浙江高考理科数学试题及复习资料
浙江高考理科数学试题及答案(Word版)

普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.、在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b b a +==(1)求n a 与n b ;(2)设()*∈-=N n b a c nn n 11。
高考真题——理科数学(浙江卷)解析版(1) Word版含答案

数学理试题(浙江卷)一.选择题1、已知i 是虚数单位,则=-+-)2)(1(i iA. i +-3B. i 31+-C. i 33+-D.i +-12、设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )( A. ]1,2(- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞ 答案:C 解析:如图1所示,由已知得到考点定位:此题考查集合的使用之补集和并集体,考查一元二次不等式的解法,利用数轴即可解决此题,体现数形结合思想的应用,此考点是历年来高考必考考点之一,属于简单题; 3、已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222•=+ C.y x yx lg lg lg lg 222+=• D.y x xy lg lg )lg(222•=答案:D解析:此题中,由考点定位:此题考查对数的运算法则和同底数幂的乘法的运算法则;4、已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件 答案:B 解析:考点定位:充分条件的判断和三角函数的奇偶性性质知识点;5、某程序框图如图所示,若该程序运行后输出的值是59,则 A.4=a B.5=a C. 6=a D.7=a 答案:A解析:由图可知考点定位:此题考查算法及数列的列项相消求和的方法;6、已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- 答案:C解析:由已知得到:考点定位:此题考查同角三角函数商数关系和平方关系的灵活应用,考查二倍角正切公式的应用,考查学生的运算求解水平;7、设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00•≥•。
【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
年高考浙江卷理科数学试题及详细解答

普通高等学校招生全国统一考试数学(理科)浙江卷本试题卷第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1至2页,第Ⅱ卷3至4页 满分150分,考试时间120钟请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共 50 分)注意事项:1. 答第 1 卷前,考生务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2. 每小题选出正确答案后,用2B 铅笔把答题纸上对应题目的答案标号填黑.叁考正式:如果事件 A , B 互斥,那么P ( A+ B ) = P( A)+ P( B) S=24R πP( A+ B)= P( A). P( B) 其中 R 表示球的半径 如果事件A 在一次试验中发生的概念是p 球的体积公式V=234R π 那么n 次独立重复试验中恰好发生 其中R 表示球的半径 k 次的概率:k n kn n p p C k P +-=)1()(4一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=(A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4] (2) 已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 (A)1+2i (B) 1-2i (C)2+i (D)2-I (3)已知0<a <1,log 1m <log 1n <0,则(A)1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1(4)在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x 表示的平面区域的面积是(A) (B)4(C) (D)2(5)双曲线122=-y m x 上的点到左准线的距离是到左焦点距离的31,则m=( ) (A)21 (B)23 (C)81 (D)89(6)函数y=21sin2x+sin 2x,x R ∈的值域是 (A)[-21,23] (B)[-23,21] (C)[2122,2122++-] (D)[2122,2122---] (7)“a >b >c ”是“ab <222b a +”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不允分也不必要条件(8)若多项式=+-+++++=+911102910012a ,)1(a )1(a )1(则x x x a a x x(A)9 (B)10 (C)-9 (D)-10(9)如图,O 是半径为l 的球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与AC 的中点,则点E 、F 在该球面上的球面距离是(A)4π (B)3π (C)2π(D)42π(10)函数f:{1,2,3}→{1,2,3}满足f(f(x))= f(x),则这样的函数个数共有(A)1个 (B)4个 (C)8个 (D)10个第Ⅱ卷(共100分)注意事项:1. 用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
理科数学专题复习试题选编10:排列组合(教师版) 含解析(高考)

