上海市洋泾中学2020-2021学年高一上学期期中考试数学试卷 PDF版含答案

合集下载

2020-2021上海民办洋泾外国语学校高三数学上期中第一次模拟试题(带答案)

2020-2021上海民办洋泾外国语学校高三数学上期中第一次模拟试题(带答案)

2020-2021上海民办洋泾外国语学校高三数学上期中第一次模拟试题(带答案)一、选择题1.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20172.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸3.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .34.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .165.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .166.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .137.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720208.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .239.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .510.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13711.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++12.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,7a b c +==,则ab 为 .14.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,73b c +=,则ABC V 的面积为______.15.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.16.在ABC V 中,角A B C ,,所对的边分别为,,a b c ,且满足222sin sin sin sin sin A B C A B +=+,若ABC V 的面积为3,则ab =__17.已知等差数列{}n a 的前n 项n S 有最大值,且871a a <-,则当0n S <时n 的最小值为________. 18.已知三角形中,边上的高与边长相等,则的最大值是__________.19.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3sin2ABC ∠=3AB BC +的最大值为______.20.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢?三、解答题21.在等比数列{}n a 中,()*10a n N >∈,且328aa -=,又15,a a 的等比中项为16.(1)求数列{}n a 的通项公式:(2)设4log n n b a =,数列{}n b 的前n 项和为n S ,是否存在正整数k ,使得1231111nk S S S S ++++<L 对任意*n N ∈恒成立.若存在,求出正整数k 的最小值;若不存在,请说明理由.22.在数列{}n a 中,n S 为{}n a 的前n 项和,223()n n S n a n N *+=∈.(1)求数列{}n a 的通项公式; (2)设11n n n n a b a a ++=⋅,数列{}n b 的前n 项和为n T ,证明14n T <.23.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC 于,23,1D AD BD ==,求sin BAC ∠的值. 24.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值. 25.在ABC ∆中,内角,,ABC 的对边分别是,,a b c ,已知2223,3A b c a π=+=. (1)求a 的值;(2)若1b =,求ABC ∆的面积.26.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.2.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

上海市上海中学2020-2021学年第一学期高一数学期中考试卷

上海市上海中学2020-2021学年第一学期高一数学期中考试卷

4. l本题满分 IO 分)已知关寸;x的方程竺二二已二过尘主).
(l)若方程在区间[-1,1]上有实根,求实数a的取值范围;
{e[ a (2)若方程有两个空妇'.'且
点, 10J求实数 的最大值.
-- . l
:
} 5. (本题满分12分)设n是正整数,集合A={a/a=(t"片,... t,. ),tk E{0,1},k=I,2,…,n'
·"
C的值.
2. (本题满分 10 分消吓列不等式:
2
少lx-11 >(豆)
'·2x2 -3x-5 (2) 3x2 -13x+4
�1.
I
3. (本匙满分JO分)为f倡导“节舫减排 , 绿色生态”,朵企业采用新工艺,把企业生
4产0.0中吨:排:>,f放o展O的多二为�t6壬化0h0碳o吨 "转,化H为处种 理成可本利y用的(兀化)T与产月品处,已理知缸 该仰(单吨位�)旬�乏 月✓�的向_o、o的 处函理数迅关砐少 系可为

.
值范围是.
二、选择题(每题 4 分,共 16 分)
]t
-J,
�- ✓2 _, , l.· 若泸= -1, 则已上已一等于(
' ' '. "一�,
a +a

·(A) 2-2✓2
/z (B) 打
伲叶L忙 (C) 2✓2-1
(D) °2✓2�1
2. 用反一一 证.法..一证明: ” 已知 a,be�, a2 +b2 =0, 求证: a=b=O"时,应假设(
.
a,'b c .
(A} I

2020-2021学年高一上数学期中考试试卷及答案解析

2020-2021学年高一上数学期中考试试卷及答案解析
C.[0,1)D.(-∞,0]∪[1,+∞)
答案C
解析由题意知,不等式ax2+2ax+1>0恒成立,
当a=0时,1>0,不等式恒成立,
当a≠0时,则 解得0<a<1,
综上有0≤a<1,故选C.
7.函数f(x)=2x+ (x>1),则f(x)的最小值为()
A.8 B.6 C.4 D.10
答案D
解析f(x)=2(x-1)+ +2
答案①③
解析对于①,这是全称量词命题,
因为Δ=(-3)2-4×2×4<0,
所以2x2-3x+4>0恒成立,故①为真命题;
对于②,这是全称量词命题,
因为当x=-1时,2x+1>0不成立,故②为假命题;
对于③,这是存在量词命题,当x=1时,x为29的约数成立,所以③为真命题.
15.正数a,b满足 + =1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是________.
12.设非空数集M同时满足条件:①M中不含元素-1,0,1;②若a∈M,则 ∈M.则下列结论正确的是()
A.集合M中至多有2个元素
B.集合M中至多有3个元素
C.集合M中有且仅有4个元素
D.集合M中至少有4个元素
答案D
解析因为a∈M, ∈M,
所以 =- ∈M,
所以 = ∈M,
又因为 =a,
所以集合M中必同时含有a,- , , 这4个元素,
答案D
解析依题意可知,当0≤x≤4时,f(x)=2x;
当4<x≤8时,f(x)=8;
当8<x≤12时,f(x)=24-2x,观察四个选项知选D.
11.函数f(x)= (x>0)的值域是()

2020-2021高一数学上期中试卷(带答案)

2020-2021高一数学上期中试卷(带答案)

lg 25 lg 32
1 ,则 2x 5z ,故选
D.
点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的
x, y, z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其
是换底公式以及 0 与 1 的对数表示.
7.C
解析:C 【解析】 x⩽1 时,f(x)=−(x−1)2+1⩽1,
,则
a,
b,
c
的大小关系是
A. a b c
B. a c b
C. b a c
D. b c a
12.函数 f (x) x( x 1) 在[m, n] 上的最小值为 1 ,最大值为 2,则 n m 的最大值为 4
()
A. 5 2
B. 5 2 22
C. 3 2
D.2
二、填空题
13.幂函数 y=xα,当 α 取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设 点 A(1,0),B(0,1),连接 AB,线段 AB 恰好被其中的两个幂函数 y=xα,y=xβ 的图像三等分,即有 BM=MN=NA,那么,αβ 等于_____.
25.某厂生产某产品的年固定成本为 250 万元,每生产 千件,需另投入成本 (万
元),若年产量不足 千件, 的图象是如图的抛物线,此时
的解集为
,且 的最小值是 ,若年产量不小于 千件,
,每千件商品售价为 50 万元,通过市场分析,该厂生产的商
品能全部售完.
(1)写出年利润 (万元)关于年产量 (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
f3 (x) x , f4 (x) log2 (x 1) ,有以下结论:

上海市浦东新区统考2020-2021学年高一上学期期中考试数学试题 Word版含答案

上海市浦东新区统考2020-2021学年高一上学期期中考试数学试题 Word版含答案

浦东新区高一期中数学试卷2020.11一. 填空题1. 用∈或∉填空:0 N2.=3. 已知集合{|3}A x x =>,{|5}B x x =>,则A B =4. 关于x 的不等式20ax +<的解集为(1,)+∞,则实数a =5. 不等式2(2)4x -≤的解集为6. 若12(31)x +有意义,则实数x 的取值范围是7. 若关于x 的一元二次不等式2(1)40x k x +-+≤的解集为{2},则实数k =8. 已知实数x 、y 满足21x y +=,那么xy 的最大值是9. 集合2{|440,}P x ax x x =++=∈R 中只含有1个元素,则实数a 的取值是10. 方程|1||3|2x x -+-=的解集为11. 已知{||1|}A x x a =-≤,若A 只有1个整数元素,则实数a 的取值范围是12. 设P 为非空实数集满足:对任意给定的x y P ∈、(x y 、可以相同),都有x y P +∈,x y P -∈,xy P ∈,则称P 为幸运集.① 集合{2,1,0,1,2}P =--为幸运集; ② 集合{|2,}p x x n n ==∈Z 为幸运集; ③ 若集合1P 、2P 为幸运集,则12P P 为幸运集; ④ 若集合P 为幸运集,则一定有0P ∈; 其中正确结论的序号是二. 选择题13. “260x x --=”是“3x =”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14. 如果集合{|2,}p x x k k ==∈N ,21{|2,}k M x x k +==∈N ,那么集合P 、M 之间的 关系是( )A. M P ⊂B. P M ⊂C. P M =D. P M 、互不包含15. 若b a <,则下列结论正确的是( )A. 2ab a <B. 22b a <C. 2b a a b+≥ D. ||||||a b a b +≥+16. 在下列选项中,满足p 与q 等价的是( )A. 已知实数x 、y , 2:1x y p xy +>⎧⎨>⎩和:1q x >,1y > B. 已知实数x 、y ,22:(1)(2)0p x y -+-=和:(1)(2)0q x y --=C. 已知实数x ,1:01p x<<和:1q x > D. 已知1a 、1b 、1c 、2a 、2b 、2c 均为非零实数,不等式21110a x b x c ++>和不等式 22220a x b x c ++>的实数解集分别为M 和N ,111222:a b c P a b c ==和:q M N =三. 解答题17. 解不等式组321|23|2x x x +⎧≥⎪+⎨⎪-≤⎩.18. 已知集合26{|0}22x A x x x -+=<++,{|()(1)0}B x x a x a =---≤. (1)求集合A 、B ;(2)若AB A =,求实数a 的取值范围.19. 某生产消毒液企业每天能生产30000瓶消毒液,每瓶消毒液的生产成本为3元钱,由于 受到疫情影响,该生产消毒液企业迅速组织各方面力量扩大生产规模,每天增加生产x (0x >)瓶消毒液,同时每瓶消毒液生产成本增加10000x元,设该企业扩大生产规模后 每天投入的总生产成本为p 元.(1)请用x 的表达式表示出p ;(2)试问该生产消毒液企业每天增加生产多少瓶消毒液,才能使得每天投入的生产成本最小?并求出此时p 的值.20. 命题甲:关于x 的方程240x mx m ++=无实根;命题乙:关于x 的方程2(1)0x m x m -++=有两个不相等的正根,设命题甲、命题乙为真命题时实数m 的取值 分别组成集合A 、B .(1)求集合A 、B ;(2)若命题甲、乙中有且仅有一个是真命题,求实数m 的取值范围.21. 已知2(3)y mx m x m =+++.(1)m 取什么实数时,关于x 的不等式:0y <解集为1(,)(2,)2-∞+∞; (2)m 取什么实数时,关于x 的不等式:0y x>在(0,)x ∈+∞恒成立.参考答案一. 填空题1. ∈2. 5223. {|5}x x >4. 2-5. {|04}x x ≤≤6. 1[,)3-+∞7. 3-8.18 9. 0或1 10. [1,3] 11. [0,1) 12. ②④二. 选择题13. B 14. A 15. D 16. C三. 解答题 17. 5[1,]2.18.(1){|6}A x x =>,{|1}B x a x a =≤≤+;(2)6a >.19.(1)10000(30000)(3)p x x=++;(2)10000x =,min 160000p =. 20.(1)1(0,)4A =,(0,1)(1,)B =+∞;(2)1[,1)(1,)4+∞. 21.(1)67-;(2)[0,)+∞.。

2020-2021上海洋泾中学东校高三数学上期中一模试题(带答案)

2020-2021上海洋泾中学东校高三数学上期中一模试题(带答案)
问题中并作答.
22.数列 an 中, a1 1, an1 an 2n 1. (1)求 an 的通项公式;
(2)设 bn
1 4an
1
,求出数列
bn
的前
n
项和.
23.已知数列 an 的首项
a1
2 3
,且当
n
2
时,满足
a1
a2
a3
(1)求数列 an 的通项公式;
an1
1
3 2
an

(2)若 bn
19.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗
产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径 A , B 两点间的
距离,现在珊瑚群岛上取两点 C , D ,测得 CD 80 , ADB 135 , BDC DCA 15 , ACB 120 ,则 A , B 两点的距离为________.
简变形用基本不等式即可求解。 【详解】
不等式组表示的平面区域如图,由
3x y 6 0
x
y
2
0
得点
B
坐标为
B(4,6).由图可知当直线 z ax by 经过点 B(4,6)时,Z 取最大值。因为目标函数 z ax by (a 0,b 0) 的最大值为 12,所以 4a 6b 12, 即 2a 3b 6,
1= an-1(an-1+1)②,①-②可得 an= an(an+1)- an-1(an-1+1)∴(an+an-1)(an-an-1-1)=0
∵an>0,∴an-an-1-1=0 即 an-an-1=1∴数列{an}为等差数列,a1=1,d=1;∴an=1+(n-1)×1=n 即 an=n 所以

