杨辉三角形的生活运用和规律
杨辉三角的规律总结

杨辉三角的规律总结一、规律总结: 1、《杨辉三角》定理:两个互为补角的三角形的重心,它们的连线平分第三边。
应用定理:将三角形的一个角用内部的点和一条直线段分别与另外两个角的两边分别相连,这三条线段交于一点,则该点就是这个三角形的重心。
2、《杨辉三角》性质:等腰三角形的两底角的平方和等于第三个角的平方。
二、注意事项: 1、在解决具体问题时,需要结合图形中已知的一些关键信息或特征来推导出杨辉三角定理。
基本思路:利用重心计算两底边上的高。
一般地,由于一个角的顶点在另一个角的底边上,所以可以采用内心法来确定其重心。
也可以利用其他方法来确定重心。
比较常用的方法有:( 1)利用内部的两条线段或内部的三条线段构造三角形。
( 2)将重心分别向顶点延长,做出所要求的三角形。
2、做题时要灵活运用杨辉三角定理及性质,不要拘泥于杨辉三角定理。
3、在解题过程中,只要遇到角,总可以联想到三角形,但是,这时候我们应先找出其重心再判断出是不是在三角形内部,否则会把角放错位置。
例如:等腰三角形的性质与杨辉三角有什么关系呢?答案:因为任何等腰三角形的两底角的平方和等于第三个角的平方。
《杨辉三角》公式:两个互为补角的三角形的重心,它们的连线平分第三边。
1、例如:△abc是等腰直角三角形,∠a=∠b=90°, ad=dc=1,bc=ca=3,∠c=90°,则△abc的重心在( a) b( c) d( e) e或e( c) d( b) e( d) e或b( c) d( a) b例如:△abc是等腰直角三角形,∠abc=180°,∠ab=90°,∠ad=∠dc=1,∠bc=ca=3,∠a=∠b=90°,则△abc的重心在( a)b( c) d( e) e或e( c) d( b) e( d) e或b( c) d( a)b( d) c的解析:第1步:由∠acb=180°可得∠abc=180°,即△abc的三边长均为整厘米数。
杨辉三角的规律以及推导公式

杨辉三角的规律以及定理1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。
由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。
展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。
由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。
系数是杨辉三角里的系数。
2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n次幂,即杨辉三角第n 行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。
我国南宋数学家杨辉三角形解释二项和的乘方规律

我国南宋数学家杨辉三角形解释二项和的乘方规律
杨辉三角形是中国古代数学中著名的图形。
它是由数列构成的一个三角形,其中每个数字等于它上方的两个数字之和。
数学家杨辉在南宋时期发现了这个特殊的数列,因此得名杨辉三角形。
杨辉三角形不仅仅是一个有趣的数学现象,而且还有很多实际的应用。
其中一个重要的应用就是解释二项式系数的乘方规律。
二项式系数是指在二项式展开式中,某一项的系数,例如(a+b)^3展开后,其中的a^2b的系数为3。
这个系数可以用杨辉三角形来解释。
首先,我们可以将二项式(a+b)^n展开为
(a+b)(a+b)(a+b)...(a+b)的形式,其中有n个(a+b)相乘。
然后,我们可以将每个(a+b)展开成两个数a和b,并将它们排列在杨辉三角形的下一行。
对于第一行,我们将a和b排列在两端,然后在它们中间加上一个0,表示这一行的数字总数为3。
接着,我们通过依次将上一行的相邻数字相加得到下一行的数字,直到得到第n+1行为止。
这个构造的过程可以用图示表示。
例如,当n=3时,我们可以得到以下的杨辉三角形:
1
1 1
1 2 1
1 3 3 1
在这个杨辉三角形中,第n+1行的数字对应着二项式系数中的系
数。
例如,对于(a+b)^3展开式中的a^2b项,它的系数为3,对应着杨辉三角形的第四行中的数字3。
通过这种方法,我们可以很容易地求出任意二项式系数的值。
这不仅为数学家们提供了一个有用的工具,而且也让人们更好地理解了杨辉三角形这个有趣的数学现象。
杨辉三角形公式