浙江省 理科数学专题复习试题选编10:排列、组合一、选择题1 .(2013届浙江省高考压轴卷数学理试题)若从1,2,3,,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( )A .60种B .63种C .65种D .66种【答案】A【解析】 若四个数之和为奇数,则有1奇数3个偶数或者3个奇数1个偶数.若1奇数3个偶数,则有1354=20C C 种,若3个奇数1个偶数,则有3154=40C C ,共有2040=60+种.2 .(浙江省海宁市2013届高三2月期初测试数学(理)试题)现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有 ( ) A .27种 B .35种 C .29种 D .125种 【答案】B3 .(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A 到B 的最短线路有( )条 ( )A .100B .400C .200D .250【答案】C4 .(浙江省建人高复2013届高三第五次月考数学(理)试题)用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为( ) A .18 B .108 C .216 D .432 【答案】D5 .(浙江省金华十校2013届高三4月模拟考试数学(理)试题)从1,2,3,9这9个整数中任意取3个不同的数作为二次函数2()f x ax bx c =++的系数,则满足(1)2f Z ∈的函数()f x 共有( )A .263个B .264个C .265个D .266个A B【答案】B6 .(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )某校周四下午第五、六两节是选修课时间,现有甲、乙、丙、丁四位教师可开课.已知甲、乙教师各自最多可以开设两节课,丙、丁教师各自最多可以开设一节课.现要求第五、六两节课中每节课恰有两位教师开课(不必考虑教师所开课的班级和内容),则不同的开课方案共有___种. ( ) A .15 B .16 C .19 D .20 【答案】C 解析: 以丙、丁教师是否开课来讨论:(1)若丙、丁教师均不开课,情况有1种,(2)若丙、丁教师中恰有一人开课,情况有8C 121212=C C 种,(3)若丙、丁教师均开课,则①若丙、丁教师在相同节次开课,情况有2C 12=种,②若丙、丁教师在不同节次开课,情况有8)(C C 1212=+22A 种,综上,一共有1+8+2+8=19种,故选C7 .(浙江省五校联盟2013届高三下学期第一次联考数学(理)试题)将一个三位数的三个数字顺序颠倒,将所得到的数和原数相加,若和中没有一个数字是偶数,则称这个数是奇和数.那么,所有的三位数中,奇和数有 ( ) A .80 B .100 C .120 D .160 【答案】B8 .(浙江省五校2013届高三上学期第一次联考数学(理)试题)在1,2,3,4,5,6,7的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式种数共有 ( )A .576B .720C .864D .1152【答案】C .9 .(浙江省温州中学2013届高三第三次模拟考试数学(理)试题),,,,A B C D E 五个人并排站成一排,如果,A B 必须相邻且C 在D 的右边,那么不同的排法种数有 ( )A .60种B .48种C .36种D .24种【答案】D .10.(浙江省温岭中学2013届高三高考提优冲刺考试(五)数学(理)试题)某人从{O ,P ,Q ,R }中选2个不同字母,从{0,2,5,6,8}中选3个不同数字组成车牌号,要求前三位是数字,后两位是字母,且数字0不能排在首位,O ,Q 不能同时选,字母O 和数字0要求不能相邻,那么满足要求的车牌号有( )个. ( ) A .528B.504 C .456D .288【答案】C11.(浙江省十校联合体2013届高三上学期期初联考数学(理)试题)从0,4,6中选两个数字,从3.5.7中选两个数字,组成无重复数字的四位数.其中偶数的个数为()A.56 B.96 C.36 D.360【答案】B12.(温州市2013年高三第一次适应性测试理科数学试题)甲、乙两人计划从A、B、C三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有()A.3种B.6种C.9种D.12种【答案】B13.(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是公益宣传广告,且2个公益宣传广告不能连续播放,则不同的播放方式有()A.18种B.36种C.48种D.120种【答案】B14.(浙江省稽阳联谊学校2013届高三4月联考数学(理)试题(word版))三个相同红球和一个白球放入4个不同盒子中(存放数量不限)的不同放法种数是()A.16B.64C.80D.150【答案】C15.(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)现需编制一个八位的序号,规定如下:序号由4个数字和2个x、1个y、1个z组成;2个x不能连续出现,且y在z的前面;数字在0、1、2、、9之间任选,可重复,且四个数字之积为8.则符合条件的不同的序号种数有()A.12600 B.6300 C.5040 D.2520【答案】B16.(浙江省六校联盟2013届高三回头联考理科数学试题)如图所示是某个区域的街道示意图(每个小矩形的边表示街道)那么从A到B的最短线路有( )条( )A .100B .400C .200D .250【答案】C17.(浙江省绍兴一中2013届高三下学期回头考理科数学试卷)六名大四学生(其中4名男生、2名女生)被安排到 ( )A .B .C 三所学校实习,每所学校2人,且2名女生不到同一学校,也不到C 学校,男生甲不到A 学校,则不同的安排方法共有 ( ) A .9种 B .12种 C .15种D .18种 【答案】D18.(浙江省重点中学协作体2013届高三摸底测试数学(理)试题)如果一条直线与一个平面垂直,那么,称此直线与平面构成一个 “正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成 “正交线面对”的个数是 ( ) A .48 B .36 C .24 D .18 【答案】B19.(浙江省嘉兴市第一中学2013届高三一模数学(理)试题)如图,给定由10个点(任意相邻两点距离为1)组成的 正三角形点阵,在其中任意取三个点,以这三个点为顶 点构成的正三角形的个数是( )A .13B .14C .15D .17【答案】C 二、填空题20.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将FE D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48021.(2013年杭州市第一次高考科目教学质量检测理科数学试题)从3,2,1,0中任取三个数字,组成无重复数字的三位数中,偶数的个数是________(用数字回答).