2021-2022学年上海中学高一(上)期中数学试卷

2021-2022学年上海中学高一(上)期中数学试卷

2021-2022学年上海中学高一(上)期中数学试卷试题数:21,总分:1001.(填空题,3分)不等式(a 2+1)x <3的解为 ___ .2.(填空题,3分)用描述法表示所有十进制下个位为9的正整数 ___ .3.(填空题,3分)设正实数x ,y 满足xy=20,则x+4y 的最小值为 ___ .4.(填空题,3分)给定正实数a ,b ,化简代数式 √1a 3• (ab )56 ( √b 3)-1=___ . 5.(填空题,3分)已知实数a ,b 满足log 2a=log 5b= √2 ,则lg ( (ab )√2 )=___ . 6.(填空题,3分)设集合A={x|-2≤x≤5},B={x|2-m≤x≤2m -1}.若A∩B=A .则m 的取值范围是 ___ .7.(填空题,3分)已知集合A={(x ,y )x 2+y 2=50,x ,y 是自然数},则A 的真子集共有 ___ 个.8.(填空题,3分)设集合A=N ,B={x| x+2x−3 >0,x∈R},则A∩∁R B=___ .9.(填空题,3分)若不等式ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞),则不等式-7x 2+bx+a >0的解集为 ___ .10.(填空题,3分)设x >1,若log 2(log 4x )+log 4(log 16x )+log 16(log 2x )=0,则log 2(log 16x )+log 16(log 4x )+log 4(log 2x )=___ .11.(填空题,3分)已知a 、b 、c 均为正实数,则 ab+bca 2+b 2+c 2 的最大值为___ .12.(填空题,3分)集合A={1,2,4,…,26194}共有 ___ 个数在十进制下的最高位为1. 13.(单选题,4分)设a ,b ,c ,d 为实数,下列说法正确的是( ) A.若a >b ,则a 2>b 2B.若a >b >0,c >d >0,则 ac > bd C.若 √a >b ,则a >b 2 D.若a >b >0,则a 2>ab >b 214.(单选题,4分)已知实数a ,b ,则“ a+ba−b >0”是“|a|>|b|”的( )条件 A.充分不必要 B.必要不充分 C.充要D.既不充分也不必要15.(单选题,4分)设a=log35,b=log57,则log1549=()45A. 2b−1−2a1+aB. 2b−2−a1+aC. 2ab−1−2a1+aD. 2ab−2−a1+a16.(单选题,4分)已知实数a,b,c满足|a|+|b|+|c|+|a+b+c|=6,则a2+b2+c2的最大值为()A.3B.9C.18D.2717.(问答题,6分)若实数x,y满足集合{x,xy,lg(xy)}与集合{0,|x|,y}相等,求x,y 的值.18.(问答题,8分)解下列不等式:(1)x2-5x+7<|2x-5|;(2)√x−1 +2x<5.19.(问答题,10分)已知正实数x,y满足xy+2x+y=4,(1)求xy的最大值,并求取得最大值时x,y的值;(2)求x+y的最小值,并求取得最小值时x,y的值.20.(问答题,10分)某厂家在“双11”中拟举办促销活动,经调查测算,该产品的年销售量(k为常(即该厂家的年产量)x万件与年促销费用m万元(m≥0)满足关系式x=3- km+1数),如果不搞促销活动;则该产品的年销售量是1万件.已知生产该产品的固定年投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的售价定为每件产品年平均成本的1.5倍(产品成本只包括固定投入和再投入两部分资金).(1)求k的值,并将该产品的年利润y(万元)表示为年促销费用m(万元)的函数;(2)该厂家年利润的最大值为多少万元?为此需要投入多少万元的年促销费用?21.(问答题,14分)已知实数a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.记方程f(x)=0的解集为A,方程g(f(x))=0的解集为B,若满足A=B≠∅,则称f(x),g(x)为一对“太极函数”.问:(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“太极函数”;(2)若f(x),g(x)为一对,“太极函数”,求d的值;(3)已知f(x),g(x)为一对“太极函数”,若a=1,c>0,方程f(x)=0存在正根m,求c的取值范围(用含有m的代数式表示).2021-2022学年上海中学高一(上)期中数学试卷参考答案与试题解析试题数:21,总分:1001.(填空题,3分)不等式(a2+1)x<3的解为 ___ .)【正确答案】:[1](-∞,3a2+1【解析】:根据a²+1>0,结合不等式性质即可求解.【解答】:解:因为a²+1>0,,所以该不等式解为x<3a2+1).故答案为:(-∞,3a2+1【点评】:本题考查不等式的求解,属于基础题.2.(填空题,3分)用描述法表示所有十进制下个位为9的正整数 ___ .【正确答案】:[1]{x|x=10n-1,(n∈N*)}【解析】:十进制下个位为9的正整数为10n-1,(n∈N*),用描述法写入集合即可.【解答】:解:十进制下个位为9的正整数为10n-1,(n∈N*),用描述法表示为{x|x=10n-1,(n∈N*)},故答案为:{x|x=10n-1,(n∈N*)}.【点评】:本题考查了进位制以及集合的表示方法,属于基础题.3.(填空题,3分)设正实数x,y满足xy=20,则x+4y的最小值为 ___ .【正确答案】:[1]8 √5【解析】:由基本不等式,即可得解.【解答】:解:因为x>0,y>0,所以x+4y≥2 √x•4y =2 √4×20 =8 √5,当且仅当x=4y,即x=4 √5,y= √5时,等号成立,所以x+4y的最小值为8 √5.故答案为:8 √5 .【点评】:本题考查基本不等式的应用,考查逻辑推理能力和运算能力,属于基础题. 4.(填空题,3分)给定正实数a ,b ,化简代数式 √1a 3• (ab )56 ( √b 3)-1=___ .【正确答案】:[1] √ab【解析】:由 √1a 3= a −13 , (ab )56 = a 56 • b 56 , √b 3 )-1= b −13 代入化简即可.【解答】:解: √1a 3• (ab )56 ( √b 3)-1= a −13 • a 56 • b 56b −13= √a • √b = √ab , 故答案为: √ab .【点评】:本题考查了有理数指数幂的化简,属于基础题.5.(填空题,3分)已知实数a ,b 满足log 2a=log 5b= √2 ,则lg ( (ab )√2 )=___ . 【正确答案】:[1]2【解析】:先把已知的对数式化为指数式,求出a ,b 的值,再利用对数的运算性质求解.【解答】:解:∵log 2a=log 5b= √2 , ∴a=2 √2 ,b= 5√2 ,∴(ab ) √2 =(2 √2 •5√2 ) √2 =102, ∴lg ( (ab )√2 )=lg102=2, 故答案为:2.【点评】:本题主要考查了对数式与指数式的互化,考查了对数的运算性质,是基础题. 6.(填空题,3分)设集合A={x|-2≤x≤5},B={x|2-m≤x≤2m -1}.若A∩B=A .则m 的取值范围是 ___ .【正确答案】:[1][4,+∞)【解析】:推导出A⊆B ,列出方程组,能求出m 的取值范围.【解答】:解:集合A={x|-2≤x≤5},B={x|2-m≤x≤2m -1},A∩B=A , ∴A⊆B ,∴ {2−m ≤2m −12−m ≤−22m −1≥5 , 解得m≥4.∴m 的取值范围是[4,+∞). 故答案为:[4,+∞).【点评】:本题考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.7.