SPSS大数据分析报告地主要步骤
“保姆级”操作教程 手把手教你SPSS分析数据实战这也太方便了吧

保姆级操作教程 | 手把手教你SPSS分析数据实战这也太方便了吧数据分析是现代社会研究中不可或缺的一部分。
而SPSS作为一款功能强大且易于使用的统计分析软件,受到了许多研究人员和学生的青睐。
本文将手把手教你如何使用SPSS进行数据分析,让你的研究工作更加高效和准确。
步骤1:导入数据首先,打开SPSS软件并点击菜单栏上的“文件”选项。
然后选择“打开”并浏览你存储数据集的位置。
选择相应的数据文件,并点击“打开”。
现在,你的数据集就已经成功导入。
步骤2:查看数据在导入数据后,你可以通过点击菜单栏上的“数据视图”选项来查看数据。
在数据视图中,你可以浏览和编辑数据。
如果你想查看数据的统计摘要信息,可以点击菜单栏上的“变量视图”选项。
步骤3:数据清理在进行数据分析之前,你需要对数据进行清理。
这包括处理缺失值、异常值和离群值等。
SPSS提供了一系列用于数据清理的功能,例如删除无效数据、替换缺失值等。
你可以使用菜单栏上的“转换”选项来执行这些操作。
步骤4:选择统计分析方法在进行数据清理后,接下来需要选择合适的统计分析方法。
SPSS提供了多种常用的统计分析方法,例如描述统计、相关分析、回归分析、t检验等。
你可以根据自己的研究目的和数据类型选择相应的方法。
步骤5:进行统计分析一旦你选择了合适的统计分析方法,你可以点击菜单栏上的“分析”选项,并选择相应的分析方法。
然后,你需要选择要分析的变量,并设置相应的参数。
点击“确定”后,SPSS将自动进行统计分析,并生成相应的结果。
步骤6:解读结果进行完统计分析后,你需要对分析结果进行解读。
SPSS会生成各种统计指标和图表,用于帮助你理解数据。
你可以查看参数估计值、置信区间、显著性水平等信息,并根据这些结果进行推断和判断。
步骤7:报告和呈现结果最后,你需要将分析结果进行报告和呈现。
SPSS提供了生成报告和图表的功能,你可以根据需要选择相应的样式和格式。
在报告中,你可以总结分析结果、提出结论,并展示相关的图表和图形。
spss数据分析的基本流程

spss数据分析的基本流程英文回答:The basic process of data analysis in SPSS involves several steps. First, you need to import your data into SPSS. This can be done by either directly entering the data into SPSS or by importing it from a file, such as an Excel spreadsheet. Once the data is imported, you can start exploring and cleaning the data.The next step is to conduct descriptive statistics on your data. This involves calculating measures such as mean, median, and standard deviation for your variables. Descriptive statistics provide a summary of the data and help you understand the distribution and central tendency of your variables.After conducting descriptive statistics, you can move on to conducting inferential statistics. This involves testing hypotheses and making inferences about thepopulation based on sample data. There are variousstatistical tests available