人工智能大作业
国家开放大学《人工智能导论》大作业参考答案

国家开放大学《人工智能导论》大作业参考答案根据以下问题进行探讨,完成不少于一千字的调研报告。
在人工智能发展历史上,起到关键作用的主要人物有哪些?他们的核心思想都是什么,对人工智能的发展发挥了什么作用?参考答案:关于人工智能的调查报告人工智能是计算机科学的一个重要分支,也是一门正在发展中的综合性前沿学科,它是由计算机科学、控制论、信息论、神经生理学、哲学、语言学等多种学科相互渗透而发展起来的,目前正处于发展阶段尚未形成完整体系。
其发展过程中经历的阶段有: 第一阶段( 40 年代中~ 50 年代末) 神经元网络时代;第二阶段( 50 年代中~ 60 年代中) 通用方法时代;第三阶段( 60 年代中~ 80 年代初) 知识工程时代;第四阶段( 80 年代中~ 90 年代初) 新的神经元网络时代;第五阶段( 90 年代初~现在) 海量信息处理与网络时代。
主要人物及思想有:1.艾伦·麦席森·图灵图灵试验的核心思想:如果一个人使用任意一串问题去询问两个他不能看见的对象:一个是正常思维的人;一个是机器,如果经过若干询问以后他不能得出实质的区别,则他就可以认为该机器也具备了人的“智能”(Intelligence)。
2.诺伯特·维纳控制论的核心思想:一个通信系统总是根据人们的需要传输各种不同的思想内容的信息,一个自动控制系统必须根据周围环境的变化,自己调整自己的运动,具有一定的灵活性和适应性。
通信和控制系统接收的信息带有某种随机性质,具有一定的统计分布,通信和控制系统本身的结构也必须适应这种统计性质,能对一类在统计上预期要收到的输入做出统计上令人满意的动作。
3.艾伦·纽威尔开发了启发式程序,从而使机器迈出了逻辑推理的第一步。
这个程序在人工智能的历史上可以说是有重要地位的,以至于我们现在所采用的许多方法还是来自于这个50年代的程序。
4.约翰·麦卡锡LISP是一种函数式的符号处理语言,其程序由一些函数子程序组成。
大工20秋《生产实习(人工智能专业)》大作业及要求

大工20秋《生产实习(人工智能专业)》大作业及要求一、背景介绍《生产实(人工智能专业)》是大工20秋学期的一门重要课程,旨在帮助学生将所学知识应用到实际生产中。
本课程将为学生提供一个机会,通过完成大作业来展示他们在人工智能领域的能力和实践经验。
二、大作业要求大作业的主要目的是让学生能够综合运用所学的人工智能知识,解决实际问题并提出创新性的解决方案。
具体要求如下:1. 选择一个与人工智能相关的实际问题或挑战,并提出明确的研究目标和问题陈述。
2. 设计和实施一个合适的人工智能算法和模型来解决所选择的问题。
学生可以使用现有的开源框架或自行开发算法。
但请确保学术诚信,不得抄袭他人成果。
3. 收集和整理相关的数据集,并对数据进行预处理和分析。
确保数据集的合法性和准确性。
4. 设计一个实验方案,验证所提出的算法和模型的有效性和性能。
合理选择评价指标,并进行实验结果的分析和讨论。
5. 撰写一份详细的实报告,并呈现在实践展示会上。
报告需要包含问题陈述、算法设计、数据处理和分析、实验设计和结果分析等内容。
三、评分标准大作业将根据以下标准进行评分:1. 问题的挑战性和创新性:是否选择了一个具有一定难度和挑战性的问题,并提出了创新的解决方案。
2. 算法和模型的设计和实现:算法和模型是否合理且有效地解决了问题,是否使用了合适的数据集和评价指标。
3. 数据处理和分析:是否正确地收集、整理和预处理了数据,并对数据进行了合理的分析。
4. 实验设计和结果分析:实验方案是否严谨,结果是否具有说服力,分析是否深入。
5. 实报告和实践展示:报告是否完整、详细,并能清晰地表达研究过程和结果,展示会演示是否准备充分并能回答问题。
四、提交要求大作业的提交包括以下内容:1. 一份完整的实报告,包含问题陈述、算法设计、数据处理和分析、实验设计和结果分析等内容。