(填空题,3分)已知集合A={(x ,y )x 2+y 2=50,x ,y 是自然数},则A 的真子集共有 ___ 个.【正确答案】:[1]7【解析】:采用列举法,列举出A 中的元素,再计算真子集个数.【解答】:解:∵A={(x ,y )|x 2+y 2=50,x ,y 是自然数}. ∴A={(1,7),(5,5),(7,1)}共3个元素. ∴A 的真子集有23-1=7个. 故答案为:7.【点评】:用列举法写出A 的所有元素是解答本题的关键.属于易做题. 8.(填空题,3分)设集合A=N ,B={x| x+2x−3 >0,x∈R},则A∩∁R B=___ . 【正确答案】:[1]{0,1,2,3}【解析】:先解一元二次不等式求出集合B ,再根据集合的基本运算即可求解.【解答】:解:∵B={x| x+2x−3>0,x∈R}={x|(x+2)(x-3)>0}={x|x >3或x <-2},∴∁R B={x|-2≤x≤3}, ∵A=N ,∴A∩(∁R B )={0,1,2,3}, 故答案为:{0,1,2,3}.【点评】:本题考查集合的基本运算,一元二次不等式的解法,属于基础题.9.(填空题,3分)若不等式ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞),则不等式-7x 2+bx+a >0的解集为 ___ . 【正确答案】:[1]( 17, 12)【解析】:设y=ax 2+bx-7,ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞),得到开口向下,2和7为函数与x 轴交点的横坐标,利用根与系数的关系表示出a 与b 的关系,化简不等式-7x 2+bx+a >0即可求得答案.【解答】:解:因为不等式ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞), 所以 { a <0−ba =2+7−7a=2×7 ,解得 {a =−12b =92 ,则不等式-7x 2+bx+a >0即为14x²-9x+1<0, 解得 17<x <12 ,故-7x 2+bx+a >0的解集为( 17 , 12 ). 故答案为:( 17 , 12 ).【点评】:此题考查了一元二次不等式的解法,涉及的知识有:二次函数的性质,根与系数的关系,熟练掌握二次函数的性质是解本题的关键,属于基础题.10.(填空题,3分)设x >1,若log 2(log 4x )+log 4(log 16x )+log 16(log 2x )=0,则log 2(log 16x )+log 16(log 4x )+log 4(log 2x )=___ . 【正确答案】:[1]- 14【解析】:利用对数的运算性质求解.【解答】:解:∵log 2(log 4x )+log 4(log 16x )+log 16(log 2x )=0, ∴ log 2(12log 2x) + 12log 2(14log 2x) + 14 log 2(log 2x )=0,∴ log 2[12log 2x•(14log 2x)12•(log 2x )14] =0,∴ 12log 2x • 12(log 2x )12 • (log 2x )14 =1,∴ log 2x •(log 2x )12•(log 2x )14 =4,∵log 2(log 16x )+log 16(log 4x )+log 4(log 2x )= log 2[14log 2x•(12log 2x)14•(log 2x )12] =log2(12)14 = log22−14 =- 14,故答案为:- 14.【点评】:本题主要考查了对数的运算性质,是基础题.11.(填空题,3分)已知a、b、c均为正实数,则ab+bca2+b2+c2的最大值为___ .【正确答案】:[1] √22【解析】:根据基本不等式的性质,利用a2+ 12 b2≥ √2 ab,12b2+c2≥ √2 bc,即可求出ab+bca2+b2+c2的最大值.【解答】:解:a、b、c均为正实数,则a2+ 12 b2≥ √2 ab,12b2+c2≥ √2 bc,∴ ab+bc a2+b2+c2 = ab+bc(a2+12b2)+(12b2+c2)≤√2(ab+bc)= √22,当且仅当a=c= √22b 时,等号成立,∴ ab+bc a2+b2+c2的最大值为√22.故答案为:√22【点评】:本题考查了利用基本不等式求最值的应用问题,是中档题.12.(填空题,3分)集合A={1,2,4,…,26194}共有 ___ 个数在十进制下的最高位为1.【正确答案】:[1]1859【解析】:由2m的最高位为1,得到2m x(210)n的最高位也为1,构成以指数幂为10的周期性,得到前三个数最高位数字为l的数为20,24,27,结合周期性,即可求解.【解答】:解:若2m的最高位为1,由210=1024,其中210的最高位为1,可得2m×(210)n 的最高位也为1,所以构成以指数幂为10的周期性,其中前三个数最高位数字为1的数为20,24,27,即每个周期内有3个最高位为1的数字,又由26190=20×210×619,26194=24×210×619的最高位为1,所以在集合A={1,2,4…,26194}中最高位为1的共有619×3+2=1859个.故答案为:1859.【点评】:本题考查了进位制,周期性,属于中档题.13.(单选题,4分)设a,b,c,d为实数,下列说法正确的是()A.若a>b,则a2>b2B.若a>b>0,c>d>0,则ac >bdC.若√a>b,则a>b2D.若a>b>0,则a2>ab>b2【正确答案】:D【解析】:根据已知条件,结合特殊值法和作差法,即可求解.【解答】:解:对于A,令a=1,b=-1,满足a>b,但a2=b2,故A错误,对于B,令a=2,b=1,c=2,d=1,满足a>b>0,c>d>0,但ac =bd,故B错误,对于C,令a=1,b=-1,满足√a>b,但a=b2,故C错误,对于D,∵a>b>0,∴a-b>0,a2>b2,∴a2-ab=a(a-b)>0,ab-b2=b(a-b)>0,∴a2>ab>b2,故D正确.故选:D.【点评】:本题主要考查了作差法,以及特殊值法,属于基础题.14.(单选题,4分)已知实数a,b,则“ a+ba−b>0”是“|a|>|b|”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【正确答案】:C【解析】:由分式不等式转化为整式不等式,结合平方差公式和绝对值不等式,由充分必要条件的定义可得结论.【解答】:解:已知实数a,b,不等式a+ba−b>0等价为(a+b)(a-b)>0,即为a2-b2>0,即a2>b2,即为|a|>|b|,所以“ a+ba−b>0”是“|a|>|b|”的充要条件.故选:C.【点评】:本题考查不等式的性质和充分必要条件的判断,考查转化思想和运算能力、推理能力,属于基础题.15.(单选题,4分)设a=log35,b=log57,则log154945=()A. 2b−1−2a1+aB. 2b−2−a1+aC. 2ab−1−2a1+aD. 2ab−2−a1+a【正确答案】:D【解析】:利用对数的运算性质和换底公式求解.【解答】:解:∵a=log35,b=log57,∴ab=log37,∴ log154945=log1549-log1545=2log157-log155-2log153= 2log715 - 1log515- 2log315= 2log73+log75 - 11+log53- 21+log35= 21ab +1b- 11+1a- 21+a= 2ab1+a - a1+a- 21+a= 2ab−a−21+a,故选:D.【点评】:本题主要考查了对数的运算性质和换底公式的应用,是基础题.16.(单选题,4分)已知实数a,b,c满足|a|+|b|+|c|+|a+b+c|=6,则a2+b2+c2的最大值为()A.3B.9C.18D.27【正确答案】:C【解析】:利用绝对值的性质可知|a|≤3,|b|≤3,|c|≤3,然后取a ,b ,c=±3,不合题意,再取a=3,b=-3,c=0,符合题意,即可得解.