【答案】10解:考虑三位数“没0”和“有0”两种情况.【1】没0:2必填个位,22A 种填法;【2】有0:0填个位,23A 种填法;0填十位,2必填个位,12A 种填法; 所以,偶数的个数一共有22A +23A +12A =10种填法.22.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word 版) )将7支不同的笔全部放入两个不同的笔筒中,每个笔筒中至少放两支笔,有____种不同的放法.(用数 字作答)【答案】11223.(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word 版) )甲、乙、丙三位学生在学校开设的三门选修课中自主选课,其中甲和乙各选修其中的两门,丙选修其中的一门,且每门选修课这三位学生中至少有一位选修,则不同的选法共有______种. 【答案】2124.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)有两排座位,前排11个座位,后排12个座位.现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有不同安排方法多少种?______(用数字作答). 【答案】34625.(浙江省杭州二中2013届高三年级第五次月考理科数学试卷)将2个相同的a 和2个相同的b 共4个字母填在33 的方格内,每个小方格内至多填个字母,若使相同字母既不同行也不同列,则不同的填法共有_______种(用数字作答) 【答案】19826.(浙江省温州市十校联合体2013届高三上学期期末联考理科数学试卷)用字母A 、Y,数字1、8、9构成一个字符不重复的五位号牌,要求字母A 、Y 不相邻,数字8、9相邻,则可构成的号牌个数是____(用数字作答) . 【答案】 2427.(浙江省温州市2013届高三第三次适应性测试数学(理)试题(word 版) )用5个数字1、1、2、2、3可以组成不同的五位数有______个【答案】3028.(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有_________.【答案】19229.(【解析】浙江省镇海中学2013届高三5月模拟数学(理)试题)给图中A 、B 、C 、D 、E 、F 六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有__________种不同的染色方案.【答案】答案96 解:先染ABC 有34A 种,若A,F 不相同,则F,E,D 唯一;若AF 相同,讨论EC,若EC 相同,D 有2种,则3412A ⨯⨯,若EC 不相同,D 有1种,则3411A ⨯⨯.所以一共有34A +3412A ⨯⨯+3411A ⨯⨯= 96种.30.(浙江省杭州高中2013届高三第六次月考数学(理)试题)前12个正整数组成一个集合{}1,2,3,,12⋅⋅⋅,此集合的符合如下条件的子集的数目为m :子集均含有4个元素,且这4个元素至少有两个是连续的.则m 等于_______ .【答案】36931.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)从6名候选人中选派出3人参加A 、B 、C 三项活动,且每项活动有且仅有1人参加,甲不参加A 活动,则不同的选派方法有__________种. 【答案】10032.(浙江省嘉兴市2013届高三第二次模拟考试理科数学试卷)从点A 到点B 的路径如图所示,则不同的最短路径共有____条.【答案】22;33.(浙江省温州八校2013届高三9月期初联考数学(理)试题)某停车场有一排编号为1至BA BCD E F (第16题图)A BCD E F (第16题图)7的七个停车空位,现有2辆不同的货车与2辆不同的客车同时停入,每个车位最多停一辆车,若同类车不停放在相邻的车位上,则共有________种不同的停车方案.【答案】44034.(浙江省杭州二中2013届高三6月适应性考试数学(理)试题)有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有_____种.(用数字作答)【答案】.50。
高考理科数学(浙江卷)试题及答案

高考理科数学浙江卷试题及答案第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题, 每小题5分, 共50分在每小题给出的四个选项中, 只有一项是符合题目要求的1.limn →∞2123nn ++++L =( )(A) 2 (B) 4 (C) 21(D)02.点(1, -1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C) 2(D)23.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩, 则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25414.在复平面内, 复数1i i++(1+3i )2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中, 含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.设α、β 为两个不同的平面, l 、m 为两条不同的直线, 且l ⊂α, m ⊂β, 有如下的两个命题:①若α∥β, 则l ∥m ;②若l ⊥m , 则α⊥β.那么 (A) ①是真命题, ②是假命题 (B) ①是假命题, ②是真命题 (C) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长, 则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)8.已知k <-4, 则函数y =cos2x +k (cos x -1)的最小值是( )(A) 1 (B) -1 (C) 2k +1 (D) -2k +19.设f (n )=2n +1(n ∈N ), P ={1, 2, 3, 4, 5}, Q ={3, 4, 5, 6, 7}, 记P ∧={n ∈N |f (n )∈P }, Q ∧={n ∈N |f (n )∈Q }, 则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( )(A) {0, 3} (B){1, 2} (C) (3, 4, 5} (D){1, 2, 6, 7}10.