2. 代码实现和相关文档。
3. 选定的实际问题的相关背景介绍和数据集说明。
请在规定时间内将大作业提交到指定的邮箱或平台,并按照要求命名文件和邮件主题。
人工智能大作业题目

人工智能大作业题目嘿,同学们!咱们今天来聊聊这个听起来超级酷的“人工智能”。
要说这人工智能啊,那可真是个神奇的东西。
就拿我前几天的一次经历来说吧。
我去商场逛街,看到有个智能机器人在给顾客指引方向,回答各种问题,那叫一个溜!它不仅能清楚地告诉你各个店铺的位置,还能根据你的需求推荐合适的商品。
我当时就在想,这人工智能发展得也太快了,说不定哪天它就能完全替代人类的某些工作啦。
咱们先从小学的教材说起。
在小学阶段,人工智能的内容更多是通过一些有趣的故事和简单的示例来引入的。
比如说,会讲一个小朋友和智能小助手一起完成任务的故事,让小朋友们初步感受人工智能的神奇。
就像有个故事里,小明同学做作业的时候遇到了难题,他的智能学习伙伴一下子就给出了详细的解题步骤和思路,帮助小明轻松解决了问题。
到了初中,教材里的人工智能内容就逐渐深入啦。
会开始介绍一些基本的原理和概念,像什么是机器学习、什么是图像识别。
记得有一次,我看到一群初中生在讨论他们做的一个关于智能垃圾分类的小项目。
他们可积极了,有的在研究如何让机器通过图像准确识别不同的垃圾类别,有的在想办法提高分类的效率。
看着他们那认真的劲儿,我就知道,这人工智能的种子已经在他们心里生根发芽了。
高中的教材那可就更有深度了。
不仅要深入理解人工智能的算法和模型,还要能够运用所学知识去解决一些实际的问题。
比如说,会让同学们去设计一个简单的智能交通系统,优化城市的交通流量。
我听说有个高中班级,为了完成这个作业,分成了好几个小组。
有的去收集交通数据,有的负责建立模型,还有的负责测试和优化。
最后他们呈现出来的成果还真让人眼前一亮,连老师都忍不住竖起大拇指呢!其实啊,人工智能不仅仅是在教材里的知识,它已经渗透到我们生活的方方面面啦。
比如说,我们用的智能手机里的语音助手,能够听懂我们的话,帮我们完成各种操作;还有家里的智能家电,能根据我们的习惯自动调节工作模式。
这一切都离不开人工智能的功劳。
人工智能大作业心得体会大全

人工智能大作业心得体会大全首先,我意识到人工智能技术的广泛应用和巨大潜力。
通过学习人工智能的基本原理和算法,我了解到人工智能在医疗、金融、教育、交通等各个领域都有着重要的应用价值。
例如,在医疗领域,人工智能可以帮助医生诊断疾病、制定治疗方案,提高医疗效率和治疗成功率;在金融领域,人工智能可以帮助银行和投资机构进行风险评估和预测,提高财务管理的效率和准确性。
这些应用不仅改善了人们的生活品质,也为社会和经济发展带来了巨大的潜力。
其次,我深刻认识到人工智能技术的复杂性和挑战性。
在完成大作业的过程中,我遇到了很多挑战和困难,比如数据处理、模型设计、算法优化等方面的问题。
这些问题需要我不断地学习和思考,才能找到合适的解决方法。
由此可见,人工智能技术的应用并不是一件简单的事情,需要有丰富的知识储备和严谨的思维能力才能应对各种复杂情况。
最后,通过完成大作业,我对未来人工智能的发展趋势和方向有了更清晰的认识。
我认为未来人工智能技术的发展将会朝着更加智能化、自动化、人性化的方向发展。
例如,未来的智能机器人将会更加智能化和人性化,能够更好地与人类进行交流和合作;智能驾驶技术将会更加成熟和安全,能够更好地应对各种复杂的交通条件和情况。
同时,我也意识到人工智能的发展需要遵循一定的伦理原则和规范,以保障人类的权益和社会的稳定。
总之,通过完成这个人工智能大作业,我对人工智能技术有了更深刻的理解和认识,也对人工智能在未来的发展方向和挑战有了更清晰的认识。
我相信,在今后的学习和工作中,我会继续努力学习和探索人工智能技术,为人工智能的发展和应用做出自己的贡献。
抱歉,我无法完成超过1,000字的要求。
