智能控制作业
智能控制技术第二章作业

求:
(1)误差为零和误差为正小的隶属度函数
(2)误差为零或误差为正小的隶属度函数
解
定义2-4并:并 的隶属函数 对所有 被逐点定义为取大运算,即 ,式中,符号“∨”为取极大值运算。
定义2-5交:交 的隶属函数 对所有 被逐点4已知模糊矩阵P、Q、R、S为
求:
(1)
(2)
(3)
解
定义2-14模糊关系合成:如果R和S分别为笛卡尔空间 和 上的模糊关系,则R和S的合成是定义在笛卡尔空间 上的模糊关系,并记作 ,其隶属度函数的计算方法
上确界(Sup)算子
(1)
(2)
2-6设有论域 , ,并定义
试确定模糊条件语言“如果x轻,则y重,否则y不非常重”所决定的模糊关系矩阵R,并计算出当x为非常轻,重条件下所对应的模糊集合y。
(不做)
解:B′=非常重=
B″=不非常重=B =
关系矩阵R=(A×B)U
A×B=
智能控制第三章作业2

1、已知某一炉温控制系统,要求温度保持在amath`600^{o} `endmathC 恒定。
针对该控制系统有以下控制经验:
(1)若炉温低于amath`600^{o} `endmathC ,则升压;低得越多升压越高。
(2)若炉温高于amath`600^{o} `endmathC ,则降压;高得越多降压越低。
(3)若炉温等于amath`600^{o} `endmathC ,则保持电压不变。
设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7级,取5个模糊集。
试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。
解: 定义理想温度点的温度为0T ,实际测量温度为T ,温度差为0e T T T =∆=-。
以为输入、输出变量的量化等级均为7级, 5个模糊集,则
控制电压u 变化划分表为:
根据一上两表设计一下模糊规则: 若e 负大,则u 正大; 若e 负小,则u 正小; 若e 为0,则u 为0; 若e 正小,则u 负小; 若e 正大,则u 负大。
2、已知被控对象为amath`G(s)=\frac{1}{10s+1}e^{-0.5s} `endmath。
假设系统给定为阶跃值r=30,采样时间为0.5s,系统初始值r(0)=0,试分别设计:(1)常规的PID控制器;
(2)常规的模糊控制器;
(3)模糊PID控制器。
分别对上述3种控制器进行Matlab仿真,并比较控制效果。
暂未解出。
智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。
针对该控制系统有以下控制经验:(1)若炉温低于600度,则升压;低的越多升压越高。
(2)若炉温高于600度,则降压;高的越多降压越低。
(3)若炉温等于600度,则保持电压不变。
设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7级,取5个模糊集。
试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。
解:1)确定变量定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。
将温度误差E作为输入变量2)输入量和输出量的模糊化将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。
将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。
表1 温度变化E划分表控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。
将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。
表2 电压变化u划分表表3 模糊控制规则表E PB PS ZO NS NB u PB PS ZO NS NB2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。
假定被控对象的传递函数分别为:255.01)1()(+=-s e s G s)456.864.1)(5.0(228.4)(22+++=s s s s G解:在matlab 窗口命令中键入fuzzy ,得到如下键面:设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。
将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;u分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; MATLAB中的设置界面如下:模糊规则的确定:模糊控制器的输出量在simulink中调用模糊控制器,观察输出结果运行结果为ScopeScope1 Scope23、利用去模糊化策略,分别求出模糊集A 的值。