已知向量a r ≠e r , |e r |=1, 对任意t ∈R , 恒有|a r -t e r |≥|a r -e r|, 则 (A) a r ⊥e r (B) a r ⊥(a r -e r ) (C) e r ⊥(a r -e r ) (D) (a r +e r )⊥(a r -e r )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题, 每小题4分, 共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R , 且x ≠-2)的反函数是_________. , 此时点A 在平面BCDE 内的射影恰为点B , 则M 、N 的连线与AE 所成角的大小等于_________.13.过双曲线22221x y a b -=(a >0, b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点, 以MN 为直径的圆恰好过双曲线的右顶点, 则双曲线的离心率等于_________. 14.从集合{O , P , Q , R , S }与{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O , Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题, 每小题14分, 共84分解答应写出文字说明, 证明过程或演算步骤15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0, π), f (2α)=41-2, 求sin α的值.16.已知函数f (x )和g (x )的图象关于原点对称, 且f (x )=x 2=2x .N(Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.17.如图, 已知椭圆的中心在坐标原点, 焦点12,F F 在x 轴上, 长轴12A A 的长为4, 左准线l 与x 轴的交点为M , |MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1), P 为1l 上的动点使12F PF 最大的点P 记为Q , 求点Q 的坐标(用m 表示).18.如图, 在三棱锥P -ABC 中, AB ⊥BC , AB =BC =kPA , 点O 、D 分别是AC 、PC 的中点, OP ⊥底面ABC . (Ⅰ)当k =21时, 求直线PA 与平面PBC 所成角的大小;(Ⅱ) 当k 取何值时, O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球, 从A 中摸出一个红球的概率是31, 从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球, 每次摸出一个, 有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ, 求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12, 将A 、B 中的球装在一起后, 从中摸出一个红球的概率是25, 求p 的值.20.设点n A (n x , 0), 1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *), 其中a n =-2-4n -112n -, n x 由以下方法得到: x 1=1, 点P 2(x 2, 2)在抛物线C 1:y =x 2+a 1x +b 1上, 点A 1(x 1, 0)到P 2的距离是A 1到C 1上点的最短距离, …, 点11(,2)nn n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x , 0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分, 满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分, 满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1)25125sin,cos 6262ππ==Q ,225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()1cos 2sin 2222f x x x =-+11sin 222242f ααα⎛⎫∴=+-=-⎪⎝⎭ 216sin 4sin 110αα--=,解得sin α=()0,,sin 0απα∈∴>Q故sin α=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识, 以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y , 则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时, 2210x x -+≤, 此时不等式无解当1x <时, 2210x x +-≤, 解得12x -≤≤ 因此, 原不等式的解集为11,2⎡-⎢⎣(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角, 点的坐标等基础知识, 考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>, 半焦距为c , 则2111,a MA a A F a c c =-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴=== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时, 120F PF ∠=;当00y ≠时, 22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+, 直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时, 12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识, 同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点, OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥=Q ,, OA OB OC ∴== ,OP ABC ⊥Q 又 平面, .PA PB PC ∴== E PE BC POE ⊥取BC 中点,连结,则平面 OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角.