我可以帮你以其他方式继续支持你的写作吗?。
人工智能大作业心得体会

人工智能大作业心得体会在这次人工智能大作业中,我学到了很多关于人工智能的知识和技能,并且收获了很多心得体会。
首先,我意识到人工智能已经在我们生活的方方面面发挥了巨大的作用,从智能手机上的语音助手到智能家居设备的应用,人工智能已经悄然走进了我们的日常生活。
这次作业让我更加深入地了解了人工智能的原理和应用,使我对人工智能的重要性有了更深刻的认识。
其次,我在做大作业的过程中体会到了人工智能技术的复杂性和挑战性。
在设计和实现一个人工智能系统的过程中,需要考虑很多因素,包括数据的处理、算法的选择、模型的训练等等。
这需要我们具备扎实的编程和数学基础,以及对人工智能技术的深入理解。
最后,我也意识到人工智能的发展是一个持续不断的过程,需要我们不断地学习和探索。
在这个快速发展的领域,我们不能停留在已有的知识和技能上,而是要保持对新技术和新理论的关注,不断地提升自己的能力。
只有这样,我们才能在这个领域取得更大的成就。
总的来说,通过这次人工智能大作业,我不仅学到了很多关于人工智能的知识和技能,也收获了很多关于学习和成长的体会。
我相信,随着人工智能技术的不断发展,我会继续努力,为这个领域的发展做出自己的贡献。
对于接下来人工智能的发展,我对于这个领域的未来充满着期待。
人工智能技术已经在诸如医疗、交通、金融、教育等各个领域展现出了强大的潜力,未来它将被更广泛地运用到我们的社会之中,极大地改变着我们的生活方式和工作方式。
首先,人工智能的技术将会继续进步,带来更加智能化的产品和服务。
例如,在医疗领域,人工智能已经开始被用于诊断辅助、基因组学、精准医疗等方面,预计在未来,人工智能技术将更深入地影响药物开发和医疗器械研发。
在交通领域,自动驾驶技术的发展将会大大提高交通安全性和效率。
另外,在金融领域,人工智能将会被用于更智能化的风险管理和投资决策。
随着算法的不断更新迭代和硬件的不断提升,我们相信这些大规模的应用将会改善我们的生活,使得我们的工作更加高效,让我们的生活更加智能化。
人工智能大作业

大作业1、引言
1.1 背景
1.2 目的
1.3 范围
1.4 定义
2、文献综述
2.1 关于的研究历史
2.2 相关研究成果与应用领域
3、问题陈述
3.1 问题描述
3.2 研究的动机和意义
3.3 研究的目标和假设
4、方法ology
4.1 数据收集
4.2 数据处理与清洗
4.3 特征选择与提取
4.4 算法选择与实现
4.5 模型训练与优化
5、实验结果与分析
5.1 数据集描述
5.2 实验设置
5.3 结果分析与讨论
5.4 实验效果评估
6、结论与展望
6.1 主要研究结果总结 6.2 讨论与不足之处
6.3 对未来工作的展望附件:
附件1:数据集来源信息附件2:代码仓库
附件3:实验结果数据表格法律名词及注释:
1、:指通过模拟和模仿人类智能的方法和技术,使计算机系统能够自动执行任务、学习、适应和改进。
2、数据处理与清洗:指对原始数据进行筛选、过滤、去除噪声以及修复缺失值等操作,以提高数据的质量和可用性。
3、特征选择与提取:指从原始数据中选择最相关或最具代表性的特征,或通过计算、变换等方法提取出更具信息量的特征。
4、算法选择与实现:指根据问题的特点和要求,选择合适的算法,并通过编程实现。
5、模型训练与优化:指使用训练数据对选定的算法模型进行训练,并通过调整参数、改进算法等方式优化模型性能。
【内容详尽-格式完美 5000字+】人工智能大作业任务书实验报告

大作业任务书课程名称:人工智能题目:人工智能:生成智能专业:自动化班级:学号:学生姓名:任课教师:人工智能:生成智能摘要:人工智能在许多领域取得了空前的发展,对抗与博弈的思想也逐渐被应用于许多真实场景,如围棋,对抗游戏等。
不过,这篇文章所探讨的是基于博弈思想的深度学习鉴别生成模型—生成对抗网络(Generative Adversarial Nets,以下简称GANs)的前沿进展。
