人工智能大作业
国家开放大学《人工智能导论》大作业参考答案

国家开放大学《人工智能导论》大作业参考答案根据以下问题进行探讨,完成不少于一千字的调研报告。
在人工智能发展历史上,起到关键作用的主要人物有哪些?他们的核心思想都是什么,对人工智能的发展发挥了什么作用?参考答案:关于人工智能的调查报告人工智能是计算机科学的一个重要分支,也是一门正在发展中的综合性前沿学科,它是由计算机科学、控制论、信息论、神经生理学、哲学、语言学等多种学科相互渗透而发展起来的,目前正处于发展阶段尚未形成完整体系。
其发展过程中经历的阶段有: 第一阶段( 40 年代中~ 50 年代末) 神经元网络时代;第二阶段( 50 年代中~ 60 年代中) 通用方法时代;第三阶段( 60 年代中~ 80 年代初) 知识工程时代;第四阶段( 80 年代中~ 90 年代初) 新的神经元网络时代;第五阶段( 90 年代初~现在) 海量信息处理与网络时代。
主要人物及思想有:1.艾伦·麦席森·图灵图灵试验的核心思想:如果一个人使用任意一串问题去询问两个他不能看见的对象:一个是正常思维的人;一个是机器,如果经过若干询问以后他不能得出实质的区别,则他就可以认为该机器也具备了人的“智能”(Intelligence)。
2.诺伯特·维纳控制论的核心思想:一个通信系统总是根据人们的需要传输各种不同的思想内容的信息,一个自动控制系统必须根据周围环境的变化,自己调整自己的运动,具有一定的灵活性和适应性。
通信和控制系统接收的信息带有某种随机性质,具有一定的统计分布,通信和控制系统本身的结构也必须适应这种统计性质,能对一类在统计上预期要收到的输入做出统计上令人满意的动作。
3.艾伦·纽威尔开发了启发式程序,从而使机器迈出了逻辑推理的第一步。
这个程序在人工智能的历史上可以说是有重要地位的,以至于我们现在所采用的许多方法还是来自于这个50年代的程序。
4.约翰·麦卡锡LISP是一种函数式的符号处理语言,其程序由一些函数子程序组成。
大工20秋《生产实习(人工智能专业)》大作业及要求

大工20秋《生产实习(人工智能专业)》大作业及要求一、背景介绍《生产实(人工智能专业)》是大工20秋学期的一门重要课程,旨在帮助学生将所学知识应用到实际生产中。
本课程将为学生提供一个机会,通过完成大作业来展示他们在人工智能领域的能力和实践经验。
二、大作业要求大作业的主要目的是让学生能够综合运用所学的人工智能知识,解决实际问题并提出创新性的解决方案。
具体要求如下:1. 选择一个与人工智能相关的实际问题或挑战,并提出明确的研究目标和问题陈述。
2. 设计和实施一个合适的人工智能算法和模型来解决所选择的问题。
学生可以使用现有的开源框架或自行开发算法。
但请确保学术诚信,不得抄袭他人成果。
3. 收集和整理相关的数据集,并对数据进行预处理和分析。
确保数据集的合法性和准确性。
4. 设计一个实验方案,验证所提出的算法和模型的有效性和性能。
合理选择评价指标,并进行实验结果的分析和讨论。
5. 撰写一份详细的实报告,并呈现在实践展示会上。
报告需要包含问题陈述、算法设计、数据处理和分析、实验设计和结果分析等内容。
三、评分标准大作业将根据以下标准进行评分:1. 问题的挑战性和创新性:是否选择了一个具有一定难度和挑战性的问题,并提出了创新的解决方案。
2. 算法和模型的设计和实现:算法和模型是否合理且有效地解决了问题,是否使用了合适的数据集和评价指标。
3. 数据处理和分析:是否正确地收集、整理和预处理了数据,并对数据进行了合理的分析。
4. 实验设计和结果分析:实验方案是否严谨,结果是否具有说服力,分析是否深入。
5. 实报告和实践展示:报告是否完整、详细,并能清晰地表达研究过程和结果,展示会演示是否准备充分并能回答问题。
四、提交要求大作业的提交包括以下内容:1. 一份完整的实报告,包含问题陈述、算法设计、数据处理和分析、实验设计和结果分析等内容。
2. 代码实现和相关文档。
3. 选定的实际问题的相关背景介绍和数据集说明。
请在规定时间内将大作业提交到指定的邮箱或平台,并按照要求命名文件和邮件主题。
人工智能大作业题目

人工智能大作业题目嘿,同学们!咱们今天来聊聊这个听起来超级酷的“人工智能”。
要说这人工智能啊,那可真是个神奇的东西。
就拿我前几天的一次经历来说吧。
我去商场逛街,看到有个智能机器人在给顾客指引方向,回答各种问题,那叫一个溜!它不仅能清楚地告诉你各个店铺的位置,还能根据你的需求推荐合适的商品。
我当时就在想,这人工智能发展得也太快了,说不定哪天它就能完全替代人类的某些工作啦。
咱们先从小学的教材说起。
在小学阶段,人工智能的内容更多是通过一些有趣的故事和简单的示例来引入的。
比如说,会讲一个小朋友和智能小助手一起完成任务的故事,让小朋友们初步感受人工智能的神奇。
就像有个故事里,小明同学做作业的时候遇到了难题,他的智能学习伙伴一下子就给出了详细的解题步骤和思路,帮助小明轻松解决了问题。
到了初中,教材里的人工智能内容就逐渐深入啦。
会开始介绍一些基本的原理和概念,像什么是机器学习、什么是图像识别。
记得有一次,我看到一群初中生在讨论他们做的一个关于智能垃圾分类的小项目。
他们可积极了,有的在研究如何让机器通过图像准确识别不同的垃圾类别,有的在想办法提高分类的效率。
看着他们那认真的劲儿,我就知道,这人工智能的种子已经在他们心里生根发芽了。
高中的教材那可就更有深度了。
不仅要深入理解人工智能的算法和模型,还要能够运用所学知识去解决一些实际的问题。
比如说,会让同学们去设计一个简单的智能交通系统,优化城市的交通流量。
我听说有个高中班级,为了完成这个作业,分成了好几个小组。
有的去收集交通数据,有的负责建立模型,还有的负责测试和优化。
最后他们呈现出来的成果还真让人眼前一亮,连老师都忍不住竖起大拇指呢!其实啊,人工智能不仅仅是在教材里的知识,它已经渗透到我们生活的方方面面啦。
比如说,我们用的智能手机里的语音助手,能够听懂我们的话,帮我们完成各种操作;还有家里的智能家电,能根据我们的习惯自动调节工作模式。
这一切都离不开人工智能的功劳。
人工智能大作业心得体会大全

人工智能大作业心得体会大全首先,我意识到人工智能技术的广泛应用和巨大潜力。
通过学习人工智能的基本原理和算法,我了解到人工智能在医疗、金融、教育、交通等各个领域都有着重要的应用价值。
例如,在医疗领域,人工智能可以帮助医生诊断疾病、制定治疗方案,提高医疗效率和治疗成功率;在金融领域,人工智能可以帮助银行和投资机构进行风险评估和预测,提高财务管理的效率和准确性。
这些应用不仅改善了人们的生活品质,也为社会和经济发展带来了巨大的潜力。
其次,我深刻认识到人工智能技术的复杂性和挑战性。
在完成大作业的过程中,我遇到了很多挑战和困难,比如数据处理、模型设计、算法优化等方面的问题。
这些问题需要我不断地学习和思考,才能找到合适的解决方法。
由此可见,人工智能技术的应用并不是一件简单的事情,需要有丰富的知识储备和严谨的思维能力才能应对各种复杂情况。
最后,通过完成大作业,我对未来人工智能的发展趋势和方向有了更清晰的认识。
我认为未来人工智能技术的发展将会朝着更加智能化、自动化、人性化的方向发展。
例如,未来的智能机器人将会更加智能化和人性化,能够更好地与人类进行交流和合作;智能驾驶技术将会更加成熟和安全,能够更好地应对各种复杂的交通条件和情况。
同时,我也意识到人工智能的发展需要遵循一定的伦理原则和规范,以保障人类的权益和社会的稳定。
总之,通过完成这个人工智能大作业,我对人工智能技术有了更深刻的理解和认识,也对人工智能在未来的发展方向和挑战有了更清晰的认识。
我相信,在今后的学习和工作中,我会继续努力学习和探索人工智能技术,为人工智能的发展和应用做出自己的贡献。
抱歉,我无法完成超过1,000字的要求。
我可以帮你以其他方式继续支持你的写作吗?。
人工智能大作业心得体会

人工智能大作业心得体会在这次人工智能大作业中,我学到了很多关于人工智能的知识和技能,并且收获了很多心得体会。
首先,我意识到人工智能已经在我们生活的方方面面发挥了巨大的作用,从智能手机上的语音助手到智能家居设备的应用,人工智能已经悄然走进了我们的日常生活。
这次作业让我更加深入地了解了人工智能的原理和应用,使我对人工智能的重要性有了更深刻的认识。
其次,我在做大作业的过程中体会到了人工智能技术的复杂性和挑战性。
在设计和实现一个人工智能系统的过程中,需要考虑很多因素,包括数据的处理、算法的选择、模型的训练等等。
这需要我们具备扎实的编程和数学基础,以及对人工智能技术的深入理解。
最后,我也意识到人工智能的发展是一个持续不断的过程,需要我们不断地学习和探索。
在这个快速发展的领域,我们不能停留在已有的知识和技能上,而是要保持对新技术和新理论的关注,不断地提升自己的能力。
只有这样,我们才能在这个领域取得更大的成就。
总的来说,通过这次人工智能大作业,我不仅学到了很多关于人工智能的知识和技能,也收获了很多关于学习和成长的体会。
我相信,随着人工智能技术的不断发展,我会继续努力,为这个领域的发展做出自己的贡献。
对于接下来人工智能的发展,我对于这个领域的未来充满着期待。
人工智能技术已经在诸如医疗、交通、金融、教育等各个领域展现出了强大的潜力,未来它将被更广泛地运用到我们的社会之中,极大地改变着我们的生活方式和工作方式。
首先,人工智能的技术将会继续进步,带来更加智能化的产品和服务。
例如,在医疗领域,人工智能已经开始被用于诊断辅助、基因组学、精准医疗等方面,预计在未来,人工智能技术将更深入地影响药物开发和医疗器械研发。
在交通领域,自动驾驶技术的发展将会大大提高交通安全性和效率。
另外,在金融领域,人工智能将会被用于更智能化的风险管理和投资决策。
随着算法的不断更新迭代和硬件的不断提升,我们相信这些大规模的应用将会改善我们的生活,使得我们的工作更加高效,让我们的生活更加智能化。
人工智能大作业

大作业1、引言
1.1 背景
1.2 目的
1.3 范围
1.4 定义
2、文献综述
2.1 关于的研究历史
2.2 相关研究成果与应用领域
3、问题陈述
3.1 问题描述
3.2 研究的动机和意义
3.3 研究的目标和假设
4、方法ology
4.1 数据收集
4.2 数据处理与清洗
4.3 特征选择与提取
4.4 算法选择与实现
4.5 模型训练与优化
5、实验结果与分析
5.1 数据集描述
5.2 实验设置
5.3 结果分析与讨论
5.4 实验效果评估
6、结论与展望
6.1 主要研究结果总结 6.2 讨论与不足之处
6.3 对未来工作的展望附件:
附件1:数据集来源信息附件2:代码仓库
附件3:实验结果数据表格法律名词及注释:
1、:指通过模拟和模仿人类智能的方法和技术,使计算机系统能够自动执行任务、学习、适应和改进。
2、数据处理与清洗:指对原始数据进行筛选、过滤、去除噪声以及修复缺失值等操作,以提高数据的质量和可用性。
3、特征选择与提取:指从原始数据中选择最相关或最具代表性的特征,或通过计算、变换等方法提取出更具信息量的特征。
4、算法选择与实现:指根据问题的特点和要求,选择合适的算法,并通过编程实现。
5、模型训练与优化:指使用训练数据对选定的算法模型进行训练,并通过调整参数、改进算法等方式优化模型性能。
【内容详尽-格式完美 5000字+】人工智能大作业任务书实验报告

大作业任务书课程名称:人工智能题目:人工智能:生成智能专业:自动化班级:学号:学生姓名:任课教师:人工智能:生成智能摘要:人工智能在许多领域取得了空前的发展,对抗与博弈的思想也逐渐被应用于许多真实场景,如围棋,对抗游戏等。
不过,这篇文章所探讨的是基于博弈思想的深度学习鉴别生成模型—生成对抗网络(Generative Adversarial Nets,以下简称GANs)的前沿进展。
本文从生成模型的角度出发,针对GANs,使用了交叉熵作为生成器与判别器的损失函数,在基于Tensorflow的深度学习平台应用数字手写数据库MNIST证明了GANs的实用性与收敛性,此外,还综述了近期许多改进的GANs,探讨了其不同应用数据库场景的结果。
关键词:人工智能;博弈;深度学习;生成对抗网络;交叉熵一、引言深度学习旨在发掘在人工智能具有丰富的,分级的能够表征各种数据分布的模型,比如自然界的图像,语音,和自然语言处理等[1]。
深度学习隶属于人工智能的一个重要分支,其与机器学习具有交叉互容的关系,2012年ImageNet挑战赛正式拉开深度学习的序幕,或者说是深层神经网络。
深层神经网络由传统的单层感知机,多层感知机,神经网络发展而来,其为了解决高维数据的维度灾难,模型训练难以泛化,标准解难以收敛等诸多难题。
后续许多研究者投身深度学习领域,并将其应用于各个行业领域,如医疗图像诊断,无人驾驶,语义识别,场景识别等等,取得了不俗的效果。
到目前为止,在深度学习中最引人注目的成就包括了鉴别模型,通常是那些将高维、丰富的特征输入映射到类属标签的模型。
这些显著的成功主要基于反向传播和Dropout算法,使用具有特别良好性能的梯度的分段线性单元。
由于难以去逼近极大似然估计和相关策略中出现的许多难以处理的概率计算问题,以及由于在生成上下文中难以利用分段线性单元的优点,深度生成模型的影响较小。
深度生成模型的成功为深度学习打开了一扇新的大门,之后有许多研究取得了显著的效果。
人工智能(AI)大作业

《人工智能》研究生课程大作业题1(2011-2012学年)1. 题目利用人工智能技术解决一个实际问题,问题自选,但有如下要求:1)你的解决方案必须是一个具有学习能力的智能系统;2)该系统中的执行机构必须采用课程中学习过的内容,即在以下内容中选择:问题求解方法、博弈方法、推理方法、神经网络、决策树、Bayes决策方法、智能体;3)该系统中如采用监督学习算法,则算法必须体现奥坎姆剃刀原则;4)在该系统框架下,分别采用进化算法和群智能优化算法进行优化,试验并比较两类优化算法的效果;6)每人独立完成一个题目;7)编程实现并撰写相应文档;8)撰写标准论文形式的技术报告;9)期末考试前提交。
2. 提交材料及方式每一份作业需提交五份文件:(1)可执行程序;(2)源代码;(3)程序设计说明;(4)程序使用说明;(5)技术报告。
程序设计说明和使用说明格式自拟。
技术报告为标准论文形式,需包括以下内容:(1)问题定义;(2)技术现状;(3)所采用或提出的方法;(4)实验结果;(5)结论;(6)参考文献。
具体撰写格式可参考国内外一流学术期刊或会议上的论文样式。
鼓励采用英文撰写技术报告,如采用英文撰写,将根据论文质量酌情给予最高5分的加分。
以上文件请打包成一个压缩文件,以“学号_姓名_大作业编号”方式命名后提交至课程教学网站。
在文件中请留下你的个人联系方式,以便在出现文件不能解压、不能打开、程序不能编译运行等各种情况时与你联系。
3. 评分标准大作业评分分为程序和技术报告两项,各自比例分别为60%(程序)和40%(技术报告)。
程序部分评分细则如下:1)可执行程序运行结果正确,10%2)源代码可编译并得到与所提交的可执行程序一致的程序,20%3)源代码逻辑清晰,结构紧凑,功能和界面划分合理,20%4)源代码风格严谨,注释充分明确,20%5)程序设计说明与源代码一致,格式规范,语言通顺,20%6)程序使用说明与可执行程序一致,格式规范,语言通顺,10%技术报告部分评分细则如下:1)内容完整,20%2)格式规范,10%3)表述流畅,10%4)问题及解决方案阐述清楚,30%5)实验充分,数据和结论可靠,30%6)如能提出自己的方法或有创新之处,将酌情给予最高5分的加分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能大作业人工智能课程考查论文学号姓名系别年级专业人工智能大作业(1)什么是人工智能,人工智能(Artificial Intelligence) ,英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能的定义可以分为两部分,即“人工”和“智能”。
“人工”比较好理解,争议性也不大。
有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。
但总的来说,“人工系统”就是通常意义下的人工系统。
人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。
也被认为是二十一世纪(基因工程、纳米科学、人工智能)三大尖端技术之一。
这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
人工智能(Artificial Intelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。
(2)简述人工智能的研究内容与研究目标、人工智能的研究途径和方法、人工智能的研究领域。
A. 人工智能的研究内容:1、搜索与求解:为了达到某一目标而多次地进行某种操作、运算、推理或计算的过程。
事实上,搜索是人在求解问题时而不知现成解法的情况下所采用的一种普遍方法。
许多问题(包括智力问题和实际工程问题)的求解都可以描述为或归结为对某种图或空间的搜索问题。
搜索技术就成为人工智能最基本的研究内容2、学习与发现:学习与发现是指机器的知识学习和规律发现。
事实上,经验积累能力、规律发现能力和知识学习能力都是智能的表现3、知识与推理:知识就是力量,知识就是智能,发现客观规律,运用知识解决问题都是有智能的表现,而且是最为基本的一种表现。
发现规律和运用知识本身还需要知识,因此知识是智能的基础和源泉。
研究面向机器的知识表示形式和基于各种表示的机器推理技术:知识表示要求便于计算机的接受、存储、处理和运用,机器的推理方式与知识的表示又息息相关4、发明与创造:广义的发明创造不仅需要知识和推理,还需要想象和灵感。
不仅需要逻辑思维,还需要形象思维人工智能中最富挑战性的一个研究领域。
目前已有一些进展:已展开了关于形象信息的认知理论、计算模型和应用技术的研究,已开发出了计算机辅助创新软件,还尝试用计算机进行文艺创作等等5、感知与交流:指计算机对外部信息的直接感知和人机之间、智能体之间的直接信息交流。
机器感知包括计算机视觉、听觉等各种感觉能力。
机器信息交流涉及通信、自然语言理解和表达6、记忆与联想:记忆是智能的基本条件,不管是脑智能还是群智能,都以记忆为基础传统方法实现的联想,只能对于那些完整的、确定的(输入)信息,联想起(输出)有关的信息。
这种“联想”与人脑的联想功能相差甚远人脑的联想功能基于神经网络的按内容记忆方式,而非存储地址当前,采用一种称为“联想存储”的技术来实现联想功能7、系统与建造:包括智能系统的分类、硬/软件体系结构、设计方法、实现语言工具与环境等8、应用与工程:人工智能技术与实际应用的接口,主要研究人工智能的应用领域、应用形式、具体应用工程项目等,涉及问题的分析、识别和表示,相应求解方法和技术的选择等B. 人工智能的研究目标:一般研究目标:理解人类智能,通过编写程序来模仿和检验人类智能的有关理论,更好的理解人类智能;实现人类智能,创造有用的灵巧程序,执行一般需要人类专家才能实现的任务,实现人类智能。
近期目标:建造智能计算机代替人类的部分智力劳动。
远期目标:揭示人类智能的根本机理,用智能机器去模拟,延伸和扩展人类的智能C. 人工智能的研究途径与方法1、心理模拟,符号推演2、生理模拟,神经计算3、行为模拟,控制进化4、群体模拟,仿生计算5、博采广鉴,自然计算6、原理分析,数学建模D. 人工智能的研究领域专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动程序设计,机器人学,博弈,智能决定支持系统和人工神经网络等。
(3)人工智能将来肯定能战胜人类智能,对吗,请辨析。
人工智能只能作为人类工具而不可能超过人类智能。
人工智能的本质是对人类智能思维的模拟从方法论上讲模拟一般分为两种结构模拟和功能模拟结构模拟方法根据系统之间形态结构的相似性运用物理模拟和数学模拟方法用模型去模拟对象通过模型来间接地研究原型的规律性这种传统模拟方法在科学技术的发展过程中发挥了巨大的作用。
机器思维和人工智能在未来发展的可能性和重要性有其值得重视的一面,但机器思维只是人的思维在一定程度上的延伸和补充,而不是一种独立的思维,机器思维同人类思维具有本质的区别:第一,二者的物质承担者不同。
第二,第二,二者在智能活动中的地位不同。
第三,第三,二者在思维的程序上不同。
第四,第四,人工智能没有人类的意识所特有的能动的创造能力。
第五,人工智能没有社会性。
模拟思维不可能超越其被模拟的真正思维。
人类同机器的关系永远是制造与被制造、支配与被支配、使用与被使用的关系,而不是相反。
认为机器思维能够完全取代人脑,人工智能能够战胜人类智能,机器人将会统治世界的观点是没有根据的。
二、查阅相关文献陈述人工智能的国内外发展与应用现状及发展趋势,(不少于3000字)人工智能的国内外发展:国外发展现状目前,AI技术在美国、欧洲和日本发展很快。
在AI技术领域十分活跃的IBM 公司。
已经为加州劳伦斯?利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑——“蓝色牛仔(blue jean)”,据其研究主任保罗?霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。
麻省理工学院的AI实验室进行一个的代号为cog的项目。
cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。
由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。
除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。
微软公司总裁比尔?盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。
我国人工智能的研究现状很长一段时间以来,机械和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。
中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。
它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。
它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。
应用现状:自动规划、调度与配置:规划一般指设计制定一个行动序列,例如机器人行动规划、交通路线规划调度就是一种任务分派或者安排,例如车辆调度、电力调度、资源分配、任务分配。
调度的数学本质是给出两个集合间的一个映射配置则是设计合理的部件组合结构,即空间布局,例如资源配置、系统配置、设备或设施配置三者有一定的内在联系,有时甚至可以互相转化。
事实上,它们都属于人工智能的经典问题之一的约束满足问题。
机器定理证明:定理证明是最典型的逻辑推理问题,它在发展人工智能方法上起过重大作用很多非数学领域的任务如医疗诊断、信息检索、规划制定和难题求解,都可以转化成一个定理证明问题机器定理证明的方法主要有四类:自然演绎法,其基本思想是依据推理规则,从前提和公理中可以推出许多定理,如果待证的定理恰在其中,则定理得证判定法,即对一类问题找出统一的计算机上可实现的算法解。
在这方面一个著名的成果是我国数学家吴文俊教授1977年提出的初等几何定理证明方法定理证明器,它研究一切可判定问题的证明方法计算机辅助证明,它是以计算机为辅助工具,利用机器的高速度和大容量,帮助人完成手工证明中难以完成的大量计算、推理和穷举。
自动程序设计:让计算机设计程序:就是人只要给出关于某程序要求的非常高级的描述,计算机就会自动生成一个能完成这个要求目标的具体程序相当于给机器配置了一个“超级编译系统”,它能够对高级描述进行处理,通过规划过程,生成所需的程序自动程序设计还包括程序自动验证,即自动证明所设计程序的正确性机器翻译: 把“光阴似箭”的英语句子“Time flies like an arrow”翻译成日语,然后再翻译回来的时候,竟变成了“苍蝇喜欢箭”;又如,当把“心有余而力不足”的英语句子“The spirit is willing but the flesh is weak”翻译成俄语,然后再翻译回来时竟变成了“酒是好的,肉变质了”,即“The wine is good but the meat is spoiled”机器翻译并非想像的那么简单,并使得人们认识到,单纯地依靠“查字典”的方法不可能解决翻译问题,只有在对语义理解的基础上,才能做到真正的翻译,所以机器翻译的真正实现,还要靠自然语言理解方面的突破。
智能控制:把人工智能技术引入控制领域,建立智能控制系统智能控制具有两个显著的特点:智能控制是同时具有知识表示的非数学广义世界模型和传统数学模型混合表示的控制过程智能控制的核心在高层控制,即组织级控制,其任务在于对实际环境或过程进行组织,即决策与规划。
先验智能:有关控制对象及干扰的先验知识,可以从一开始就考虑在控制系统的设计中反应性智能:在实时监控、辨识及诊断的基础上,对系统及环境变化的正确反应能力。
发展趋势:(1)自动推理是人工智能最经典的研究分支,其基本理论是人工智能其它分支的共同基础。
一直以来自动推理都是人工智能研究的最热门内容之一,其中知识系统的动态演化特征及可行性推理的研究是最新的热点,很有可能取得大的突破。