又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠==在中,PBC ∴ PA 与平面所成的角为(Ⅲ)由(Ⅱ)知, OF PBC ⊥平面, ∴F 是O 在平面PBC 内的射影∵D 是PC 的中点,若点F 是PBC ∆的重心, 则B, F, D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD,,,OB PC PC BD PB PC ⊥∴⊥∴=Q , 即k =反之, 当1k =时, 三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心A方法二:OP ABC ⊥Q 平面, ,OA OC AB BC ==,,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点, 射线OP 为非负z 轴, 建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,0,,0,,0,0222A a B C ⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 设OP h =, 则()0,0,P h (Ⅰ)Q D 为PC 的中点,1,0,2OD h ⎛⎫∴= ⎪ ⎪⎝⎭u u u r ,又1,0,,,//2PA h OD PA OD PA ⎫=-∴=-∴⎪⎪⎝⎭u u u r u u u r u uu r u u u r ,OD PAB ∴ 平面∥(Ⅱ)12k =Q ,即2,,,0,PA a h PA ⎫=∴=∴=⎪⎪⎝⎭u u u r , 可求得平面PBC的法向量1,1,n ⎛=- ⎝r ,cos ,30||||PA n PA n PA n ⋅∴〈〉==⋅u u u r ru u u r r u uu r r , 设PA 与平面PBC 所成的角为θ, 则sin |cos ,|PA n θ=〈〉=u u u r r, (Ⅲ)PBC ∆的重心1,3G h ⎛⎫ ⎪ ⎪⎝⎭,1,,663OG a a h ⎛⎫∴=- ⎪ ⎪⎝⎭u u u r ,,OG PBC OG PB ⊥∴⊥u u u r u u u rQ 平面,又22110,,,0,2632PB a h OG PB a h h a ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭u u u r u u u r u u u r ,PA a ∴==, 即1k =,反之, 当1k =时, 三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识, 以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点, 则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=, 即()()()222122127270x x x b x-+-+-=又()22,2P x 在1C 上,222127x x b ∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+ (Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P ==令()()()222n n ng x x x x a x b =-+++则()()()()2222n n nng x x x x a x b x a '=-++++由题意得()10n g x +'=即()()()21112220n n n n nn n x x x a x b xa +++-++++=又1212n n n n n x a x b ++=++Q ,()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n n n n n x x a +++-+=下面用数学归纳法证明21n x n =-, ①当1n =时, 11x =, 等式成立;②假设当n k =时, 等式成立, 即21k x k =-,则当1n k =+时, 由()*知()111220k k k k k x x a +++-+=,又11242k k a k -=---, 1122112k k k k k x a x k ++-∴==++, 即1n k =+时, 等式成立由①②知, 等式对*n N ∈成立, 故{}n x 是等差数列(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念, 同时考查学生的逻辑思维能力14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0, 1, 2, 3, ; 由n 次独立重复试验概率公式()()1n kkkn n P k C p p -=-, 得()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381Eξ=⨯+⨯+⨯+⨯= (Ⅱ)设袋子A中有m个球, 则袋子B中有2m个球由122335m mpm+=, 得1330p=。
2019年浙江省高考理科数学试卷及答案解析(word版)

2019年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A , 则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数 x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nmy x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入个球后,从甲盒中取1个球是红球的概率记为 ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时, 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 . 若{}na 为 等比数列,且.6,2231b b a +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