【解答】:解:∵6=|a|+|b|+|c|+|a+b+c|≥|(a+b+c )-a-b+c|=2|c|,∴|c|≤3,同理可得|a|≤3,|b|≤3,若a ,b ,c=±3,显然不可能;若a=3,b=-3,c=0,此时符合题意,则a 2+b 2+c 2=18.故选:C .【点评】:本题考查代数式最值的求解,考查绝对值的性质及意义,考查运算求解能力,属于中档题.17.(问答题,6分)若实数x ,y 满足集合{x ,xy ,lg (xy )}与集合{0,|x|,y}相等,求x ,y 的值.【正确答案】:【解析】:由集合{x ,xy ,lg (xy )}与集合{0,|x|,y}相等知,xy=1,此时,{0,1,x}={0,|x|,y},由此能够求出x ,y 的值.【解答】:解:由集合{x ,xy ,lg (xy )}与集合{0,|x|,y}相等知,lg (xy )=0,即xy=1,此时,{0,1,x}={0,|x|,y}.所以 {x =|x |xy =1y =1或 {x =y xy =1|x |=1 , 解得x=y=1或x=y=-1.当x=y=1时,A=B={0,1,1},与集合元素互异性矛盾,应舍去;当x=y=-1时,A=B={-1,0,1},故x=y=-1.【点评】:本题考查集合相等的概念,是基础题.解题时要认真审题,仔细解答,注意集合中元素互异性的合理运用.18.(问答题,8分)解下列不等式:(1)x2-5x+7<|2x-5|;(2)√x−1 +2x<5.【正确答案】:【解析】:(1)结合不等式的特征,利用函数的对称性去掉绝对值符号求解不等式即可;(2)将不等式进行变形,然后结合函数的单调性和函数在特殊点的函数值可得不等式的解集.时,不等式即:x2-5x+7<2x-5,【解答】:解:(1)当x≥52整理可得x2-7x+12<0,解得3<x<4,令f(x)=x2-5x+7,g(x)=2x-5对称,注意到函数f(x),g(x)均关于直线x=52时不等式的解集为1<x<2,由函数的对称性可得当x<52综上可得,不等式的解集为(1,2)⋃(3,4).(2)不等式即√x−1<−2x+5,不等式有解时,x≥1,注意到函数f(x)=√x−1单调递增,函数g(x)=-2x+5单调递减,且f(2)=g(2)=1,结合函数的定义域可得不等式√x−1<−2x+5的解集为{x|1≤x<2}.【点评】:本题主要考查含有绝对值不等式的解法,对称性的应用,函数单调性的应用等知识,属于中等题.19.(问答题,10分)已知正实数x,y满足xy+2x+y=4,(1)求xy的最大值,并求取得最大值时x,y的值;(2)求x+y的最小值,并求取得最小值时x,y的值.【正确答案】:【解析】:(1)由已知得4-xy=2x+y ,然后结合基本不等式即可求解;(2)由已知先用y 表示x ,然后代入后结合基本不等式可求.【解答】:解:(1)因为xy+2x+y=4,所以4-xy=2x+y ≥2√2xy ,当且仅当2x=y 时取等号,解得 √xy ≤√6−√2 ,故xy 的最大值8-4 √3 ,此时x= √3−1 ,y=2 √3 -2;(2)因为xy+2x+y=4,所以x= 4−y y+2 =-1+ 6y+2 ,所以x+y=-1+ 6y+2 +y=-3+ 6y+2+y+2 ≥−3+2√(y +2)•6y+2 =-3+2 √6 , 当且仅当y+2= 6y+2 ,即y= √6 -2,x= √6 -1时取等号,x+y 的最小值-3+2 √6 .【点评】:本题主要考查了利用基本不等式求解最值,解题的关键是进行合理的配凑基本不等式的应用条件.20.(问答题,10分)某厂家在“双11”中拟举办促销活动,经调查测算,该产品的年销售量(即该厂家的年产量)x 万件与年促销费用m 万元(m≥0)满足关系式x=3- k m+1 (k 为常数),如果不搞促销活动;则该产品的年销售量是1万件.已知生产该产品的固定年投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的售价定为每件产品年平均成本的1.5倍(产品成本只包括固定投入和再投入两部分资金).(1)求k 的值,并将该产品的年利润y (万元)表示为年促销费用m (万元)的函数;(2)该厂家年利润的最大值为多少万元?为此需要投入多少万元的年促销费用?【正确答案】:【解析】:(1)当m=0时,x=1,求出k的值,从而得到x,然后利用每件产品的销售价格元,列出y的函数关系式即可;为1.5× 8+16xx(2)利用基本不等式求解最值,即可得到答案.【解答】:解:(1)由题意可知,当m=0时,x=1,则1=3-k,解得k=2,,所以x=3- 2m+1元,因为每件产品的销售价格为1.5× 8+16xx]-(8+16x+m)∴利润函数y=x[1.5× 8+16xx)-m=4+8x-m=4+8(3- 2m+1+(m+1)]+29(m≥0).=-[ 16m+1+(m+1)]+29(m≥0),(2)因为利润函数y=-[ 16m+1+(m+1)≥2 √16 =8,所以,当m≥0时,16m+1=m+1,即m=3(万元)时,y max=21(万元).∴y≤-8+29=21,当且仅当16m+1所以,该厂家促销费用投入3万元时,厂家的利润最大,最大为21万元.【点评】:本题考查了函数模型的选择与应用,解题的关键是建立符合条件的函数模型,分析清楚问题的逻辑关系是解题的关键,此类问题求解的一般步骤是:建立函数模型,进行函数计算,得出结果,再将结果反馈到实际问题中指导解决问题,考查了逻辑推理能力与化简运算能力,属于中档题.21.(问答题,14分)已知实数a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.记方程f(x)=0的解集为A,方程g(f(x))=0的解集为B,若满足A=B≠∅,则称f(x),g(x)为一对“太极函数”.问:(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“太极函数”;(2)若f(x),g(x)为一对,“太极函数”,求d的值;(3)已知f(x),g(x)为一对“太极函数”,若a=1,c>0,方程f(x)=0存在正根m,求c的取值范围(用含有m的代数式表示).【正确答案】:【解析】:(1)根据新定义检验即可;(2)利用新定义计算求解可得d的值;(3)设t=−cm x2+cx,由新定义得关于t的方程t2−cmt+c=0无实根,记ℎ(t)=t2−cmt+c,由二次函数性质求得t的范围,由h(t)min>0可得c的范围.【解答】:解:(1)若f(x),g(x)是否为一对“太极函救”,由f(x)=x+1=0,得x=-1,所以g(f(-1))=g(0)=1,x=-1不是g(f(x))的零点,所以f(x),g(x)不是一对太极函救;(2)设r为方程的一个根,即f(r)=0,由题设g(f(r))=0,所以g(0)=g(f(r))=d=0;(3)因为d=0,由a=1,f(m)=0得b=−cm,所以f(x)=bx2+cx=−cm x2+cx,g(f(x))=f(x)[f2(x)−cmf(x)+c],由f(x)=0得x=0或m,易得g(f(x))=0,据题意,g(f(x))的零点均为f(x)的零点,故f2(x)−cmf(x)+c=0无实数根,设t=−cm x2+cx,则t2−cmt+c=0无实根,记ℎ(t)=t2−cmt+c,c>0时,t=−cm (x−m2)2+mc4≤mc4,ℎ(t)=t2−cmt+c=(t−c2m)2+c−c24m2,mc 4≤c2m,即0<m≤√2时,ℎ(t)min=ℎ(mc4)=m2c216−c24+c>0,解得0<c<164−m2,mc 4>c2m,即m>√2时,ℎ(t)min=ℎ(c2m)=c−c24m2>0,0<c<4m2,综上,m∈(0,√2]时,c∈(0,164−m2),m∈(√2,+∞)时,c∈(0,4m2).【点评】:本题主要考查新定义的理解与应用,函数的最值的求解,分类讨论的数学思想,二次函数的最值等知识,属于中等题.。