in SPSS, such as t-tests, ANOVA, regression analysis, and chi-square tests. The choice of statistical test depends on the research question and the type of data you have.Once you have conducted the statistical tests, you can interpret the results. This involves examining the p-values, confidence intervals, and effect sizes. It is important to consider the practical significance of the results in addition to the statistical significance. You can also visualize the results using charts and graphs in SPSS to make it easier to understand and communicate the findings.Finally, you can write a report summarizing the results of your data analysis. The report should include an introduction, a description of the data and methods used,the results of the statistical tests, and the conclusions drawn from the analysis. It is important to present the findings in a clear and concise manner, using appropriate language and terminology.中文回答:SPSS数据分析的基本流程包括几个步骤。
SPSS概览--大数据分析报告实例详解

第一章 SPSS概览--数据分析实例详解1.1 数据的输入和保存1.1.1 SPSS的界面1.1.2 定义变量1.1.3 输入数据1.1.4 保存数据1.2 数据的预分析1.2.1 数据的简单描述1.2.2 绘制直方图1.3 按题目要求进行统计分析1.4 保存和导出分析结果1.4.1 保存文件1.4.2 导出分析结果欢迎加入SPSS使用者的行列,首先祝贺你选择了权威统计软件中界面最为友好,使用最为方便的SPSS来完成自己的工作。
由于该软件极为易学易用(当然还至少要有不太高的英语水平),我们准备在课程安排上做一个新的尝试,即不急于介绍它的界面,而是先从一个数据分析实例入手:当你将这个例题做完,SPSS的基本使用方法也就已经被你掌握了。
从下一章开始,我们再详细介绍SPSS 各个模块的精确用法。
例1.1 某克山病区测得11例克山病患者与13名健康人的血磷值(mmol/L)如下, 问该地急性克山病患者与健康人的血磷值是否不同?患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87让我们把要做的事情理理顺:首先要做的肯定是打开计算机(废话),然后进入瘟98或瘟2000(还是废话,以下省去废话2万字),在进入SPSS后,具体工作流程如下:1.将数据输入SPSS,并存盘以防断电。
2.进行必要的预分析(分布图、均数标准差的描述等),以确定应采用的检验方法。
3.按题目要求进行统计分析。
4.保存和导出分析结果。
下面就按这几步依次讲解。
§1.1 数据的输入和保存1.1.1 SPSS的界面当打开SPSS后,展现在我们面前的界面如下:请将鼠标在上图中的各处停留,很快就会弹出相应部位的名称。
请注意窗口顶部显示为“SPSS for Windows Data Editor”,表明现在所看到的是SPSS的数据管理窗口。
