高一第一学期期末考试数学试卷含答案(word版)

合集下载

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。

2021年高一上学期期末测试数学试题 Word版含答案

2021年高一上学期期末测试数学试题 Word版含答案

2021年高一上学期期末测试数学试题 Word版含答案一、选择题.共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则A. B. C. D.2.A. B. C. D.3.已知△三个顶点的坐标分别为,,,若,那么的值是A. B.3 C. D.44.在下列函数中,既是偶函数又在区间上单调递减的函数为A. B. C. D.5.函数的一个对称中心A.B.C.D.6. 函数(且)的图象经过点,函数(且)的图象经过点,则下列关系式中正确的是A.B.C.D.7.如图,点在边长为的正方形的边上运动,设是的中点,则当沿着路径运动时,点经过的路程与△的面积的函数关系为,则的图象是8.已知函数,在下列结论中:①是的一个周期;②的图象关于直线对称;③在上单调递减.正确结论的个数为A. 0B.1C. 2D. 3第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.如果向量,,且,共线,那么实数.10.已知集合,则 .11.sin15o sin75o的值是____________.12. 已知函数且,则的值为.13.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.14.给出定义:若(其中为整数),则叫做离实数最近的整数,记作,即. 在此基础上给出下列关于函数的四个判断:①的定义域是,值域是;②点是的图象的对称中心,其中;③函数的最小正周期为;④函数在上是增函数.则上述判断中正确的序号是 .(填上所有正确的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题满分13分)已知函数.(I)求函数的定义域;(II)求的值;(III)求函数的零点.16. (本小题满分14分)已知. 其中是第三象限角.(Ⅰ)求的值;(Ⅱ)求的值;(III) 求πθπθθ⎛⎫+-++⎪⎝⎭sin2sin()cos22的值.17. (本小题满分13分) 已知向量,,其中.(Ⅰ)当时,求的值; (Ⅱ)当时,求的最大值.18. (本小题满分14分)函数f (x )=A sin(ωx +φ) (A >0,ω>0, |φ|<π2)的部分图象如图所示.(Ⅰ)求函数的解析式;(Ⅱ)将y =f (x )的图象向右平移π6个单位后得到新函数的图象,求函数的解析式;(Ⅲ)求函数的单调增区间.19. (本小题满分13分) 设二次函数满足条件: ①, ②;③在上的最小值为.(I )求的值;(II )求的解析式;(III )求最大值,使得存在,只要,都有成立.20.(本小题满分13分)若函数对任意的,均有,则称函数具有性质. (Ⅰ)判断下面两个函数是否具有性质,并说明理由.①; ②.(Ⅱ)若函数具有性质,且(),求证:对任意有;(Ⅲ)在(Ⅱ)的条件下,是否对任意均有.若成立给出证明,若不成立给出反例.密云县xx学年度第一学期期末考试高一数学试卷参考答案及评分参考xx.01二、填空题共6小题,每小题5分,共30分.9.-210.11.12.13.14.①③④三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题满分13分)解:(I)由题:, ----------------2分函数的定义域. ----------------4分(II)----------------8分(III)令,函数的零点为----------------13分16. (本小题满分14分)解:(Ⅰ)且是第三象限角,----------------2分----------------4分(Ⅱ)由(Ⅰ),----------------6分----------------9分(III)πθπθθ⎛⎫+-++⎪⎝⎭sin2sin()cos22----------------12分----------------14分17. (本小题满分13分)解:(Ⅰ)当时,,---------------2分----------------5分 (Ⅱ)由题:2222cos )2(cos sin 0)sin 0θθθθθθ=++⋅+⋅++. ----------------10分, .