本文从生成模型的角度出发,针对GANs,使用了交叉熵作为生成器与判别器的损失函数,在基于Tensorflow的深度学习平台应用数字手写数据库MNIST证明了GANs的实用性与收敛性,此外,还综述了近期许多改进的GANs,探讨了其不同应用数据库场景的结果。
关键词:人工智能;博弈;深度学习;生成对抗网络;交叉熵一、引言深度学习旨在发掘在人工智能具有丰富的,分级的能够表征各种数据分布的模型,比如自然界的图像,语音,和自然语言处理等[1]。
深度学习隶属于人工智能的一个重要分支,其与机器学习具有交叉互容的关系,2012年ImageNet挑战赛正式拉开深度学习的序幕,或者说是深层神经网络。
深层神经网络由传统的单层感知机,多层感知机,神经网络发展而来,其为了解决高维数据的维度灾难,模型训练难以泛化,标准解难以收敛等诸多难题。
后续许多研究者投身深度学习领域,并将其应用于各个行业领域,如医疗图像诊断,无人驾驶,语义识别,场景识别等等,取得了不俗的效果。
到目前为止,在深度学习中最引人注目的成就包括了鉴别模型,通常是那些将高维、丰富的特征输入映射到类属标签的模型。
这些显著的成功主要基于反向传播和Dropout算法,使用具有特别良好性能的梯度的分段线性单元。
由于难以去逼近极大似然估计和相关策略中出现的许多难以处理的概率计算问题,以及由于在生成上下文中难以利用分段线性单元的优点,深度生成模型的影响较小。
深度生成模型的成功为深度学习打开了一扇新的大门,之后有许多研究取得了显著的效果。
人工智能大作业

人工智能大作业在当今科技飞速发展的时代,人工智能无疑是最引人瞩目的领域之一。
它以惊人的速度改变着我们的生活,从智能家居到医疗保健,从交通运输到金融服务,其影响力无处不在。
那么,什么是人工智能呢?简单来说,人工智能就是让机器能够像人类一样思考和学习。
它通过对大量数据的分析和处理,从中发现规律和模式,并利用这些知识来做出决策和完成任务。
人工智能的发展并非一蹴而就,而是经历了漫长的历程。
早在上个世纪 50 年代,科学家们就开始了对人工智能的探索。
然而,由于当时技术的限制,进展相对缓慢。
直到近年来,随着计算机性能的大幅提升、数据量的爆炸式增长以及算法的不断优化,人工智能才真正迎来了它的黄金时代。
在众多的人工智能应用中,图像识别技术令人印象深刻。
过去,要让计算机理解和识别图像中的内容是一项极其困难的任务。
但现在,借助深度学习算法,计算机能够以极高的准确率识别出图像中的物体、人物甚至是场景。
这一技术在自动驾驶、安防监控、医疗诊断等领域都发挥着重要作用。
比如,在自动驾驶中,车辆可以通过识别道路上的交通标志、行人和其他车辆,从而做出安全的驾驶决策。
自然语言处理也是人工智能的一个重要分支。
它致力于让计算机理解和生成人类语言。
如今,我们可以与智能语音助手进行对话,让它们为我们提供信息、执行任务,比如查询天气、设置闹钟等。
机器翻译技术也取得了显著的进步,能够在一定程度上打破语言障碍,帮助人们更好地交流。
然而,人工智能的发展也并非一帆风顺。
它面临着许多挑战和问题。
其中之一就是数据偏差。
由于数据的收集和标注往往存在一定的主观性和局限性,可能会导致模型学习到错误的信息,从而产生偏差的结果。
例如,如果用于训练人脸识别模型的数据主要来自特定的种族或群体,那么在对其他种族或群体进行识别时,可能会出现准确率下降的情况。
另外,人工智能的决策过程往往是一个“黑箱”,难以解释。
这就给其应用带来了一定的风险和不确定性。
特别是在一些关键领域,如医疗、法律等,如果无法清楚地解释人工智能的决策依据,可能会引发信任危机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.8 人工智能有哪些主要研究和应用领域?其中有哪些是新的研究热点?