最新SPSS数据分析的主要步骤资料

最新SPSS数据分析的主要步骤资料最新的SPSS数据分析主要步骤资料是指在使用SPSS进行数据分析时的一系列指导和建议。
下面是一个超过1200字的详细解释。
步骤1:定义研究目的和问题在进行数据分析之前,首先需要明确研究的目的和问题是什么。
这有助于确定所需的数据类型、变量和分析方法等。
例如,研究目的可能是探索数据中的关联性、预测一些变量的值,或者比较不同组别之间的差异。
步骤2:数据准备和清洗在进行数据分析之前,必须对数据进行准备和清洗。
这包括删除缺失数据、处理异常值和离群值、转换数据类型等。
同时,还需要检查数据是否满足分析的前提条件,如正态分布、线性关系等。
步骤3:描述性统计分析描述性统计是对数据集的基本特征进行总结和展示的过程。
它包括计算变量的均值、标准差、频数和百分比等。
通过描述性统计分析,可以了解数据的分布情况、中心趋势和离散程度等。
步骤4:探索性数据分析在进行更深入的统计分析之前,建议进行一些探索性数据分析。
这包括绘制直方图、散点图、箱线图等图表,以了解变量之间的关系和趋势。
通过可视化数据,可以帮助我们发现隐藏在数据中的模式和趋势,为进一步的分析提供指导。
步骤5:应用统计方法在进行数据分析的核心阶段,要根据研究目的和问题选择适当的统计方法。
SPSS提供了各种常见的统计方法,如相关分析、回归分析、方差分析、T检验等。
根据研究的具体情况,选择合适的方法进行分析,并根据结果进行解释和推断。
步骤6:解释和报告结果数据分析的结果需要进行解释和报告,以便他人了解研究的发现和结论。
建议使用清晰简洁的方式来解释结果,并使用图表和表格等可视化工具来提供支持。
同时,还需要注意结果的可靠性和有效性,并根据实际情况提出进一步的建议和探索。
步骤7:验证和验证结果在分析结果之后,建议对结果进行验证和验证。
这可以通过重复分析、使用其他统计方法、进行敏感性分析等来实现。
通过验证和验证结果,可以提高分析的可靠性,并确保结论的正确性和准确性。
spss数据分析怎么写分析报告

SPSS数据分析怎么写分析报告1. 引言在进行SPSS数据分析之后,编写一份详细的分析报告是非常重要的。
这份报告将帮助读者了解你所进行的分析过程、结果和结论。
本文将介绍如何编写一份完整的SPSS数据分析报告。
2. 数据收集和清理数据分析的第一步是收集和清理数据。
在这一阶段,你需要确定你所需要的数据,并导入到SPSS软件中。
确保数据没有丢失或错误,并进行必要的清理和处理,比如删除异常值、填充缺失值等。
3. 数据描述统计在开始数据分析之前,最好先对数据进行描述统计。
描述统计可以帮助你了解数据的基本属性,包括均值、标准差、最大值、最小值等。
你可以使用SPSS的描述统计功能来生成这些统计数据,并将其包含在报告中,以便读者了解数据的基本情况。
4. 变量相关性分析接下来,你可以使用SPSS进行变量相关性分析。
这可以帮助你确定不同变量之间的关系,并找到可能的影响因素。
通过使用相关系数分析,你可以计算出变量之间的相关性,以及其相关性的显著性水平。
将相关系数和显著性水平包含在报告中,以帮助读者了解变量之间的关系。
5. 统计检验在进行SPSS数据分析时,你可能还需要进行一些统计检验。
统计检验可以帮助你确定两个或多个样本之间是否存在差异,以及这些差异是否显著。
在报告中,你可以包含所使用的统计检验方法和结果,以及任何显著性水平的细节。
6. 数据可视化数据可视化是一个重要的步骤,可以帮助你更直观地呈现分析结果。
SPSS提供了各种绘图功能,比如直方图、散点图和线图等。
选择适当的图表来展示你的分析结果,并确保图表清晰易懂。
在报告中插入这些图表,并为每个图表提供必要的说明和解释。
7. 结果解释和讨论最后,你需要解释和讨论你的分析结果。
对于每个统计指标、相关系数、显著性水平和图表,提供详细的解释和解读。
讨论结果的意义,并将其与现有的研究和理论联系起来。
还可以讨论可能的局限性,并提出改进或进一步研究的建议。
8. 结论在分析报告的结尾,对分析结果进行总结和提出结论。
spss数据分析教程

spss数据分析教程SPSS是一种广泛应用于社会科学研究和企业决策分析的统计软件。