2020-2021学年上海市南洋模范中学高一上学期期中数学试题(解析版)

2020-2021学年上海市南洋模范中学高一上学期期中数学试题(解析版)

2020-2021学年上海市南洋模范中学高一上学期期中数学试题一、单选题1.已知12120a a b b ≠,陈述句P :关于x 的一次不等式110a x b +>与220a x b +>有相同的解集;陈述句Q :“1122a b a b =”;则P 是Q 的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】A【分析】本题首先可根据12120a a b b ≠得出10a ≠、20a ≠、10b ≠以及20b ≠,然后判断“不等式110a x b +>与220a x b +>有相同的解集”能否证明“1122a b a b =”以及“1122a b a b =”能否证明“不等式110a x b +>与220a x b +>有相同的解集”,即可得出结果. 【详解】因为12120a a b b ≠,所以10a ≠,20a ≠,10b ≠,20b ≠, 若不等式110a x b +>与220a x b +>有相同的解集,则1a 与2a 同号且1212b b a a -=-, 故不等式110a x b +>与220a x b +>有相同的解集可以证得1122a b a b =,P 是Q 的充分条件,因为1122a b a b =无法说明1a 与2a 同号, 所以1122a b a b =无法证得不等式110a x b +>与220a x b +>有相同的解集,P 不是Q 的必要条件,综上所述,P 是Q 的充分非必要条件, 故选:A.【点睛】本题考查充分条件以及必要条件的判定,给出命题若P 则Q ,如果P 可证明Q ,则说明P 是Q 的充分条件,如果Q 可证明P ,则说明P 是Q 的必要条件,考查推理能力,是中档题.2.设lg 2,lg3a b ==,则12log 25的值是( ) A .1aa b-+ B .1aa b-- C .222aa b-+D .222aa b-+ 【答案】D【分析】根据对数的运算公式,准确运算,即可求解. 【详解】由对数的运算公式,可得()1221lg 2lg 252lg 522log 25lg122lg 2lg 32lg 2lg 32a a b--====+++. 故选:D.3.若a ,b 为非零实数,则以下不等式:①222a b ab +≥;②222()42a b a b ++≤;③2a b ab a b+≥+;④ 2b aa b +≥.其中恒成立的个数是( )A .4B .3C .2D .1【答案】C【分析】①②由基本不等式可得到结果,③④举反例可得结论不成立. 【详解】解:对于①,由重要不等式222a b ab +≥可知①正确;对于②,()2222224a b a b ++=()()222222244a b a b ab ab +++++=≥22()42a b a b ++⎛⎫== ⎪⎝⎭,故②正确;对于③,当1a b ==-时,不等式的左边为12a b +=-,右边为12ab a b =-+,可知③不正确;对于④,令1,1a b ==-可知④不正确. 故恒成立的个数为2个. 故选:C.4.已知()()()()22221234()4444f x x x c xx c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4 B .9 C .16 D .64【答案】A【分析】先设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,4,i i i i i x y x y c +=⋅=,再依题意分析根均为整数,列举根的所有情况,确定44c =和1c 的可能情况,得到41c c -的最小取值和其他可能的情况,即得结果.【详解】设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,则由根和系数的关系知4,i i i i i x y x y c +=⋅=,又{}{}127()0,,,M x f x x x x Z ===⋯⊆,说明方程204i x x c -+=()1,2,3,4i =有一个方程是两个相等的根,其他三个方程是两个不同的根,由于根均为整数且和为4,则方程的根有以下这些情况:…,()()()()()()()()()6,105,9,4,8,3,7,2,6,1,5,0,4,1,3,2,2------,乘积分别为…,-60,-45,-32,-21,-12,-5,0,3,4.因为1234c c c c ≤≤≤,故44c =,123,,c c c 来自于4前面的任意可能三个不同的数字,1c 最小,故当15c =时41c c -最小,等于9,故不可能取4,能取9;当112c =-或160c =-时41c c -可以取16,64. 故选:A.【点睛】本题解题关键是能依据题意分析方程204i x x c -+=()1,2,3,4i =的根的可能情况,既是整数又满足和为4,判断44c =,再根据1c 的可能情况,确定41c c -的可能结果,以突破难点.二、填空题5.集合{}2020M x R x =∈≤,有下列四个式子:①M π∈;②{}M π⊂;③M π⊂;④{}M π∈,其中正确的是_____(填序号) 【答案】①②【分析】利用元素与集合、集合与集合之间的关系符号表示即可求解. 【详解】由{}2020M x R x =∈≤,①M π∈,正确; ②{}M π⊂,正确;故答案为:①②60)a>化为有理数指数幂的形式为_________.【答案】12a-【分析】根据根式与分数指数幂的互化即可求解.121111333222111aaa a a-====⎛⎫⎛⎫⋅⎪ ⎪⎝⎭⎝⎭,故答案为:12a-7.陈述句“1x>或1y>”的否定形式是________.【答案】1x≤且1y≤.【分析】含有“或”联结词的否定是“且”.【详解】解:1x>或1y>的否定是:1x≤且1y≤.故答案为:1x≤且1y≤.8.若01,0a s<<<,则s a_____1(填符号“>,≥,<,≤,”).【答案】>【分析】利用指数函数的单调性即可求解.【详解】xy a=,01a<<,则函数为减函数,由0s<,则01sa a>=.所以1sa>.故答案为:>9.已知集合{}2{,},2,2A x yB x x==,且A B=,则集合A=_____.【答案】1,12⎧⎫⎨⎬⎩⎭【分析】根据A B=,分类讨论,结合集合中元素的互异性,即可求解. 【详解】由题意,集合{}2{,},2,2A x yB x x==,且A B=,若2x x=,可得0x=,此时集合B不满足集合中元素的互异性,(舍去);若22x x=,可得12x=或0x=(舍去),当12x =时,可得2121,22x x ==,即1,12A B ⎧⎫==⎨⎬⎩⎭.故答案为:1,12⎧⎫⎨⎬⎩⎭.10.已知集合{}210P x x =-≤≤,非空..集合{}11S x m x m =-≤≤+,若x P ∈是x S ∈的必要条件,则实数m 的取值范围为______.【答案】[]0,3【分析】由x P ∈是x S ∈的必要条件,得S P ⊆,进一步转化为两集合端点值间的关系求解即可.