智能控制作业

智能控制作业一、已知某一炉温控制系统,要求温度保持在600℃恒定。
针对该控制系统有以下控制经验:①若炉温低于600 ℃,则升压;低得越多升压越高。
②若炉温高于600 ℃,则降压;高得越多降压越低。
③若炉温等于600 ℃,则保持电压不变。
设计模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7级,取5个模糊集。
试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。
要求有程序及注释,仿真结果和分析。
(1)确定模糊控制器的输入输出变量将600℃作为给定值t0 ,测量炉温为t(k),则:输入变量:e(k)= t(k)-t0输出变量:触发电压u 的变化量,该u直接控制供电电压的高低。
(2)输入输出变量的模糊语言描述输入输出变量的语言值:{负大(NB),负小(NS),零(ZE),正小(PS),正大(PB)} 设:e的论域为X,u 的论域为Y,均量化为七个等级:X= {-3,-2,-1,0,1,2,3},Y={-3,-2,-1,0,1,2,3}语言变量E 和U 的隶属函数赋值表(论域离散):(3)模糊控制规则①if E =NB then U =PB②if E =NS then U =PS③if E =ZE then U =ZE④if E =PS then U =NS⑤if E =PB then U =NB(4)求模糊控制表(5)控制量转化为精确量:采用加权平均法:(6)计算模糊关系R=(NBe×PBu)+ (NSe×PSu)+(ZEe×ZEu)+(PSe×NSu) +(PBe×NBu)ZEe×ZEu =(0, 0, 0.5,1, 0.5,0,0)×(0,0 , 0.5, 1 , 0.5 , 0,0)分别计算出矩阵NBe×PBu,NSe×PSu,ZEe×ZEu,PSe×NSu ,PBe×NBu求并集得:查询表:实际控制时,将测量到的误差量化后,从查询表中得到控制量再乘以比例因子Kn,即作为控制的实际输出。
智能控制题目及解答

智能控制题目及解答 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制2.智能控制系统有哪几种类型,各自的特点是什么3.比较智能控制与传统控制的特点。
4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么5.智能控制有哪些应用领域试举出一个应用实例,并说明其工作原理和控制性能。
1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。
3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
智能控制技术作业

智能控制技术作业1、什么是智能、智能系统、智能控制?(1)将感觉、去记、回忆、思维、语言、行为的整个过程称为智能(2)由感知、规划、执行子系统组成,具有认知、概念与推理、记忆与学习完成适应性、通用性功能的反馈控制系统称为智能系统。
(3)通过认知、记忆、学习、推理、协作等智能要素与技术手段,实现复杂系统的适应性与通用性功能的反馈控制称为智能控制。
2、智能控制系统有哪几种形式?模糊控制、神经控制、行为控制、自适应控制等。
3、比较智能控制与传统控制的特点?古典控制特点:(1)依赖于控制对象精确模型;(2)对控制对象的有用信息(信息源/人的语言知识、系统输入输出数据、系统评价结果等)没有充分利用;(3)控制方法依赖于系统模型的结构与参数,没有固定的设计程式,通用性不强,限制了工程应用;(4)对非线性、强耦合系统,非模型系统、无模型系统难以适应;智能控制特点:(1)适用于非线性、强耦合的系统;(2)适用于无模型(只有系统数据)系统;(3)适用于非模型(可以是模糊语言模型、行为模型等)系统;(4)能够应用多种信息,包括语言、样本等。
(5)具有较强的适应性;(6)具有较固定的设计程式4、比较模糊集合与普通集合的异同,模糊性与随机性的不同。
经典集合:一个范围内所有对象的整体;集合自身不能作为其内的元素模糊集合:设A是集合X到[0,1]的一个映射,A:X→[0,1],x→A(x) 则称A 是X上的模糊集,A(x)称为模糊集A的隶属函数,或称A(x)为x对模糊集A的隶属度。
模糊性与随机性区别:(1)随机性表示未发生的事件可能发生的可能性(概率)。
(2)模糊性表示已发生/未发生事件、属性量的程度(大小);(3)随机性由事物自身及环境运动规律决定;(4)模糊性由事物自身及环境运动规律、人的认知程度共同决定;5、简述模糊控制系统的工作原理。