它提供了一系列强大的数据分析功能,可以处理大规模数据集,进行描述性统计、假设检验、回归分析、因子分析等多种统计方法。
本篇文章将为您介绍SPSS的常见数据分析方法和操作步骤。
首先,使用SPSS进行数据分析的第一步是导入数据。
SPSS支持多种数据格式,包括Excel、CSV、SPSS文件等。
在导入数据时,您需要确保数据被正确地放置在变量中。
变量分为数值型和分类型两种类型,数值型变量包括连续变量和离散变量,而分类型变量则是一些名称或类别。
在导入数据之后,下一步是进行描述性统计分析。
描述性统计是对数据进行整体性的描述和总结。
在SPSS中,您可以通过点击“分析”选项卡下的“描述性统计”来进行描述性统计分析。
该功能可以计算出数据的均值、标准差、最小值、最大值等统计指标,并绘制出直方图、箱线图等图表,以帮助您更好地了解数据的分布特征。
此外,SPSS还提供了很多常见的数据分析方法,如假设检验和回归分析。
假设检验用于检验样本数据与总体结论之间是否存在显著差异。
在SPSS中,您可以通过点击“分析”选项卡下的“比较手段”来进行假设检验。
根据需要选择合适的检验方法,如t检验、方差分析等,并输入相关变量和组别。
SPSS将会计算出检验结果,并给出统计显著性水平。
回归分析用于研究因变量与一个或多个自变量之间的关系。
在SPSS中,您可以通过点击“分析”选项卡下的“回归”来进行回归分析。
在回归分析对话框中,您需要选择适当的回归方法,如线性回归、多元回归等,并输入相关变量。
SPSS将会给出回归模型的参数估计、显著性检验和拟合优度等指标,帮助您理解自变量对因变量的影响程度。
另外,SPSS还支持因子分析、聚类分析、判别分析等多种高级数据分析方法。
因子分析用于确定一组观测变量与一组潜在因子之间的关系,聚类分析用于将样本根据某些相似性指标分成不同的群组,判别分析用于确定哪些变量最能用于区分不同的组别。
SPSS大数据分析报告地主要步骤

SPSS数据分析的主要步骤利用SPSS进行数据分析的关键在于遵循数据分析的一般步骤,但涉及的方面会相对较少。
主要集中在以下几个阶段。
1.SPSS数据的准备阶段在该阶段应按照SPSS的要求,利用SPSS提供的功能准备SPSS数据文件。
其中包括在数据编辑窗口中定义SPSS数据的结构、录入和修改SPSS 数据等。
2.SPSS数据的加工整理阶段该阶段主要对数据编辑窗口中的数据进行必要的预处理。
3.SPSS数据的分析阶段选择正确的统计分析方法对数据编辑窗口中的数据进行分析建模是该阶段的核心任务。
由于SPSS能够自动完成建模过程中的数学计算并能自动给出计算结果,因而有效屏蔽了许多对一般应用者来说非常晦涩的数学公式,分析人员无需记忆数学公式,这无疑给统计分析方法和SPSS 的广泛应用铺平了道路。
4.SPSS分析结果的阅读和解释该阶段的主要任务是读懂SPSS输出编辑窗口中的分析结果,明确其统计含义,并结合应用背景知识做出切合实际的合理解释。
数据分析必须掌握的分析术语1、增长:增长就是指连续发生的经济事实的变动,其意义就是考查对象数量的增多或减少。
2、百分点:百分点是指不同时期以百分数的形式表示的相对指标的变动幅度。
3、倍数与番数:倍数:两个数字做商,得到两个数间的倍数。
番数:翻几番,就是变成2的几次方倍。
4、指数:指数是指将被比较数视为100,比较数相当于被比较数的多少得到的数。
5、比重:比重是指总体中某部分占总体的百分比6、拉动。
增长。
:即总体中某部分的增加值造成的总体增长的百分比。
例子:某业务增量除以上年度的整体基数=某业务增量贡献度乘以整体业务的增长率。
例如:去年收入为23(其中增值业务3),今年收入为34(其中增值业务5),则增值业务拉动收入增长计算公式就为:(5-2)/23=(5-2)/(34-23)×(34-23)/23,解释3/(34-23)为数据业务增量的贡献,后面的(34-23)/23为增长率。
论文写作中如何利用SPSS进行数据分析与报告撰写

论文写作中如何利用SPSS进行数据分析与报告撰写在论文写作中,数据分析是一个关键的步骤,而SPSS作为一款专业的统计分析软件,在数据分析和结果呈现方面具有重要作用。
本文将介绍如何利用SPSS进行数据分析与报告撰写。