【详解】∵{}210P x x =-≤≤,非空集合{}11S x m x m =-≤≤+, 若x P ∈是x S ∈的必要条件,则S P ⊆,∴111?2110m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得03m ≤≤, ∴m 的取值范围是[]0,3, 故答案为:[]0,3.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含.11.关于x 的不等式|2|6x a a -+<的解集是(1,3)-,则实数a =_____. 【答案】2【分析】先根据绝对值不等式的解法得出不等式的解集为(3,3)a -与已知解集比较可得31a -=-,即可求解.【详解】由|2|6x a a -+<可得626a x a a -<-<-, 解得:33a x -<< ,因为不等式|2|6x a a -+<的解集是(1,3)-, 所以31a -=-,解得:2a = 故答案为:212.直角三角形的周长等于2,则这个直角三角形面积的最大值为_____.【答案】3-【分析】设直角三角形的两直角边为a 、b ,斜边为c ,因为L a b c =++,c =两次运用均值不等式即可求解.【详解】设直角三角形的两直角边为a 、b ,斜边为c ,面积为s ,周长L =2,由于a b L +=≥a =b 时取等号)≤.∴(2222L 1113S ab ?L 322224⎡⎤--⎢⎥=≤===-⎢⎥⎣⎦故答案为3-【点睛】本题考查了利用均值不等式解决最值问题,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键,属于基础题. 13.若实数a ,b ,m 满足227a b m ==,且112a b+=,则m 的值为______.【答案】【分析】227a b m ==,可以根据指对互化,求出271log ,log 2a mb m ∴==再代入到112a b+=中,我们就能得到一个关于m 的方程,这样就能求出m 的值. 【详解】由条件可知:2270a b m ==>,271log ,log 2a mb m ∴==, 2712log 22log 7log 982log log m m m m m+=+==,所以298m =,即m =故答案为:14.已知正数x ,y 满足49x y xy +=且224x y m m +<-有解,则实数m 的取值范围是______.【答案】(,1)(25,)-∞-⋃+∞【分析】不等式224x y m m +<-有解,即()2min 24x y m m +<-,巧用均值不等式求最值即可. 【详解】由已知得:491y x+=,4949()()131325x y x y x y y x y x +=++=++≥=,当且仅当15,10x y ==时取等号; 由题意:()2min 24x y m m +<-,即22425m m ->, 解得:1m <-或25m >, 故答案为:(,1)(25,)-∞-⋃+∞.【点睛】方法点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.15.等式()2(3)0ax x b +-≤对(,0)x ∈-∞恒成立,其中,a b Z ∈,则a b +=______. 【答案】10或4【分析】对b 分类讨论,当0b ≤时,由()2(3)0ax x b +-≤得到30ax +<,由一次函数的图象可知不存在;当0b >时,由()2(3)0ax x b +-≤,利用数形结合的思想得出,a b 的整数解.【详解】当0b ≤时,由()2(3)0ax x b +-≤得到30ax +<在(,0)x ∈-∞恒成立, 则a 不存在;当0b >时,由()2(3)0ax x b +-≤, 可得()3f x ax =+,()2g x x b =-,又()g x 的大致图象可知:3a b a>⎧⎪⎨=⎪⎩,再由,a b Z ∈,得到19a b =⎧⎨=⎩或31a b =⎧⎨=⎩, 所以a b +=10或4. 故答案为:10或4.【点睛】关键点点睛:本题考查了不等式恒成立求参数值,解题的关键是利用数形结合求出满足的关系式03a b a>⎧⎪⎨=⎪⎩ 分类讨论的思想.16.已知实数a b c >>,且满足:2221,3a b c a b c ++=++=,则s b c =+的取值范围是______.【答案】2,03⎛⎫- ⎪⎝⎭【分析】根据题意可得1+=-b c a ,()2223b c bc a +-=-,从而可得21bc a a =--,将,b c 看为一元二次方程的根,利用0∆>求出a 的范围,再利用反证法求出1a >,即可求解.【详解】由已知可得1+=-b c a ,()2223b c bc a +-=-, 即21bc a a =--,因此,以,b c 为根的方程为()22110x a x a a +-+--=,()()221410a a a ∴∆=---->,解得513a -<<, 故23b c +>-, 同理可得513b -<<,513c -<<, 下面精确a 的下限,假设1a ≤,由a b c >>,由1b a -<<<,1c a -<<<, 所以21a ≤,21b <,21c <, 因此2223a b c ++<,矛盾,故1a >, 所以10b c a +=-< 综上,203b c -<+<, 故答案为:2,03⎛⎫- ⎪⎝⎭.【点睛】关键点点睛:本题考查了不等式的性质、一元二次不等式的解法,解题的关键是求出a 的取值范围,考查了转化能力、运算能力.三、解答题17.已知集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}222(1)50C x x m x m =+++-=.(1)若A B A ⋃=,求实数a 的值; (2)若AC C =,求实数m 的取值范围.【答案】(1)2a =或3;(2)(,3]-∞-.【分析】(1)先求解出方程2320x x -+=的根,则集合A 可知,再求解出210x ax a -+-=的根,则可确定出集合B ,根据A B A ⋃=得到B A ⊆,从而可求解出1a -的可取值,则a 的值可求; (2)根据AC C =得到C A ⊆,分别考虑当C 为空集、单元素集、双元素集的情况,由此确定出a 的取值.【详解】(1)由2320x x -+=得1x =或2,所以{1,2}A =, 由210x ax a -+-=得1x =或1a -,所以1,1B a B ∈-∈, 因为A B A ⋃=,所以B A ⊆,所以11a -=或2,所以2a =或3; (2)因为AC C =,所以C A ⊆,当C =∅的时,()224(1)450m m ∆=+--<,解得3m <-,当{}1C =时,()2224(1)45012(1)50m m m m ⎧∆=+--=⎪⎨+++-=⎪⎩,无解,当{}2C =时,()()()2224145044150m m m m ⎧∆=+--=⎪⎨+++-=⎪⎩,解得3m =-,当{}1,2C =时,2122(1)125m m +=-+⎧⎨⋅=-⎩,无解, 综上,实数m 的取值范围是(,3]-∞-.【点睛】结论点睛:根据集合的交、并集运算结果判断集合间的关系: (1)若A B A ⋃=,则有B A ⊆; (2)若AB A =,则有A B ⊆.18.