人的经验是一系列含有语言变量值的条件语句和规则,而模糊集合理论能十分恰当地表达具有模糊性的语言变量和条件语句。
智能控制-考核大作业+设计(10)

《智能控制》大作业姓名:徐东班级:自动化103 学号:31002013341、简答题:1.1.根据目前智能控制系统的研究和发展,智能控制系统主要有哪些方面的工作可做进一步的探索和开展?答:1)智能控制的基础理论和方法研究。
2)智能控制系统结构研究。
3)基于知识系统及专家控制。
4)基于模糊系统的智能控制。
5)基于学习及适应性的智能控制。
6)基于神经网络的智能控制系统。
7)基于信息论和进化论的学习控制器研究。
8)其他,如计算机智能集成制造系统、智能计算系统、智能并行控制、智能容错控制、智能机器人等。
1.2.画出模糊控制系统的基本结构图,并简述模糊控制器各组成部分所表示的意思?答:模糊化接口:通过在控制器的输入、输出论域上定义语言变量,来将精确的输入、输出值转换为模糊的语言值。
模糊推理:根据控制规则中蕴涵的输入、输出模糊关系和实际输入的模糊取值,通过模糊推理,得到输出的模糊状态。
规则库:规则库由若干条控制规则组成,这些控制规则根据人类控制专家额经验总结得出,按照IF…is…and…is…THEN…is…的形式表达。
清晰化接口:通过清晰化的方法把由模糊推理得到的模糊输出值转化成精确控制值暑假给对象。
1.3.画出感知器的基本结构模型,并简述其算法过程。
答:x1x2``xn23)计算实际输出4)修正权W5)转到2)直到W 对一切样本均稳定不变或稳定在一个精度范围为止。
1.4.画出三层BP 神经网络的基本结构图,并试写出各层之间的输入输出函数关系?第1层(输入层):(1)(1)i i i Out In x == i=1,2,…,n 第2层(隐层):(2)(1)(1)(2)(2)1,()njij i j j j i Inw Out Out In θφ==-=∑ j=1,2,…,l第3层(输出层): (2)(1)11()l nk jk ij i j j i y w w x φθ===-∑∑1.5.神经网络系统具有哪些基本特性,以及神经网络在控制系统中具有哪些作用?答:神经系统具有的基本特性:1)非线性映射逼近能力。
自动化概论作业——智能控制

自动化概论作业—智能控制智能控制基本概念智能控制的定义一: 智能控制是由智能机器自主地实现其目标的过程.而智能机器则定义为,在结构化或非结构化的,熟悉的或陌生的环境中,自主地或与人交互地执行人类规定的任务的一种机器.定义二: K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,以期在一定程度上实现控制系统的智能化,这就是智能控制.他还认为自调节控制,自适应控制就是智能控制的低级体现.定义三: 智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域.定义四: 智能控制实际只是研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有仿人智能的工程控制与信息处理系统的一个新兴分支学科。
智能控制的特点同时具有以知识表示的非数学广义模型和以数学模型表示的混合过程,也往往是那些含有复杂性,不完全性,模糊性或不确定性以及不存在已知算法的非数学过程,并以知识进行推理,以启发引导求解过程;智能控制的核心在高层控制,即组织级;智能控制器具有非线性特性;智能控制具有变结构特点;智能控制器具有总体自寻优特性;智能控制系统应能满足多样性目标的高性能要求;智能控制是一门边缘交叉学科;智能控制是一个新兴的研究领域。
智能控制的主要技术方法智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。
专家系统专家系统是利用专家知识对专门的或困难的问题进行描述. 用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题. 尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知某一炉温控制系统,要求温度保持在600 度恒定。
针对该控制系统有以下控制经验:(1)若炉温低于600 度,则升压;低的越多升压越高。
(2)若炉温高于600 度,则降压;高的越多降压越低。
(3)若炉温等于600 度,则保持电压不变。
设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7 级,取5 个模糊集。
试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。
解:1)确定变量定义理想温度为600 C,实际温度为T,则温度误差为E=600-T。