一、数据导入与处理在使用SPSS进行数据分析之前,首先需要将数据导入软件中并进行必要的处理。
一般来说,可以通过两种方式导入数据,即手动输入和导入外部文件。
手动输入适用于数据量较小的情况,而导入外部文件则适用于数据量较大或数据已经存储在其他软件中的情况。
导入数据后,可以进行数据清洗和处理。
这包括删除无效数据、处理缺失值和异常值,以及进行数据变量的转换和重编码等操作。
通过这些处理,可以保证数据的完整性和准确性,为后续的数据分析提供可靠的基础。
二、统计分析SPSS提供了丰富的统计分析功能,可以满足不同类型研究的需求。
下面将介绍几种常用的统计分析方法:1. 描述性统计分析描述性统计分析旨在对数据进行描述和总结,常用的统计指标包括平均值、标准差、中位数、百分位数等。
可以通过SPSS的频数统计、描述性统计和交叉表等功能实现。
2. 参数检验参数检验用于判断两个或多个样本是否具有显著差异。
常见的参数检验方法包括t检验、方差分析和卡方检验等。
SPSS提供了相应的功能,通过输入变量和分组变量,即可进行参数检验并获得显著性水平和置信区间等结果。
3. 相关分析相关分析用于研究两个或多个变量之间的关系,可以通过计算相关系数来衡量变量之间的相关程度。
SPSS的相关分析功能可以计算皮尔逊相关系数、斯皮尔曼相关系数和判定系数等。
4. 回归分析回归分析用于研究自变量对因变量的影响程度和方式。
SPSS提供了多元线性回归、逐步回归、逻辑回归等回归分析方法,可以通过输入自变量和因变量,获得回归系数、显著性水平等结果。
5. 聚类分析聚类分析用于将样本划分为若干互不重叠的子集,每个子集内的个体彼此相似,而不同子集的个体彼此不相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS数据分析的主要步骤利用SPSS进行数据分析的关键在于遵循数据分析的一般步骤,但涉及的方面会相对较少。
主要集中在以下几个阶段。
1.SPSS数据的准备阶段在该阶段应按照SPSS的要求,利用SPSS提供的功能准备SPSS数据文件。
其中包括在数据编辑窗口中定义SPSS数据的结构、录入和修改SPSS 数据等。
2.SPSS数据的加工整理阶段该阶段主要对数据编辑窗口中的数据进行必要的预处理。
3.SPSS数据的分析阶段选择正确的统计分析方法对数据编辑窗口中的数据进行分析建模是该阶段的核心任务。
由于SPSS能够自动完成建模过程中的数学计算并能自动给出计算结果,因而有效屏蔽了许多对一般应用者来说非常晦涩的数学公式,分析人员无需记忆数学公式,这无疑给统计分析方法和SPSS 的广泛应用铺平了道路。
4.SPSS分析结果的阅读和解释该阶段的主要任务是读懂SPSS输出编辑窗口中的分析结果,明确其统计含义,并结合应用背景知识做出切合实际的合理解释。
数据分析必须掌握的分析术语1、增长:增长就是指连续发生的经济事实的变动,其意义就是考查对象数量的增多或减少。
2、百分点:百分点是指不同时期以百分数的形式表示的相对指标的变动幅度。
3、倍数与番数:倍数:两个数字做商,得到两个数间的倍数。
番数:翻几番,就是变成2的几次方倍。
4、指数:指数是指将被比较数视为100,比较数相当于被比较数的多少得到的数。
5、比重:比重是指总体中某部分占总体的百分比6、拉动。
增长。
:即总体中某部分的增加值造成的总体增长的百分比。
例子:某业务增量除以上年度的整体基数=某业务增量贡献度乘以整体业务的增长率。
例如:去年收入为23(其中增值业务3),今年收入为34(其中增值业务5),则增值业务拉动收入增长计算公式就为:(5-2)/23=(5-2)/(34-23)×(34-23)/23,解释3/(34-23)为数据业务增量的贡献,后面的(34-23)/23为增长率。
7、年均增长率:即某变量平均每年的增长幅度。
8、平均数:平均数是指在一组数据中所有数据之和再除以数据的个数。
它是反映数据集中趋势的一项指标。
公式为:总数量和÷总份数=平均数。
9、同比与环比同比:同比发展速度主要是为了消除季节变动的影响,用以说明本期发展水平与去年同期发展水平对比而达到的相对发展速度。
如,本期2月比去年2月,本期6月比去年6月等。