杨辉三角形公式
杨辉三角的规律公式是:
1、第n 行数字和为2(n-1) (2 的(n-1) 次方)。
2、(a+b) n 的展开式中的各项系数依次对应杨辉三角的第(n+1) 行中的每一项。
3、第n 行的第m个数和第n-m 个数相等,即C(n,m)=C(n,n-m) 。
杨辉三角形,又称贾宪三角形、帕斯卡三角形,是二项式系数在三角形中的一种几何排列. 杨辉三角形同时对应于二项式定理的系数.
n次的二项式系数对应杨辉三角形的n + 1行.
例如在中,2次的二项式正好对应杨辉三角形第3行系数1 2 1.
杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1.
第n行的数字个数为n个.
第n行的第k个数字为组合数.
第n行数字和为2n −1.
除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和(也就是说,第n行第k个数字等于第n - 1行的第k −1个数字与第k个数字的和).这是因为有组合恒等式:.可用此性质写出整个杨辉三角形.。
杨辉三角的规律以及推导公式

精心整理杨辉三角的规律以及定理1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。
222则为:11(11)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。
由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。
系数是杨辉三角里的系数。
2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)6,…n31615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。
n(3)中第2、每行数字左右对称,由1开始逐渐变大。
3、第n行的数字有n+1项。
4、第n行数字和为2(n-1)。
(2的(n-1)次方)5 (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
[1]6、第n行的第m个数和第n-m个数相等,即C(n,m)=C(n,n-m),这是组合数性质。
杨辉三角与组合定理

杨辉三角与组合定理杨辉三角是一种中国古老而神奇的数学图形,以其独特的性质和美妙的规律而闻名于世。
组合定理是数学中一个重要的概念,与杨辉三角有着密切的关系。
本文将对杨辉三角与组合定理进行探讨,介绍其定义、性质以及应用。
一、杨辉三角的定义与性质杨辉三角是一个由数字排列成金字塔形状的三角形,其中每个数字是由它上方两个数字的和给出。
三角形的左侧和右侧都为1,其他位置上的数字是由上方两个数字相加得到。
例如,第三行的数字为1、2、1,第四行的数字为1、3、3、1,以此类推。
杨辉三角具有许多有趣的性质。
其中最为著名的性质是每一行的数字之和都等于2的n次方,其中n为行数。
例如,第三行数字之和为1+2+1=4,等于2的2次方。
这一性质被称为二项式定理。
另一个有趣的性质是杨辉三角中的数字与组合数相关。
组合数是组合学中的一个重要概念,用于表示从n个元素中取出k个元素的方法数。
杨辉三角中的每个数字都可以用来表示一种组合数。
例如,第三行的数字1、2、1分别对应着1个元素取1个、2个元素取1个、以及2个元素取2个的组合数。
二、组合定理的定义与性质组合定理是一个用于计算组合数的公式。
组合数计算的问题可以简化为利用组合定理求解。
组合定理有两种常见的形式,分别是阶乘形式和递推形式。
阶乘形式的组合定理表示为C(n,k)=n!/(k!(n-k)!),其中n!表示n的阶乘。
这个公式意味着从n个元素中取出k个元素的方法数等于n的阶乘除以k的阶乘乘以(n-k)的阶乘。
递推形式的组合定理利用了杨辉三角的性质来计算组合数。
根据杨辉三角的规律,第n行第k个数字等于第n-1行第k-1个数字与第n-1行第k个数字之和。
因此,可以使用递推公式C(n,k)=C(n-1,k-1)+C(n-1,k)来计算组合数。
组合定理还有一些重要的性质。
其中最为著名的是组合恒等式,表示为C(n,k)=C(n-1,k-1)+C(n-1,k)。
这个恒等式意味着从n个元素中取出k个元素的方法数等于从n-1个元素中取出k-1个元素的方法数与从n-1个元素中取出k个元素的方法数之和。
杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)杨辉三角的规律以及定理1二项式定理与杨辉三角与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。
杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。
由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。
展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:14641似乎发现了一些规律,就可以发现以下呈三角形的数列:1(110)11(111)121(112)1331(113)14641(114)15101051(115)1615201561(116)杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。
由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。
系数是杨辉三角里的系数。
2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)14641(1+4+6+4+1=16)15101051(1+5+10+10+5+1=32)1615201561(1+6+15+20+15+6+1=64)……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n 次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3杨辉三角中斜行和水平行之间的关系(1)1(2)n=111(3)n=2121(4)n=31331(5)n=414641(6)n=515101051n=61615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。
杨辉三角