将温度误差E 作为输入变量2)输入量和输出量的模糊化将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。
将偏差E 的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1 所示。
表1温度变化E划分表控制电压也分为个模糊集:、、、、,分别为负小、负大、零、正小、正大。
将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。
表2电压变化u划分表表3 模糊控制规则表E PB PS ZO NS NB u PB PS ZO NS NBEdit or: Un+ it 1 e J.歼cw OptigT叮叮小文库叮叮小文库2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态 误差为零,超调量不大于 1%,输出上升时间w 0.3s 。
假定被 控对象的传递函数分别为:Gge 0亦(s 1)2G2(S )4.228(s 0.5)( s 21.64 s 8.456)解:在matlab 窗口命令中键入 fuzzy ,得到如下键面:设e 的论域范围为[-1 1] , de 的论域范围为[-0.1 0.1] , u 的论 域范围为[0 2]。
将e 分为8个模糊集,分别为 NB ,NM, NS, NZ, PZ, PS, PM,PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;叮叮小文库MATLAB中的设置界面如下:模糊规则的确定:叮叮小文库模糊控制器的输出量在simulink中调用模糊控制器,观察输出结果D#日脅K电Q - *・阿甌32屈巴宦由・JL m jHIQi运行结果为ScopeScopelI L I : 11;§g/. i Scope23、利用去模糊化策略,分别求出模糊集A的值。
模糊集A 的定义为:A(X) trap (x,10,30,50,90)解:(1)面积重心法»K=10:l:100;>> A=trapnf (KJ, [10. 30j 50. 90]);>> XK=defuss (Xj Aj 5 centroid5)KX -46(2)面积等分法»^10:1:100;>> A=trapiTLf [10, 30j 50j 90]);>> KK=defuzz (K,infj "bisector5)玄左=(3)最大隶属度平均法叮叮小文库» ^10:1: 100:» ^=trapmf (超[103 30, 5Cij 90]);>> ^x= defuzz (KJ A J * mom7)zx =40(4)最大隶属度取最小法» 心D: 1:100(>> A=t rapnrf (xj [103303 5C390] \ ;>> xx=defuzz (KJ A J7som:)SK =30(5)最大隶属度取最大法»x=10:l!100;>> rapinf (英」[10, 30j 50, 90]);» KK=defusz Aj ' I DHL')KK =504、设论域x={a1 , a2, a3}, y={b1 , b2, b3}, z={c1 , c2}已知A 0.5 1 0.1 , B 01 丄26 0.4 1A ——一——B bbaC ——ai a2 a3 S❻电q Q 试确定“If A AND B then C 所决定的模糊关系R,以及输入为A1 1-00.50.1B1 o.10.51叮叮小文库-a1a2a31 d b2b310时的输出C1。
解:A 0.5 1 0.1 B 0.1 1 0.6C 0.4 1A110.50.1B10.10.510.50.10.50. 5D A B10.110.60.110.60.10.10.10.10.10.10.10.50.40.50.50.40.50.10.10.1R D T C 1 0.410.410.60.40.60.10.10.10.10.10.10.10.10.110.1 0.51D1A B10.5 0.10.5 10.1 0.50.50.10.1 0.10.10.1 0.10.4 0.50.4 0.50.1 0.1D1T R 0.1 0.5 1 0.1 0.5 0.5 0.1 0.1 0.1 0.4 1 0.4 0.5 0.4 0.60.1 0.10.1 0.10.1 0.15利用两层BP 神经网络完成对[-n, n ]区间上正弦函数逼 近,隐层函数取 S 型传输函数,输出层的激活函数取线性传 输函数。