最新整理高考浙江数理科试卷含答案全word.doc

普通高等学校招生全国统一考试浙江卷数学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·(B ) 如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生k 次的概率: k n k k n n p p C k P --=)1()(球的表面积公式 S=42R π其中R 表示球的半径求的体积公式V=334R π其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,iia +-1是春虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则(A ()()=A C B B C A u u (A )∅ (B ){}0|≤χχ(C ){}1|->χχ (D ){}10|-≤>χχχ或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274(5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21) (7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan = (A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22(10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是(A )圆 (B )椭圆(C )一条直线 (D )两条平行直线普通高等学校招生全国统一考试浙江卷数学(理科)第Ⅱ卷(共100分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(浙江卷)数学(理科)试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数2,0,()()4,0.x x f x f x x α-≤⎧==⎨>⎩若,则实数α=A .-4或-2B .-4或2C .-2或4D .-2或22.把复数z 的共轭复数记作z ,i 为虚数单位,若1,(1)z i z z =++⋅则= A .3 B .3 C .1+3i D .33.若某几何体的三视图如图所示,则这个几何体的直观图可以是4.下列命题中错误..的是 A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ⋂,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β5.设实数,x y 满足不等式组250270,0x y x y x +-⎧⎪+-⎨⎪⎩>>≥,y ≥0,若,x y 为整数,则34x y +的最小值是A .14B .16C .17D .196.若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+= A .33 B .33-C .539D .69-7.若,a b 为实数,则“01mab <<”是11a b b a<或>的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则A .2132a =B .213a =C .212b =D .22b =9.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A .15B .25C .35 D 4510.设a ,b ,c 为实数,f (x )=()22(),()(1)(1)x bx c g x ax ax bx ++=+++.记集合()0,,()0,,x f x x R T x g x x R =∈==∈若S ,T 分别为集合元素S ,T 的元素个数,则下列结论不可能...的是 A .S =1且T =0 B .1T =1S =且 C .S =2且T =2D .S =2且T =3非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分11.若函数2()f x x x a =-+为偶函数,则实数a = = 。
12.若某程序框图如图所示,则该程序运行后输出的k 的值是 。
13.设二项式(x)6(a>0)的展开式中X 的系数为A,常数项为B , 若4A ,则a 的值是 。
14.若平面向量α,β满足|α1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
15.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙丙公司面试的概率为p ,且三个公司是否让其面试是相互独立的。
记X 为该毕业生得到面试得公司个数。
若1(0)12P X ==,则随机变量X 的数学期望()E X =16.设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .。
17.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题;本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在ABC ∆中,角..A B C 所对的边分别为.已知()sin sin sin ,A C p B p R +=∈且214ac b =. (Ⅰ)当5,14p b ==时,求,a c 的值; (Ⅱ)若角B 为锐角,求p 的取值范围;19.(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a 为a (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列 (1)求数列{}n a 的通项公式及n S (2)记1231111...n n A S S S S =++++,212221111...nn B a a a a =++++,当2n ≥时,试比较n A 与n B 的大小.20.(本题满分15分)如图,在三棱锥P ABC -中,AB AC =,D 为的中点,⊥平面,垂足O 落在线段上,已知8,4,3,2 (Ⅰ)证明:⊥;(Ⅱ)在线段上是否存在点M ,使得二面角为直二面角?若存在,求出的长;若不存在,请说明理由。