环比:环比发展速度是报告期水平与前一时期水平之比,表明现象逐期的发展速度。
如计算一年内各月与前一个月对比,即2月比1月,3月比2月,4月比3月……12月比11月,说明逐月的发展程度。
10、复合增长率复合增长率是指一项投资在特定时期内的年度增长率,计算方法为总增长率百分比的n方根,n相等于有关时期内的年数。
公式为:(现有价值/基础价值)^(1/年数)-1如何用EXCEL进行数据分组什么是交叉表“交叉表”对象是一个网格,用来根据指定的条件返回值。
数据显示在压缩行和列中。
这种格式易于比较数据并辨别其趋势。
它由三个元素组成:∙行∙列∙摘要字段∙“交叉表”中的行沿水平方向延伸(从一侧到另一侧)。
在上面的示例中,“手套”(Gloves) 是一行。
∙“交叉表”中的列沿垂直方向延伸(上下)。
在上面的示例中,“美国”(USA) 是一列。
∙汇总字段位于行和列的交叉处。
每个交叉处的值代表对既满足行条件又满足列条件的记录的汇总(求和、计数等)。
在上面的示例中,“手套”和“美国”交叉处的值是四,这是在美国销售的手套的数量。
“交叉表”还可以包括若干总计:∙∙每行的结尾是该行的总计。
在上面的例子中,该总计代表一个产品在所有国家/地区的销售量。
“手套”行结尾处的值是 8,这就是手套在所有国家/地区销售的总数。
注意:总计列可以出现在每一行的开头。
∙每列的底部是该列的总计。
在上面的例子中,该总计代表所有产品在一个国家/地区的销售量。
“美国”一列底部的值是四,这是所有产品(手套、腰带和鞋子)在美国销售的总数。
注意:总计列可以出现在每一行的顶部。
∙“总计”(Total) 列(产品总计)和“总计”(Total) 行(国家/地区总计)的交叉处是总计。
在上面的例子中,“总计”列和“总计”行交叉处的值是 12,这是所有产品在所有国家/地区销售的总数。
EXCEL培训--数据透视表用Excel做数据分析——描述统计某班级期中考试进行后,需要统计成绩的平均值、区间,以及给出班级内部学生成绩差异的量化标准,借此来作为解决班与班之间学生成绩的参差不齐的依据。
要求得到标准差等统计数值。
样本数据分布区间、标准差等都是描述样本数据范围及波动大小的统计量,统计标准差需要得到样本均值,计算较为繁琐。
这些都是描述样本数据的常用变量,使用Excel数据分析中的“描述统计”即可一次完成。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。
加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项。
操作步骤1.打开原始数据表格,制作本实例的原始数据无特殊要求,只要满足行或列中为同一属性数值即可。
2. 选择“工具”-“数据分析”-“描述统计”后,出现属性设置框,依次选择:输入区域:原始数据区域,可以选中多个行或列,注意选择相应的分组方式;如果数据有标志,注意勾选“标志位于第一行”;如果输入区域没有标志项,该复选框将被清除,Excel 将在输出表中生成适宜的数据标志;输出区域可以选择本表、新工作表或是新工作簿;汇总统计:包括有平均值、标准误差(相对于平均值)、中值、众数、标准偏差、方差、峰值、偏斜度、极差、最小值、最大值、总和、总个数、最大值、最小值和置信度等相关项目。
其中:中值:排序后位于中间的数据的值;众数:出现次数最多的值;峰值:衡量数据分布起伏变化的指标,以正态分布为基准,比其平缓时值为正,反之则为负;偏斜度:衡量数据峰值偏移的指数,根据峰值在均值左侧或者右侧分别为正值或负值;极差:最大值与最小值的差。
第K大(小)值:输出表的某一行中包含每个数据区域中的第 k 个最大(小)值。
平均数置信度:数值 95% 可用来计算在显著性水平为 5% 时的平均值置信度。
结果示例如下(本实例演示了双列数据的描述统计结果):某班级期中考试进行后,需要统计成绩的平均值、区间,以及给出班级内部学生成绩差异的量化标准,借此来作为解决班与班之间学生成绩的参差不齐的依据。
要求得到标准差等统计数值。
样本数据分布区间、标准差等都是描述样本数据范围及波动大小的统计量,统计标准差需要得到样本均值,计算较为繁琐。