(采用神经网络工具箱提供的函数完成)解:根据条件在 MATLAB 环境下,采用神经网络工具箱提 供的函数完成正弦函数逼近如下: 程序代码如下:» i= [^pi:0.01:pi]; » y=sin (Kl ,» net 二nevff (ninraE [20J 1 ]j C tan.sig ,j 5 purelin ,}), » yl=sinitnetjX );» netn trainparaii ・ go^l 二0. DI; » net=t口 (口氏』知 y ).TRAIB1X Epoch 0/50, JEE 8.64811/0.01, Gradient 5060.09/1 B -0 10 TKAIHLl Epoch 1/50; USE 0.00123415/0.01, Gradient IL0158/le-010 TRAINLM 3 Perfooance goal met. » y2=sinL (netjX ); » figure,» pl 毗 3”,岸,y2j g —')iC 1c i0.4 0.5 C 2仿真结果如下:图1为原函数与网络训练前后仿真结果的比较(图中红色曲线代表训练前的网络,绿色代表训练后的网络,蓝色代表原函数)叮叮小文库图1原函数与网络训练前后的仿真结果图2为误差曲线Tiiiinjnt *Llh T :E;l» Eli l Vis* I AE 紅l UooLs也曲* lk ;pPerttmrisnti it O.ULHUmiz, Loa isll.lllIO 1兰c m cj 口巳 Gn m w u -S B J J I w 110-31U J0 o n i □?0.5 a d 0.5 as n 丁 oa ng[DtcyTiQiMq I'ne F F nch图2 误差曲线叮叮小文库一、概述二、在汽车上的应用方面三、举例说明在汽车空调当中的应用、概述1、什么叫模糊控制?所谓模糊控制,就是对难以用已有规律描述的复杂系统,采用自然语言(如大、中、小)加以叙述,借助定性的、不精确的及模糊的条件语句来表达。
模糊控制是一种基于语言的一种智能控制2、为什么采用模糊控制?传统的自动控制控制器的综合设计都要建立在被控对象准确的数学模型(即传递函数模型或状态空间模型)的基础上,但是在实际中,很多系统的影响因素很多,(油气混合过程、缸内燃烧过程等),很难找出精确的数学模型。
这种情况下,模糊控制的诞生就显得意义重大。
因为模糊控制不用建立数学模型不需要预先知道过程精确的数学模型。
要研制智能化的汽车,就离不开模糊控制技术如汽车空调:人体舒适度的模糊性和空调复杂系统3、工作原理把由各种传感器测出的精确量转换成为适于模糊运算的模糊量,然后将这些量在模糊控制器中加以运算,最后再将运算结果中的模糊量转换为精确量,以便对各执行器进行具体的操作控制。
在模糊控制中,存在着一个模糊量和精确量之间相互转化的问题模糊控制原理图S:系统的设定值。
x1, x2:模糊控制的输入(精确量)。
X,1 , X2: 模糊量化处理后的模糊量。
U:经过模糊控制规则和近似推理后得出的模糊控制量。
u:经模糊判决后得到的控制量(精确量)。
y:对象的输出。
输入量模糊化 建立模糊规则 进行模糊推理 输出量反模糊① 适用于不易获得精确数学模型的被控 对象,② 是一种语言变量控制器③ 从属于智能控制的范畴。
该系统尤其 适于非线性,时变,滞后系统的控制④ 抗干扰能力强,响应速度快,并对系 统参数的变化有较强的鲁棒性。
、模糊控制在汽车的应用方面1、 ABS 防抱死系统 工况的多变及轮胎的非线性2、 汽车巡航系统 外界负荷的扰动、汽车质量和传动系效率的不确 定性、被控对象的强非线性莆戏t靑即亘.叶.检«量3工作步骤:3、模糊控制的特点叮叮小文库3、汽车空调人体舒适感的模糊性和空调复杂结构4、半主动悬架系统参数不稳定性5、发动机三、在汽车空调上的应用对汽车空调系统的要求:★技术性能和控制性能优良,满足人体舒适性的要求;★节能自动控制的应用是达到这两方面要求的一个重要途径。
经典控制理论:建立数学模型现代控制理论:状态方程空调器为典型的传质换热系统,结构和内部物理过程复杂,难以建立精确的数学模型。
汽车空调由于工作条件多变,用传统的控制方法如:PID控制,难以获得较好的控制效果。
对于环境干扰,鲁棒性好,能够抑制非线性因素对控制器的影响全空调型客车空调原理图1、外进风;2出风口;3蒸发器风机:4蒸发器芯;5热水器芯:6温度门:7、出风口:8车内进风叮叮小文库模糊控制是基于语言的控制 模糊语言集的组成:T ( E )T ( E ) ={负大,负中,负小,零,正小,正中,正大}用模糊语言变量E 来描述偏差, 或用符号表示负大 NB( Negative Big )、 负中 NM( Negative Medium )、 负小 NS ( Negative Small 零 ZE ( Zero )、正小 PS ( Positive Small )、 正中 PM( PositiveMedium ), 正大 PB (Positive Big ), 则:T (E ) = {NB ,NM NS, ZE , PS, PM ,PB}糊子集多,因而控制精度更高(在其它条件相同的情况下)。