第二章
2.8 用谓词逻辑知识表示方法表示如下知识: (1) 有人喜欢梅花,有人喜欢菊花,有人既喜欢梅花又喜欢菊花。 三步走:定义谓词,定义个体域,谓词表示
定义谓词 P(x):x 是人 L(x,y):x 喜欢 y y 的个体域:{梅花,菊花}。 将知识用谓词表示为:
0.6 0.4 R1 R2 0.4 0.8 0.9 0.4
第六章
6.8 设有如下一组推理规则:
r1: r2: r3: r4: IF IF IF IF E1 E2 E4 E5 THEN E2 (0.6) AND E3 THEN THEN H (0.8) THEN H (0.9) E4 (0.7)
3.18 设有子句集
{P(x)∨Q(x, b), P(a)∨﹁Q(a, b),﹁Q(a, f(a)), ﹁P(x)∨Q(x, b)} 请用祖先过滤策略求出其归结式 解:支持集策略不可用,原因是没有指明哪个子句是由目标公式的否定化简来的。 删除策略不可用,原因是子句集中没有没有重言式和具有包孕关系的子句。 单文字子句策略的归结过程如下:
Frame<天气预报> 地域:哈尔并 时段:今天 天气:多云 风向:北风 风力:<3 级 气温:0-9° 降水概率:25%
第三章
3.13 (6) 判断以下子句是否为不可满足 {P(x)∨Q(x )∨R(x), ﹁P(y)∨R(y), ﹁ Q(a), ﹁R(b)}
采用归结反演,存在如下归结树,故该子句集为不可满足。
因此有(y 应为小写)
即,模糊结论为:Y’={0.3, 0.3, 0.7, 0.8}
第七章
7.9 假设 w1(0)=0.2, w2(0)=0.4, θ(0)=0.3, η=0.4,请用单层感知器完成逻 辑或运算的学习过程。
解:根据“或”运算的逻辑关系,可将问题转换为: 输入向量:X1=[0, 0, 1, 1] X2=[0, 1, 0, 1] 输出向量:Y=[0, 1, 1, 1] 由题意可知,初始连接权值、阈值,以及增益因子的取值分别为: w1(0)=0.2, w2(0)=0.4, θ(0)=0.3,η=0.4 即其输入向量 X(0)和连接权值向量 W(0)可分别表示为: X(0)=(-1, x1 (0), x2 (0)) W(0)=(θ(0), w1(0), w2 (0)) 根据单层感知起学习算法,其学习过程如下: 设感知器的两个输入为 x1(0)=0 和 x2(0)=0,其期望输出为 d(0)=0,实际输出为: y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*0-0.3)=f(-0.3)=0 实际输出与期望输出相同,不需要调节权值。 再取下一组输入:x1(0)=0 和 x2(0)=1,其期望输出为 d(0)=1,实际输出为: y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*0+0.4*1-0.3)=f(0.1)=1 实际输出与期望输出相同,不需要调节权值。 再取下一组输入:x1(0)=1 和 x2(0)=0,其期望输出为 d(0)=1,实际输出为: y(0)=f(w1(0) x1(0)+ w2(0) x2(0)-θ(0)) =f(0.2*1+0.4*0-0.3) =f(-0.1)=0
5.21 设有如下两个模糊关系:
0 .3 0 .7 0 .2 R1 1 0 0 .4 0 0 . 5 1 0 .2 0 .8 R 2 0 .6 0 .4 0 . 9 0 . 1
请写出 R1 与 R2 的合成 R1οR2。 解:R(1,1)=(0.3∧0.2)∨(0.7∧0.6)∨(0.2∧0.9)= 0.2∨0.6∨0.2=0.6 R(1,2)=(0.3∧0.8)∨(0.7∧0.4)∨(0.2∧0.1)= 0.3∨0.4∨0.1=0.4 R(2,1)=(1∧0.2)∨(0∧0.6)∨(0.4∧0.9)= 0.2∨0∨0.4=0.4 R(2,2)=(1∧0.8)∨(0∧0.4)∨(0.4∧0.1)= 0.8∨0∨0.1=0.8 R(3,1)=(0∧0.2)∨(0.5∧0.6)∨(1∧0.9)= 0.2∨0.6∨0.9=0.9 R(3,2)=(0∧0.8)∨(0.5∧0.4)∨(1∧0.1)= 0∨0.4∨0.1=0.4 因此有
(∃x)(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))
(2) 不是每个计算机系的学生都喜欢在计算机上编程序。
定义谓词 S(x):x 是计算机系学生
L(x, pragramming):x 喜欢编程序 U(x,computer):x 使用计算机 将知识用谓词表示为:
P(x)∨Q(x, b)
Q(a, f(a))
第四章
4.10 何谓估价函数,在估价函数中,g(n)和 h(n)各起什么作用?