经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴,为迎接2020年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销,经调查测算,该促销产品在“双十一”的销售量p (万件)与促销费用x (万元)满足231p x =-+(其中010x ≤≤),已知生产该产品还需投入成本(102)p +万元(不含促销费用),每一件产品的销售价格定为204p ⎛⎫+ ⎪⎝⎭元,假定厂家的生产能力能满足市场的销售需求,(1)将该产品的利润y (万元)表示为促销费用x (万元)的函数; (2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值. 【答案】(1)416(010)1y x x x =--≤≤+;(2)促销费用投入1万元时,厂家的利润最大,为13万元.【分析】(1)根据题意利润为204(102)y p x p p ⎛⎫=+--+ ⎪⎝⎭, 然后再将231p x =-+代入即可.(2)由(1)得到41711x x y ⎛⎫=-++⎪+⎝⎭,再利用基本不等式求解.【详解】(1)由题意得204(102)y p x p p ⎛⎫=+--+ ⎪⎝⎭, 把231p x =-+代入得416(010)1y x x x =--≤≤+;(2)417117131y x x ⎛⎫=-++≤-=⎪+⎝⎭, 当且仅当411x x =++,即1x =时取等号, 所以促销费用投入1万元时,厂家的利润最大,为13万元.19.(1)设集合{}31,P n n k k N ==+∈,集合{}32,Q n n m m N ==-∈, 求证:集合P 是Q 的真子集;(2)已知0,0,0a b c >>>,当函数()||||f x x a x b c =++-+的最小值为6时, 求证:22222212a b c a b c c b a+++++≥. 【答案】(1)证明见解析;(2)证明见解析.【分析】(1)任取n P ∈,得到313(1)2n k k Q =+=+-∈,再根据2,2Q P -∈-∉,即可求解;(2)由绝对值的三角不等式,得到6a b c ++=,再接基本不等式,即可作出证明.【详解】(1)先证P Q ⊆,任取n P ∈,存在1m k N =+∈,使得313(1)232n k k m Q =+=+-=-∈,所以P Q ⊆,又由2,2Q P -∈-∉,所以集合P 是Q 的真子集.(2)因为()|||||()()|6f x x a x b c x a b x c a b c =++-+≥++-+=++=, 由222222222a b c a b c ab ac bc c b a c b a+++++≥++ 2()12ab ac ab bc ac bc a b c cb c a b a ⎛⎫⎛⎫⎛⎫=+++++≥++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当且仅当2a b c ===时取等号, 所以22222212a b c a b c c b a+++++≥.20.(1)关于x 的不等式()2216(4)10a x a x ----≥的解集为φ,求实数a 的取值范围;(2)解关于x 的不等式(3)12m x x -≥+; (3)设(1)中a 的整数值构成集合A ,(2)中不等式的解集是B ,若A B 中有且只有三个元素,求实数m 的取值范围.【答案】(1)12,45⎛⎤- ⎥⎝⎦;(2)答案不唯一,具体见解析;(3)34,2⎛⎤-- ⎥⎝⎦. 【分析】(1)根据题意,分4a =,4a =-和4a ≠±三种情况讨论,结合二次函数的性质,即可求解;(2)化简不等式为(1)3202m x m x ---≥+,转化为(2)[(1)(32)]0x m x m +--+≥且2x ≠-,结合一元二次不等式的解法,分类讨论,即可求解.(3)由(1)得{2,1,0,1,2,3,4}A =--,根据A B 中有且只有三个元素,结合不等式的解集,分类讨论,得出不等式组,即可求解.【详解】(1)当4a =时,不等式可化为10-≥无解,满足题意;当4a =-时,不等式化为810x -≥,解得18x >,不符合题意,舍去; 当4a ≠±时,要使得不等式()2216(4)10a x a x ----≥的解集为φ,则满足()()22216044160a a a ⎧-<⎪⎨∆=-+-<⎪⎩,解得1245a -<<, 综上可得,实数a 的取值范围是12,45⎛⎤- ⎥⎝⎦. (2)由不等式(3)12m x x -≥+,可得(3)(1)321022m x m x m x x -----=≥++, 即(2)[(1)(32)]0x m x m +--+≥且2x ≠-,当1m =时,不等式等价于502x -≥+,解得2x <-; 当1m 时,由325(2)011m m m m +--=>--, 不等式32(2)01m x x m +⎛⎫+-≥ ⎪-⎝⎭且2x ≠-的解集为32(,2),1m x m +⎡⎫∈-∞-⋃+∞⎪⎢-⎣⎭,当1m <时,32(2)01m x x m +⎛⎫+-≤ ⎪-⎝⎭且2x ≠-, 当01m <<时,解集为32,21m x m +⎡⎫∈-⎪⎢-⎣⎭, 当0m =时,解集为∅,当0m <时,解集为322,1m x m +⎛⎤∈- ⎥-⎝⎦, 综上,当1m =时,解集为(,2)x ∈-∞-,当1m 时,解集为32(,2),1m x m +⎡⎫∈-∞-⋃+∞⎪⎢-⎣⎭, 当01m <<时,解集为32,21m x m +⎡⎫∈-⎪⎢-⎣⎭, 当0m =时,解集为∅, 当0m <时,解集为322,1m x m +⎛⎤∈- ⎥-⎝⎦. (3)由(1)得{2,1,0,1,2,3,4}A =--,当A B 中有且只有三个元素,显然01m ≤≤不可能,当1m 时,32(,2),1m B m +⎡⎫=-∞-⋃+∞⎪⎢-⎣⎭因为3253311m m m +=+>--,不合题意,舍去, 当0m <时,322,1m B m +⎛⎤=- ⎥-⎝⎦, 因为A B 中有且只有三个元素,所以,032121m m m <⎧⎪+⎨≤<⎪-⎩,解得342m -<≤-, 综上,实数m 的取值范围是34,2⎛⎤-- ⎥⎝⎦. 【点睛】解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.21.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i 、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由; (2)证明:10a =,且()122n n na a a a =+++;(3)当5n =时,若22a =,求集合A .【答案】(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.【分析】(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论. (2)先由0n n a a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.【详解】解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+=即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=【点睛】(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档