21.(本题满分15分)已知抛物线1C :3x =y ,圆2C :22(4)1x y +-=的圆心为点M(Ⅰ)求点M 到抛物线1c 的准线的距离;(Ⅱ)已知点P 是抛物线1c 上一点(异于原点),过点P 作圆2c 的两条切线,交抛物线1c 于A ,B 两点,若过M ,P 两点的直线l 垂直于,求直线l 的方程22.(本题满分14分)设函数R a x a x x f ∈-=,ln )()(2(I )若)(x f y e x ==为的极值点,求实数a ;()求实数a 的取值范围,使得对任意的]3,0(e x ∈,恒有)4(2e xf ≤成立,注:e 为自然对数的底数。
参考答案一、选择题:本大题考查基本知识和基本运算。
每小题5分,满分50分。
二、填空题:本题考查基本知识和基本运算。
每小题4分,满分28分。
11.0 12.5 13.2 14.5[,]66ππ15.5316.5 17.(0,1)± 三、解答题:本大题共5小题,共72分。
18.本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力。
满分14分。
(I )解:由题设并利用正弦定理,得5,41,4a c ac ⎧+=⎪⎪⎨⎪=⎪⎩解得1,1,41, 1.4a a c c =⎧⎧=⎪⎪⎨⎨=⎪⎪=⎩⎩或 ()解:由余弦定理,2222cos b a c ac B =+-222222()22cos 11cos ,2231cos ,22a c ac ac B pb b b B p B =+--=--=+即因为230cos 1,(,2)2B p <<∈得,由题设知0,2p p ><<所以19.本题主要考查等差数列、等比数列、求和公式、不等式等基础知识,同时考查分类讨论思想。
满分14分。
(I )解:设等差数列{}n a 的公差为d ,由2214111(),a a a =⋅ 得2111()(3)a d a a d +=+因为0d ≠,所以d a =所以1(1),.2n n an n a na S +==()解:因为1211()1n S a n n =-+,所以 123111121(1)1n n A S S S S a n =++++=-+ 因为1122n n a a --=,所以21122211()11111212(1).1212n nn nB a a a a a a --=++++=⋅=-- 当0122,21n n n n n n n C C C C n ≥=++++>+时,即1111,12n n -<-+ 所以,当0,;n n a A B ><时 当0,.n n a A B <>时20.本题主要考查空是点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力和运算求解能力。
满分15分。
方法一:(I )证明:如图,以O 为原点,以射线为z 轴的正半轴,建立空间直角坐标系O —则(0,0,0),(0,3,0),(4,2,0),(4,2,0),(0,0,4)O A B C P --,(0,3,4),(8,0,0)AP BC ==-,由此可得0AP BC ⋅=,所以AP BC ⊥,即.AP BC ⊥()解:设,1,(0,3,4)PM PA PM λλλ=≠=--则BM BP PM BP PA λ=+=+ (4,2,4)(0,3,4)(4,23,44)λλλ=--+--=----(4,5,0),(8,0,0)AC BC =-=-设平面的法向量1111(,,)n x y z =, 平面的法向量2n 222(,,)x y z =由110,0,BM n BC n ⎧⋅=⎪⎨⋅=⎪⎩ 得11114(23)(44)0,80,x y x x λλ--++-=⎧⎨-=⎩即11110,23(0,1,)2344,44x n z y λλλλ=⎧+⎪=⎨+-=⎪-⎩可取 由220,0.AP n AC n ⎧⋅=⎪⎨⋅=⎪⎩即2222340,450,y z x y +=⎧⎨-+=⎩得222225,4(5,4,3).3,4x y n z y ⎧=⎪⎪=-⎨⎪=-⎪⎩可取 由12230,430,44n n λλ+⋅=-⋅=-得解得25λ=,故3。
综上所述,存在点M 符合题意,3。
方法二:(I )证明:由,D 是的中点,得AD BC ⊥ 又PO ⊥平面,得.PO BC ⊥因为PO AD O =,所以BC ⊥平面,故.BC PA ⊥()解:如图,在平面内作BM PA ⊥于M ,连, 由(I )中知AP BC ⊥,得AP ⊥平面, 又AP ⊂平面,所以平面⊥平面。
在222,41,41.Rt ADB AB AD BD AB ∆=+==中得在222,Rt POD PD PO OD ∆=+中, 在222,,Rt PDB PB PD BD ∆=+中所以222236,PB=6.PB PO OD DB =++=得 在222Rt POA ,25, 5.PA AO OP PA ∆=+==中得又2221cos ,23PA PB AB BPA PA PB +-∠==⋅从而cos 2PB BPA =∠=,所以3。
综上所述,存在点M 符合题意,3。
21.本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。
满分15分。
(I )解:由题意可知,抛物线的准线方程为: 1,4y =-所以圆心M (0,4)到准线的距离是17.4()解:设222001122(,),(,),(,)P x x A x x B x x , 则题意得00120,1,x x x x ≠≠±≠,设过点P 的圆C 2的切线方程为200()y x k x x -=-, 即200y kx kx x =-+①则20021,1k=+即222220000(1)2(4)(4)10x k x x k x -+-+--=,设,的斜率为1212,()k k k k ≠,则12,k k 是上述方程的两根,所以222000121222002(4)(4)1,.11x x x k k k k x x ---+==-- 将①代入222000,y x x kx kx x =-+-=得由于0x 是此方程的根,故110220,x k x x k x =-=-,所以222200012121200212002(4)422,.1ABMP x x x x x k x x k k x x k x x x x ---==+=+-=-=-- 由MP AB ⊥,得2200002002(4)4(2)(1)1AB MP x x x k k x x x --⋅=-⋅=--, 解得2023,5x =即点P 的坐标为2323(,)55±,所以直线l的方程为 4.115y x =±+22.本题主要考查函数极值的概念、导数运算法则、导数应用,不等式等基础知识,同时考查推理论证能力,分类讨论分析问题和解决问题的能力。