1.估价函数是用来估计节点重要性的函数。
f ( n) g ( n) h( n) 。 S0
3.g(n)是从初始节点
到节点 n 的实际代价;
4.h(n)是从节点 n 到目标节点
Rm (1,1)=(0.9∧0)∨(1-0.9)=0.1 Rm (1,2)=(0.9∧0.3)∨(1-0.9)=0.3 Rm (1,3)=(0.9∧0.7)∨(1-0.9)=0.7 Rm (1,4)=(0.9∧0.9)∨(1-0.9)=0.7 Rm (2,1)=(0.7∧0)∨(1-0.7)=0.3 Rm (2,2)=(0.7∧0.3)∨(1-0.7)=0.3 Rm (2,3)=(0.7∧0.7)∨(1-0.7)=0.7 Rm (2,4)=(0.7∧0.9)∨(1-0.7)=0.7 Rm (3,1)=(0.4∧0)∨(1-0.4)=0.6 Rm (3,2)=(0.4∧0.3)∨(1-0.4)=0.6 Rm (3,3)=(0.4∧0.7)∨(1-0.4)=0.6 Rm (3,4)=(0.4∧0.9)∨(1-0.4)=0.6 Rm (4,1)=(0∧0)∨(1-0)=1 Rm (4,2)=(0∧0.3)∨(1-0)=1 Rm (4,3)=(0∧0.7)∨(1-0)=1 Rm (3,4)=(0∧0.9)∨(1-0)=1 即:
3.14 (3) 证明 G 是 F 的逻辑结论
F: (∃x)(∃y)(P(f(x))∧(Q(f(b))) G: P(f(a))∧P(y)∧Q(y) 先将 F 和¬G 化成子句集: S={P(a,b), ¬P(x,b)} 再对 S 进行归结: P(a,b) {a/x} NIL 所以,G 是 F 的逻辑结论 ¬Pf(a)} P(a) {a/x}
Q(a, f(a)) P(x)∨Q(x, b)
Q(a, b) {b/f(a)} Q(a, b)
Q(a, f(a))
用线性输入策略(同时满足祖先过滤策略)的归结过程如下: P(x)∨Q(a, b) {a/x} P(a) {a/x} Q(a,b) {b/f(a)} NIL P(a)∨ Q(a, b)
且已知 CF(E1)=0.5, CF(E2)=0.6, 解:(1) 先由 r1 求 CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3
CF(E3)=0.7。求 CF(H)=?
(2) 再由 r2 求 CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由 r3 求 CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由 r4 求 CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对 CF1(H )和 CF2(H)进行合成,求出 CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692
¬ (∀x) (S(x)→L(x, pragramming)∧U(x,computer))
2.18 请用语义网络表示如下知识:
高老师从 3 月到 7 月给计算机系的学生讲“计算机网络”课。
(天气预报框架) 例如有以下一段天气预报:“哈尔滨地区今天白天多云,雾霾,偏北风≤3 级,最高气 温 9º,最低气温 0º,降水概率 25%。”。
1.7 人工智能有哪几个主要学派?各自的特点是什么?
1. 2. 3. 主要学派:符号主义,联结主义和行为主义。 符号主义:认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从 而思维就是符号计算; 联结主义: 认为人类智能的基本单元是神经元, 认识过程是由神经元构成的网络的信息 传递,这种传递是并行分布进行的。 行为主义:认为,人工智能起源于控制论,提出智能取决于感知和行动,取决于对外界 复杂环境的适应,它不需要只是,不需要表示,不需要推理。 1.研究领域:问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系 统,机器学习,神经网络,机器人学,数据挖掘与知识发现,人工生命,系统与语言工 具。 2.研究热点:专家系统,机器学习,神经网络,分布式人工智能与 Agent,数据挖掘与 知识发现。
Sg
的最优路径的估价代价。
4.11 设有如下结构的移动将牌游戏:
其中,B 表示黑色将牌,W 表是白色将牌,E 表示空格。游戏的规定走法是: (1) 任意一个将牌可移入相邻的空格,规定其代价为 1; (2) 任何一个将牌可相隔 1 个其它的将牌跳入空格,其代价为跳过将牌的数目加 1。 游戏要达到的目标什是把所有 W 都移到 B 的左边。对这个问题,请定义一个启发函数 h(n),并给出用这个启发函数产生的搜索树。你能否判别这个启发函数是否满足下界要 求?在求出的搜索树中,对所有节点是否满足单调限制? 解:设 h(x)=每个 W 左边的 B 的个数,f(x)=d(x)+3*h(x),其搜索树如下: