x)=-cos(2x-4
π
)
二.填空题:(共4个小题,每小题4分,共16分) 13.已知cosa=-2
3
, a 为钝角,则a=________________ 14.函数 f(x)=sinx+cosx 的最大值为________________
15.已知),6,(),3,2(-==x b a ρρ若 a ρ
与 b ρ 的夹角为900 ,则x=____________
16.已知cosa= -41
9
,且π<a<23π 求tan()4απ- 的值____________
三.解答题(本大题有5个小题,共56分) 17.(10分) 化简:)
2cos()
4sin(
)4sin(
2a a a --+ππ
π
18.(10分) 已知cosa=-54,且a 为第三象限角,求cos(a+3
π) 的值.
19.(12分)已知函数:f(x)=,b a ρρ•且.).2sin 3,cos 2(),1,(cos R x x x b x a ∈==ρρ
⑴求f(x)的最小正周期;⑵若函数y=2sin2x 的图像按向量
m n m c )(,(ρ<2
π
), 平移后得到 y=f(x) 的图像,求实数m 、n 的值。

20.已知
,
2,3==b a ρρ
且()()
.21332=+-b a b a ρ
ρρρ
⑴ 求a ρ与b ρ
的夹角。

⑵求
b a ρρ+与.
b a ρρ-
21.(本小题满分12分) 在ABC △中,1tan 4A =
,3tan 5
B =. (Ⅰ)求角
C 的大小;
(Ⅱ)若ABC △
13、65π 14、2 15: 9 16: 4931-
三.解答题(本大题有5个小题,共56分)
17(10分)解:原式=ααπαππ2cos 4sin 42sin 2-⎪
⎭⎫ ⎝⎛-⎥⎥⎤⎢⎢⎡⎪⎭⎫ ⎝⎛--…………..3分 =α
απαπ2cos 4sin 4cos 2-⎪
⎭⎫ ⎝⎛-•⎥⎥⎤⎢⎢⎡⎪⎭⎫ ⎝⎛-……………5分
=
α
απ2cos 242sin -⎪
⎭⎫ ⎝⎛-………………………………7分 =
α
α
2cos 2cos -=-1………………………………10分
18.(10分) )解:因为cosa=-54
,a 为第三象限角
所以sina=-53
…………………………………4分 所以cos(a+3π)=cosacos 3π-sinasin 3
π
=10
3
3423)53(21)54(+-=⨯--⨯-
=10
3352+-
………………10分 19.(12分) 解⑴f(x)==•=•)2sin 3,cos 2()1,(cos x x x b a ρ
ρ2cos 2x+x 2sin 3
=1+cos2x+1)6
2sin(22sin 3++=π
x x ………4分
所以T=
ππ
=2
2………5分 ⑵设函数y=2sin2x 的图像上任意一点(x,y )按向量m n m c )(,(ρ<2
π
),
平移后对应的点为(x `,y `)则:
x `=x+m y `=y+n … 6分 所以x=x `-m y=y `-n 所以y `-n=2sin2(x `-m) 所以y `=2sin2(2x `-2m)+n *…8分
由⑴可知函数*的解析式为y=2sin(2x+6
π)+1 故可令-2m=6
π n=1 ………………………10分
得m=-
12π n=1 可满足m <2
π 故实数m 、n 的值分别为-12
π
,1……………………12分
20.(12分)解⑴因为(221)3)(3=+-b a b ρ
ρρρ
α
所以6a ρ2-7b b a ρρ
ρ3-•2
=21
又因为2,3==b a ρρ
所以3=•b a ρ
ρ ………………………………3分
所以cos<b a ρρ,〉=21
323=⨯=••b a b a ρρρρ………………………………5分
所以〈b a ρρ,〉=3π
………………………………6分
⑵由⑴有19=+b a ρ
ρ………………………………9分
7=-b a ρ
ρ………………………………12分
21.解:(Ⅰ)π()C A B =-+Q ,…………………2分
13
45tan tan()113145
C A B +
∴=-+=-=--⨯.又0πC <<Q ,3
π4C ∴=.……5分
(Ⅱ)3
4
C =πQ ,AB ∴
边最大,即AB =.……7分
又tan tan 0A B A B π⎛⎫<∈ ⎪2⎝⎭
Q ,,,,∴角A 最小,BC 边为最小边.
由22sin 1tan cos 4sin cos 1A A A A A ⎧
==⎪⎨⎪+=⎩
,,
且π02A ⎛⎫
∈ ⎪⎝⎭,,……9分
得sin 17A =
.由sin sin AB BC C A =
得:sin sin A BC AB C
==g
所以,最小边BC =……12分。

相关文档
最新文档