当即时, ----------------11分的最大值为. --------------- ----13分18. (本小题满分14分)解:(Ⅰ)由所给图象知A =1, ---------------1分34T =11π12-π6=3π4,T =π,所以ω=2πT =2.----------------2分 由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2得π3+φ=π2,解得φ=π6,-------4分所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. ----------------5分(Ⅱ)f (x )=sin ⎝⎛⎭⎪⎫2x +π6的图象向右平移π6个单位后得到的图象对应的函数解 析式为=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π6 ----------------7分=sin ⎝ ⎛⎭⎪⎫2x -π6. --------------9分(Ⅲ)由题:12cos 22cos 222x x x x =+-+. ----------------12分222,(),232k x k k Z πππππ-≤+≤+∈令 ----------------13分.------------14分 19.(本小题满分13分) 解:(I) ∵在上恒成立,∴即. ---------------------------2分 (II )∵,∴函数图象关于直线对称,∴∵,∴ ---------------------------4分 又∵在上的最小值为,∴,即, 由解得,∴; -------------7分 (III )∵当时, 恒成立,∴且,由得,解得 ---------------9分 由得:,解得,……………(10分)∵,∴11(4)9m t ≤-≤--=,---------------11分 当时,对于任意,恒有211(4)(109)(9)(1)044f x x x x x x --≤-+=--≤, ∴的最大值为. -------------------12分另解:(酌情给分)且 在上恒成立∵在上递减,∴, ∵在上递减,∴2min (1)11)x m -+=-+=- ∴,∴,, ∵,∴,∴,∴的最大值为 20.(本小题满分13分)(Ⅰ)证明:①函数具有性质.11(1)(1)2()222220x x x x f x f x f x -+-++-=+-⋅=>,……………1分即,此函数为具有性质.……………2分②函数不具有性质. ……………3分 例如,当时,,,所以,,……………4分 此函数不具有性质.(Ⅱ)假设为中第一个大于的值, 则,因为函数具有性质, 所以,对于任意,均有,所以0)1()()2()1()1()(>--≥≥---≥--i f i f n f n f n f n f , 所以()[()(1)][(1)()]()0f n f n f n f i f i f i =--+++-+>,与矛盾,所以,对任意的有. ……………9分 (Ⅲ)不成立.例如……………10分证明:当为有理数时,均为有理数,222(1)(1)2()(1)(1)2(112)2f x f x f x x x x n x x x -++-=-++---++-=,当为无理数时,均为无理数,22)1()1()(2)1()1(222=-++-=-++-x x x x f x f x f所以,函数对任意的,均有,即函数具有性质. ……………12分 而当()且当为无理数时,.所以,在(Ⅱ)的条件下,“对任意均有”不成立.……………13分 (其他反例仿此给分, 如等.)~34923 886B 衫f26355 66F3 曳27695 6C2F 氯K33946 849A 蒚525909 6535 攵d24485 5FA5 徥X24123 5E3B 帻}。

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案

XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。

1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。

$\{1\}$ B。

$\{3,5\}$ C。

$\{1,3,4,5\}$ D。

$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。

$22$ B。

$10$ C。

$8$ D。

$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。

$-\frac{3}{4}$ B。

$-\frac{4}{3}$ C。

$\frac{3}{4}$ D。

$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。

$\frac{\pi}{4}$ B。

$\frac{\pi}{3}$ C。

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc

高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。

高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线023:=+-y x l 的倾斜角为( )A .30°B .60°C .120°D .150°2.空间直角坐标系中,已知点()()5433,2,1,,、B A ,则线段AB 的中点坐标为( ) A .()432,,B .()431,,C .()532,,D .()542,, 3.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的俯视图可能为( )4.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确的有( ) A .1个 B .2个 C.3个 D .4个5.已知圆086221=+-+y y x C :,圆078:222=+-+x y x C ,则两圆21C C 、的位置关系为( )A .相离B .相外切 C.相交 D .相内切6.设入射光线沿直线y=2x+1射向直线12+=x y ,则被x y =反射后,反射光线所在的直线方程是( )A .032=++y xB .012=y+x 一 C.0123=y-x+ D .012=y-x- 7.直三棱柱111C B A ABC -中,若190AA AC AB BAC ==︒=∠,则异面直线1BA 与C B 1所成角的余弦值为( )A .0B .21C.22 D .238.已知βα,是两相异平面,n m ,是两相异直线,则下列错误的是( ) A .若βα⊂⊥m m ,,则βα⊥ B .若α//m ,n =⋂βα,则n m // C.若n m //,α⊥m ,则α⊥n D .若α⊥m ,β⊥n ,n m //,则βα// 9.若P 是圆1322=)+(y-C:x 上动点,则点P 到直线1y=kx-距离的最大值( ) A .3 B .4 C. 5 D .610.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于( ) A .21B .212- C.2 D .211.直线03=++m y x 与圆06422=--+x y x 相交于B A 、两点,若2|AB|≥,则m 的取值范围是( )A .[]8,8-B .[]4,4- C.[]4,8- D .[]8,4-12.已知点B A 、的坐标分别为(2,0)、(-2,0),直线BM AM ,相交于点M ,且直线BM 的斜率与直线AM 的斜率的差是1,则点M 的轨迹方程为( )A .)2(42±≠=x x yB .)2(142±≠-=x x y C. )2(142±≠+=x x y D .)2(42≠-=x x y 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 已知圆,圆,则两圆公切线的方程为 .14. 已知点),(y x P 为圆122=+y x 上的动点,则y x 42-的最小值为 . 15.如图,二面角βα--l 的大小是30°,线段α⊂AB ,AB l B ,∈与l 所成的角为45°,则AB 与平面β所成角的正弦值是 .16.如图,在平面直角坐标系xOy 中,圆36)1(:22=++y x A ,点)0,1(B ,点D 是圆A 上的动点,线段BD 的垂直平分线交线段AD 于点F ,设a b 、分别为点D F 、的横坐标,定义函数()a f b =,给出下列结论:①()11=f ;②()a f 是偶函数;③()a f 在定义域上是增函数; ④()a f 图象的两个端点关于圆心A 对称; ⑤动点F 到两定点B A 、的距离和是定值. 其中正确的是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知两条直线012)1(:1=++-y x a l ,03:2=++ay x l . (1)若21//l l ,求实数a 的值; (2)若22l l ⊥,求实数a 的值.18.如图所示,PA 是圆柱的母线,AB 是圆柱底面圆的直径,C 是底面圆周上异于B A ,的任意一点,2==AB PA . (1)求证:PC BC ⊥;(2)求三棱锥ABC P -体积的最大值,并写出此时三棱锥ABC P -外接球的表面积.19. 已知方程)(0124622R m my mx y x ∈=+-++ (1) 若此方程表示圆,求m 的取值范围;(2)若此方程表示圆C ,且点()2,2-A 在圆C 上,求过点()1,1P 的圆C 的切线方程。

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)

完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。

(−∞,3)∪(5,+∞)B。

(−∞,3)∪[5,+∞)C。

(−∞,3]∪[5,+∞)D。

(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。

a^3B。

a^3/2C。

a^3/4D。

都不对3.下列指数式与对数式互化不正确的一组是A。

e=1与ln1=0B。

8^(1/3)=2与log2^8=3C。

log3^9=2与9=3D。

log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。

x^2B。

x^3C。

e^xD。

1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。

log2B。

−1/lg2C。

lg2D。

−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。

y=−3x^−2B。

y=3^xC。

y=log_3xD。

y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。

高一数学期末(含答案)

高一数学期末(含答案)

高一数学期末(含答案)2019-2020学年度第一学期期末考试高一数学参考答案一、选择题1.解析:根据函数y=cos(-2x)的周期公式T=2π/|ω|可知,函数的最小正周期是T=π/2.故选D。

2.解析:根据勾股定理可得r=√(4^2+3^2)=5,由任意角的三角函数定义可得cosα=-4/5.故选B。

3.删除。

4.解析:由cos(π+α)=-cosα得cosα=-1/3.故选A。

5.解析:根据三角函数的基本关系sin^2α+cos^2α=1和1-cos2α=2sin^2(α/2)可得sinα=√(1-cos^2α)=√(26/169),tanα=sinα/cosα=-2/3.故选D。

6.删除。

7.解析:由题意可得函数f(x)的图像是连续不断的一条曲线,且f(-2)0,故f(0)·f(1)<0,即函数在(0,1)内有一个零点。

故选C。

8.解析:由勾股定理可得EB=√(ED^2+DB^2)=√(1+1/9)=√(10/9),AD=AB-DB=2AB/3,故EB/AD=√(10/9)/(2AB/3)=√10/2=AB/AD。

故选A。

9.解析:由a+b=a-b两边平方得a^2+2ab+b^2=a^2-2ab+b^2,即ab=0,故a⊥b。

故选A。

10.解析:大正方形的边长为10,小正方形的边长为2,故小正方形的对角线长为2√2.由勾股定理可得大正方形的对角线长为10√2,故大正方形内切圆的半径为5-√2,故其面积为(5-√2)^2π=23π-10√2.故选A。

4sinα-2cosα = 2(2sinα-cosα) = 2(2tanα-1)cosα/√(1+4tan^2α) 4(1-2sin^2α)/(5+3tanα) = 8/135cosα+3sinα = √34sin(α+0.424)sinαcosα = 22/37tanα=2.sinα=4/√20.cosα= -1/√20cos2α=5/13.cosα=±√5/13因为α是第三象限角,所以cosα=-√5/13.sinα=-2√5/131) 设X=2x+π/3,则X=2x+2πk/3.k∈Zy=sinX的单调递减区间为[2kπ+π/3.2kπ+5π/3]。

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。

6B。

8C。

7D。

92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。

2B。

$-1$C。

1D。

$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。

$f(x)=x,g(x)=|x|$B。

$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。

$f(x)=1,g(x)=x$D。

$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。

$y=-\frac{1}{2}$B。

$y=x^2$C。

$y=x+1$D。

$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。

$a<c<b$B。

$a<b<c$C。

$b<a<c$D。

$b<c<a$6.下列叙述中错误的是()A。

若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。

三点$A,B,C$能确定一个平面C。

若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。

若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年上学期高一期末考试试卷数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·五省联考]已知全集U =R ,则下列能正确表示集合{}0,1,2M =和{}220N x x x +==关系的韦恩(Venn )图是( )A .B .C .D .2.[2018·三明期中]已知函数()lg ,011,0x x f x x x >⎧=⎨+≤⎩,则()()1f f -=( )A .2-B .0C .1D .1-3.[2018·重庆八中]下列函数中,既是偶函数,又在(),0-∞内单调递增的为( ) A .22y x x =+B .2x y =C .22x x y -=-D .12log 1y x =-4.[2018·大庆实验中学]已知函数()32x f x a x=--的一个零点在区间()1,3内,则实数a 的取值范围是( )A .51,2⎛⎫- ⎪⎝⎭B .5,72⎛⎫⎪⎝⎭C .()1,7-D .()1,-+∞5.[2018·金山中学]某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是( )A .6B .22C .1D 66.[2018·黄山八校联考]若m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )A .若αβ⊥,m β⊥,则//m αB .若//m α,n m ⊥,则n α⊥C .若//m α,//n α,m β⊂,n β⊂,则//αβD .若//m β,m α⊂,n αβ=,则//m n7.[2018·宿州期中]已知直线1:30l mx y -+=与211:22l y x =-+垂直,则m =( )A .12-B .12C .2-D .28.[2018·合肥九中]直线l 过点()0,2,被圆22:4690C x y x y +--+=截得的弦长为23线l 的方程是( ) A .423y x =+ B .123y x =-+C .2y =D .423y x =+或2y =9.[2018·南宁模拟]如图,棱长为a 的正方体1111ABCD A B C D -中,M 为BC 中点,这直线1D M 与平面ABCD 所成角的正切值为( )A .32B .55C .255D .1210.[2018·东城期末]已知圆22:4C x y +=,直线():l x y m m +=∈R ,设圆C 上到直线l 的距离为1的点的个数为S ,当032m ≤<时,则S 的可能取值共有( ) A .2种B .3种C .4种D .5种11.[2018·云天化中学]如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =.则下列结论中正确的个数.....为( )①AC BE ⊥; ②EF ∥平面ABCD ;③三棱锥A BEF -的体积为定值; ④AEF △的面积与BEF △的面积相等. A .1 B .2C .3D .412.[2018·湛江调研]点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===, 若四面体ABCD 体积的最大值为3,则这个球的表面积为( ) A .169π16B .289π16C .25π16D .8π第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·华东师大附中]已知()214f x x +=-,则()f x 的解析式为__________.14.[2018·嘉兴三中]已知点()2,1A ,()2,3B -,()0,1C ,则ABC △中,BC 边上中线所在的直线方程为________.15.[2018·赣州期中]设某几何体的三视图如图所示,则该几何体的表面积是__________.主视图 左视图 俯视图16.[2018·嘉兴一中]若函数()224422f x x ax a a =-+-+在区间[]0,2上有两个零点, 则实数a 的取值范围是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)[2018·安庆期中]设全集{}1,2,3,4,5,6U =,A ,B 都是U 的子集,{}1,2A =,(){}4,6UA B =,(1)写出所有符合题意的集合B ;(2)计算:341lg2lg 3lg5log 2log 94-+-⋅.18.(12分)[2018宜昌期中·]设a 是实数,()2221x x a a f x ⋅+-=+,(1)证明:()f x 是增函数;(2)试确定a 的值,使()f x 为奇函数.19.(12分)[2018·华安一中]已知点()2,3A ,()4,1B ,ABC △是以AB 为底边的等腰 三角形,点C 在直线:220l x y -+=上.(1)求AB 边上的高CE 所在直线的方程;(结果写成直线方程的一般式) (2)求ABC △的面积.20.(12分)[2018·定远月考]如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.(1)试用x表示圆柱的高;(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?21.(12分)[2018·泸化中学]如图,四棱锥P ABCD -中,底面ABCD 是矩形,22AB AD ==,PD ⊥底面ABCD ,E ,F 分别为棱AB ,PC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PDE ⊥平面PEC .22.(12分)[2018·陕西四校联考]如图,直三棱柱111ABC A B C -的所有棱长都是2,D ,E 分别是AC ,1CC 的中点.(1)求证:AE ⊥平面1A BD ; (2)求三棱锥11B A BD -的体积.2018-2019学年上学期高一期末考试数学 答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】N 为220x x +=的解集,解220x x +=可得,0x =或2-, 则{}2,0N =-,{}0M N =≠∅,由选项中的Venn 图可得选项A 符合题意,故选A .2.【答案】C【解析】由题意得()111110f -=-+=,∴()()()110lg101f f f -===.故选C . 3.【答案】D【解析】根据奇偶性的定义知A 即不是奇函数也不是偶函数,C 是奇函数,B 、D 是偶函数,在(),0-∞上B 是减函数,D 是增函数.故选D . 4.【答案】C【解析】函数()32x f x a x=--是增函数,且一个零点在区间()1,3内,根据零点存在定理得到()()1030f f <>⎧⎪⎨⎪⎩解得a 的范围是()1,7-.故答案为C .5.【答案】A【解析】画出直观图如下图所示,计算各面的面积为1122ABC S ==△,12112ABD BCD S S ==⨯⨯=△△,12ACD S ==△,A .6.【答案】D【解析】对于A ,若αβ⊥,m β⊥,则//m α或m α⊂,故A 错误; 对于B ,若//m α,n m ⊥,则n α⊥或n α⊂或n 与α相交,故B 错误; 对于C ,若//m α,//n α,m β⊂,n β⊂,则//αβ或α、β相交,故C 错误; 对于D ,若//m β,m α⊂,n αβ=,由线面平行的性质定理,可得//m n ,故D 正确,故选D . 7.【答案】D【解析】很明显直线的斜率存在,直线方程即3y mx =+,1122y x =-+,由直线垂直的充分必要条件可得:112m -⨯=-,解得2m =.本题选择D 选项.8.【答案】D【解析】因为直线l 被圆22:4690C x y x y +--+=,()()22234x y -+-=截得的弦长为23()2431-=,设直线l 的方程为2y kx =+,(斜率不存在时不满足题223211k k -+=+,0k ∴=或43k =,即直线l 的方程是423y x =+或2y =,故选D . 9.【答案】C【解析】连接DM ,因为几何体是正方体,所以1D MD ∠就是直线1D M 与平面ABCD 所成角,1125tan 55DD D MD DM a∠===,故选C . 10.【答案】B【解析】因为圆C 上到直线l 的距离为[)0,32m ∈,所以当12m =时,圆C 上到直线l 的距离为1的点的个数为3;当()1,32m ∈时,圆C 上到直线l 的距离为1的点的个数为2;当[)0,12m ∈时,圆C 上到直线l 的距离为1的点的个数为4;因此S 的可能取值共有3种,故选B . 11.【答案】C【解析】连结BD ,则AC ⊥平面11BB D D ,11BD B D ∥.AC BE ∴⊥,EF ∥平面ABCD ,从而①②正确,又BEF △面积为定值,A 到平面11BB D D 距离为定值,所以三棱锥A BEF -的体积为定值,从而③正确,因为A 到11B D 的距离不等于1BB .所以AEF △的面积与BEF △的面积不相等,④错误. 故选C . 12.【答案】B【解析】根据题意知,ABC △是一个等边三角形,其面积为334,外接圆的半径为1,小圆的圆心为Q ,由于底面积ABC S △不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⨯=△4DQ =,设球心为O ,半径为R ,则在直角AQO △中,222OA AQ OQ =+,即()22214R R =+-,∴178R =, 则这个球的表面积为217289π4π816S ⎛⎫== ⎪⎝⎭,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】()223f x x x =--【解析】因为()214f x x +=-,∴令1x t +=,则1x t =-,()()()2211423f x f t t t t ∴+==--=--,∴函数()f x 的解析式为()223f x x x =--,故答案为()223f x x x =--.14.【答案】350x y +-=【解析】设BC 中点为(),D x y ,已知()2,3B -,()0,1C ,则()1,2D -, 因为()121213AD k -==---,所以BC 边上中线所在的直线方程为350x y +-=.15.【答案】36【解析】由几何体的三视图可知,该几何体是一个长、宽、高分别为4,2,2的长方体截去一个三棱锥1D ACD -后剩下的部分(如图所示).∵1AD C △的三边长分别分2,5511223262AD C S =⨯=△.故该几何体的表面积111422242424222636222S =⨯+⨯+⨯+⨯⨯+⨯⨯+⨯⨯+=.16.【答案】(1,57【解析】由题意,要使函数()224422f x x ax a a =-+-+在区间[]0,2上有两个零点,只要()()002002202f f a a f ≥≥<<⎛⎧⎪⎪⎪⎨⎫< ⎪⎝⎭⎪⎪⎪⎩,即2222010180022220a a a a a a -+≥-+≥<⎧⎪⎪⎪<⎨-+<⎪⎪⎪⎩,解得(1,5a ∈,故答案为(1,5. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1){}4,6,{}1,4,6,{}2,4,6,{}1,2,4,6;(2)2. 【解析】(1)集合B 为{}4,6,{}1,4,6,{}2,4,6,{}1,2,4,6.(2)341lg2lg 3lg5log 2log 94-+-⋅232lg 2lg 23lg 5log 2log 3-=-+-⋅lg22lg23lg51=++-()3lg2lg51=+-3lg101=-312=-=.18.【答案】(1)见解析;(2)1.【解析】(1)证明:设1x 、2x ∈R 且12x x <,()()()()()121212122222*********x x x x x x f x f x a a -⎛⎫⎛⎫-=---= ⎪ ⎪++++⎝⎭⎝⎭, 又由2x y =在R 上为增函数,则120x >,220x >, 由12x x <,可得12220x x -<,则()()120f x f x -<,故()f x 为增函数,与a 的值无关,即对于任意a ,()f x 在R 为增函数. (2)若()f x 为奇函数,且其定义域为R ,必有有()()f x f x -=-,即222121x x a a -⎛⎫-=-- ⎪++⎝⎭,变形可得()2212221x xa +==+, 解可得,1a =,即当1a =时,()f x 为奇函数.19.【答案】(1)10x y --=;(2)2.【解析】(1)由题意可知,E 为AB 的中点,13142AB k -==--, ∴()3,2E ,且11CE ABk k =-=,∴CE 所在直线方程为23y x -=-,即10x y --=. (2)由22010x y x y -+=--=⎧⎨⎩,得43x y =⎧⎨⎩=,∴()4,3C ,∴2AC BC ==,22AB =,∴AC BC ⊥,∴122ABC S AC BC =⋅=△. 20.【答案】(1)33h x =-;(2)当12x =时,它的侧面积最大为3π2.【解析】(1)设所求的圆柱的底面半径为x ,它的轴截面如图,1BO =,3PO =,圆柱的高为h ,由图,得313x h-=,即33h x =-. (2)∵()()22π2π336πS hx x x x x =-=-=圆柱侧,当12x =时,圆柱的侧面积取得最大值为3π2. ∴当圆柱的底面半径为12时,它的侧面积最大为3π2.21.【答案】(1)见解析;(2)见解析.【解析】(1)证明:如图,取PD 的中点G ,连接AG ,FG . 因为F ,G 分别是PC ,PD 的中点,所以GF DC ∥,且12GF DC =. 又E 是AB 的中点,所以AE DC ∥,且12AE DC =, 所以GF AE ∥,且GF AE =,所以四边形AEFG 是平行四边形,故EF AG ∥.又AG ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PD ⊥底面ABCD ,CE ⊂底面ABCD ,所以CE PD ⊥. 因为四边形ABCD 是矩形,且2AB AD =,所以AD AE =,BC BE =,所以45AED BEC ∠=∠=︒,DE CE ⊥.又PD DE D =,PD ⊂平面PDE ,DE ⊂平面PDE ,所以CE ⊥平面PDE , 又CE ⊂平面PEC ,所以平面PDE ⊥平面PEC . 22.【答案】(1)见解析;(2)33. 【解析】(1)∵AB BC CA ==,D 是AC 的中点,∴BD AC ⊥,∵直三棱柱111ABC A B C -中1AA ⊥平面ABC ,∴平面11AA C C ⊥平面ABC , ∴BD ⊥平面11AAC C ,∴BD AE ⊥.又∵在正方形11AAC C 中,D ,E 分别是AC ,1CC 的中点,∴1A D AE ⊥. 又1A DBD D =,∴AE ⊥平面1A BD .(2)连结1AB 交1A B 于O ,∵O 为1AB 的中点,∴点1B 到平面1A BD 的距离等于点A 到平面1A BD 的距离.∴111111113213332B A BD A A BD B AA D AA D V V V S BD ---===⨯⨯=⨯⨯⨯=△.。

相关文档
最新文档