r!(n-r)!r!(n-r)!
例如:第4列第1元素(n=4,r=1)是
4!
--------
1!(4-1)!
= 4= 4
5!=5×4×3×2×1=120. 8!=8×7×6×5×4×3×2×1=40320
第n 列元素合是2n.
20= 120=1
21= 1+1 = 221=1+1=2
1665年,牛顿把二项式定理推广到n为分数 与负数的情形,给出了的展开式。
应用
二项式定理在组合理论、开高次方、高阶 等差数列求和,以及差分法中有广泛的应 用。
排列与组合
、Cn0+Cn1+Cn2……Cnk……Cnn=2^n
2、Cno-Cn1+Cn2-Cn3+……(-1)^nCnn=0
杨辉三角前12行
第 1 行:1
第 2 行:1 1
第 3 行:1 2 1
第 4 行: 1 3 3 1
第 5 行: 1 4 6 4 1
第 6 行:1 5 10 10 5 1
第 7 行: 1 6 15 20 15 6 1
第 8 行: 1 7 21 35 35 21 7 1
13世纪中国宋代数学家杨辉在《详解九章算术》里讨论这种形式的数表,并说明此表引自11世纪前半贾宪的《释锁算
术》,并绘画了“古法七乘方图”。故此,杨辉三角又被称为“贾宪三角”。
元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。
意大利人称之为“塔塔利亚三角形”(Triangolo di Tartaglia)以纪念在16世纪发现一元三次方程解的塔塔利亚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨辉三角形规律
每行数字两边对称每行数字左右对称,由1开始逐渐变大,然后变小,回到1。
第n行的数字个数为n个。
第n行数字和为2^(n-1)。
(2的(n-1)次方)
每个数字等于上一行的左右两个数字之和。
可用此性质写出整个帕斯卡三角形。
将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。
将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。
第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依此类推。
两个未知数和的n次方运算后的各项系数依次为杨辉三角的第(n+1)行
杨辉三角在弹球游戏中的应用
如图1的弹球游戏,小球向容器内跌落,碰到第一层挡物后向两侧跌落碰到第二层阻挡物,再向两侧跌落第三层阻挡物,如此一直下跌最终小球落入底层。
根据具体地区获的相应的奖品(。
图1
我们来分析一下为什么小球落到不同区域奖品会有如此大的差别?A 区的奖品价值高于D 区,说明小球落入A 区的可能性要比落入D 区的可能性小,转化为数学问题就是小球落入A 区和D 区的概率。
小球要落入D 区的情况有两种,有概率知识得:
D 1 D 2
就是说,小球落入D 区的概率是等于它肩上两区域概率之和的
2
1,据此小球落入各区的概率为可以按以上方法类推,如下: 2121
1
8381
3213232323232
1
64646641564206415646641 A B C D E F G
图2
观察上图,小球落到AD两区的概率要比其它区域小的多,当然奖品就要多一些。
从该图中不难发现各区域的概率分子与杨辉三角形完全一致,我们可以利用杨辉三角的性质直接得出小球落到AD两区的概率要比其它区域小的多。