这些都是描述样本数据的常用变量,使用Excel数据分析中的“描述统计”即可一次完成。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。
加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项。
操作步骤1.打开原始数据表格,制作本实例的原始数据无特殊要求,只要满足行或列中为同一属性数值即可。
2. 选择“工具”-“数据分析”-“描述统计”后,出现属性设置框,依次选择:输入区域:原始数据区域,可以选中多个行或列,注意选择相应的分组方式;如果数据有标志,注意勾选“标志位于第一行”;如果输入区域没有标志项,该复选框将被清除,Excel 将在输出表中生成适宜的数据标志;输出区域可以选择本表、新工作表或是新工作簿;汇总统计:包括有平均值、标准误差(相对于平均值)、中值、众数、标准偏差、方差、峰值、偏斜度、极差、最小值、最大值、总和、总个数、最大值、最小值和置信度等相关项目。
其中:中值:排序后位于中间的数据的值;众数:出现次数最多的值;峰值:衡量数据分布起伏变化的指标,以正态分布为基准,比其平缓时值为正,反之则为负;偏斜度:衡量数据峰值偏移的指数,根据峰值在均值左侧或者右侧分别为正值或负值;极差:最大值与最小值的差。
第K大(小)值:输出表的某一行中包含每个数据区域中的第 k 个最大(小)值。
平均数置信度:数值 95% 可用来计算在显著性水平为 5% 时的平均值置信度。
结果示例如下(本实例演示了双列数据的描述统计结果):用Excel做数据分析——相关系数与协方差(Z)化学合成实验中经常需要考察压力随温度的变化情况。
某次实验在两个不同的反应器中进行同一条件下实验得到两组温度与压力相关数据,试分析它们与温度的关联关系,并对在不同反应器内进行同一条件下反应的可靠性给出依据。
相关系数是描述两个测量值变量之间的离散程度的指标。
用于判断两个测量值变量的变化是否相关,即,一个变量的较大值是否与另一个变量的较大值相关联(正相关);或者一个变量的较小值是否与另一个变量的较大值相关联(负相关);还是两个变量中的值互不关联(相关系数近似于零)。
设(X,Y)为二元随机变量,那么:为随机变量X与Y的相关系数。
p是度量随机变量X与Y之间线性相关密切程度的数字特征。
注:本功能需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,请依次选择“工具”-“加载宏”,在安装光盘中加载“分析数据库”。
加载成功后,可以在“工具”下拉菜单中看到“数据分析”选项。
操作步骤1. 打开原始数据表格,制作本实例的原始数据需要满足两组或两组以上的数据,结果将给出其中任意两项的相关系数。
2. 选择“工具”-“数据分析”-“描述统计”后,出现属性设置框,依次选择:输入区域:选择数据区域,注意需要满足至少两组数据。
如果有数据标志,注意同时勾选下方“标志位于第一行”;分组方式:指示输入区域中的数据是按行还是按列考虑,请根据原数据格式选择;输出区域可以选择本表、新工作表组或是新工作簿;3.点击“确定”即可看到生成的报表。
可以看到,在相应区域生成了一个3×3的矩阵,数据项目的交叉处就是其相关系数。
显然,数据与本身是完全相关的,相关系数在对角线上显示为1;两组数据间在矩阵上有两个位置,它们是相同的,故右上侧重复部分不显示数据。
左下侧相应位置分别是温度与压力A、B和两组压力数据间的相关系数。
从数据统计结论可以看出,温度与压力A、B的相关性分别达到了0.95和0.94,这说明它们呈现良好的正相关性,而两组压力数据间的相关性达到了0.998,这说明在不同反应器内的相同条件下反应一致性很好,可以忽略因为更换反应器造成的系统误差。
协方差的统计与相关系数的活的方法相似,统计结果同样返回一个输出表和一个矩阵,分别表示每对测量值变量之间的相关系数和协方差。
不同之处在于相关系数的取值在 -1 和 +1 之间,而协方差没有限定的取值范围。
相关系数和协方差都是描述两个变量离散程度的指标。
用Excel做数据分析——回归分析在数据分析中,对于成对成组数据的拟合是经常遇到的,涉及到的任务有线性描述,趋势预测和残差分析等等。