遥感基本知识总结

遥感基本知识总结
遥感基本知识总结

遥感基本知识总结

一. 遥感的基本概念

1. 遥感的基本知识

“遥感”一词来自英语Remote Sensing,从字面上理解就是“遥远的感知”之意。顾名

思义,遥感就是不直接接触物体,从远处通过探测仪器接受来自目标物体的电磁波信息,经过对信息的处理,判别出目标物体的属性。

实际工作中,重力、磁力、声波、机械波等的探测被划为物理探测(物探)的范畴,因

此,只有电磁波探测属于遥感的范畴。

根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记

录、信息的处理和信息的应用这五大部分。

1. 目标物的电磁波特性

任何目标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。

2. 信息的获取

接受、记录目标物体电磁波特征的仪器,称为“传感器”或者“遥感器”。如:雷达、扫描仪、摄影机、辐射计等。

3. 信息的接收

传感器接受目标地物的电磁波信息,记录在数字磁介质或者胶片上。胶片由人或回收舱

送至地面回收,而数字介质上记录的信息则可通过卫星上的微波天线输送到地面的卫星接收

站。

4. 信息的处理

地面站接收到遥感卫星发送来的数字信息,记录在高密度的磁介质上,并进行一系列的

处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换为用户可以使用的通用

数据格式,或者转换为模拟信号记录在胶片上,才能被用户使用。

5. 信息的应用

遥感技术是一个综合性的系统,它涉及到航空、航天、光电、物理、计算机和信息科学

以及诸多应用领域,它的发展与这些科学紧密相关。

2. 遥感的分类

1)按遥感平台分

地面遥感:传感器设置在地面上,如:车载、手提、固定或活动高架平台。

航空遥感:传感器设置在航空器上,如:飞机、气球等。

航天遥感:传感器设置在航天器上,如:人造地球卫星、航天飞机等。

2)按传感器的探测波段分

紫外遥感:探测波段在0.05~0.38μm之间。

可见光遥感:探测波段在0.38~0.76μm之间。

红外遥感:探测波段在0.76~1000μm之间。

微波遥感:探测波段在1mm~10m之间。

3)按工作方式分

主动遥感:有探测器主动发射一定电磁波能量并接受目标的后向散射信号。

被动遥感:传感器仅接收目标物体的自身发射和对自然辐射源的反射能量。

4)按遥感的应用领域分

外层空间遥感、大气层遥感、陆地遥感、海洋遥感等。

3. 遥感发展简史

最早使用“遥感”一词的是美国海军研究所的艾弗林*普鲁伊特。1961年,在美国国家科学院和国家研究理事会的支持下,在密歇根大学的威罗*兰实验室召开了“环境遥感国际

讨论会”,此后,在世界范围内,遥感作为一门新兴学科飞速发展起来。

1)无记录的地面遥感阶段(1608---1838年)

1608年,汉斯*李波尔赛制造了世界第一架望远镜,1609年伽利略制作了放大倍数3倍的科学望远镜,从而为观测远距离目标开辟了先河。但望远镜观测不能吧观测到的事物用图

像记录下来。

2)有记录的地面遥感阶段(1839---1857年)

对探测目标的记录与成像始于摄影技术的发展,并与望远镜相结合发展为远距离摄影。

3)空中摄影遥感阶段(1858---1956年)

1858年,G..F.陶纳乔用系留气球拍摄了法国巴黎的“鸟瞰”像片。

1860年,J.布莱克乘气球升空至630m,成功的拍摄了美国波士顿的照片。

1903年,J.钮布郎特设计了一种捆绑在飞鸽身上的微型相机。这些试验性的空间摄影,

为后来的实用化航空摄影打下了基础。

在第一次世界大战期间,航空摄影成了军事侦探的重要手段,并形成了一定规模。与此

同时,像片的判读水平也大大提高。一战以后,航空摄影人员从军事转向商务和科学研究。

美国和加拿大成立了航测公司,并分别出版了《摄影测量工程》及类似性质的刊物,专门介

绍有关技术方法。

1924年,彩色胶片出现,使得航空摄影记录的地面目标信息更为丰富。

二战中,微波雷达的出现及红外技术应用于军事侦查,使遥感探测的电磁波谱段得到了

扩展。

4)航空遥感阶段(1957---)

1957年10月4日,苏联第一颗人造地球卫星的发射成功,标志着人的空间观测进入了

新纪元。此后,美国发射了“先驱者2号”探测器拍摄了地球云图。真正从航天器上对地球

进行长期探测是从1960年美国发射TIROS-1和NOAA-1太阳同步卫星开始。

此外,多宗探测技术的集成日趋成熟,如雷达、多光谱成像与激光测高、GPS的集成可以同时取得经纬度坐标和地面高程数据,由于实时测图。

总之,随着遥感应用向广度和深度发展,遥感探测更趋于实用化、商业化和国际化。

4. 遥感应用的一个简单例子

大兴安岭森林火灾发生的时候,由于着火的树木温度比没有着火的树木温度高,它们在

电磁波的热红外波段会辐射出比没有着火的树木更多的能量,这样,当消防指挥官面对着熊熊烈火担心不已的时候,如果这时候正好有一个载着热红外波段传感器的卫星经过大兴安岭

上空,传感器拍摄到大兴安岭周围方圆上万平方公里的影像,因为着火的森林在热红外波段

比没着火的森林辐射更多的电磁能量,在影像着火的森林就会显示出比没有着火的森林更亮

的浅色调。当影像经过处理,交到消防指挥官手里时,指挥官一看,图像上发亮的范围这么

大,而消防队员只是集中在一个很小的地点上,说明火情逼人,必须马上调遣更多的消防员到不同的地点参加灭火战斗。

5. 中国遥感技术的发展

我国自1970年4月24日发射“东方红1号”人造卫星后,相继发射了数十颗不同类型

的人造地球卫星,使得我国开展宇宙探测、通讯、科学实验、气象观测等研究有了自己的信息源。1999年10月14日中国---巴西地球资源卫星CBERS---1的成功发射,使我国拥有了自己的资源卫星。

在遥感图形处理方面,已开始从普遍采用国际先进的商品化软件向国产化迈进。在科技

部、信息产业部的倡导下,国产图像处理软件从研制走向了商品化,并占有一定的市场份额,如photomapper等。

在遥感应用方面,国家将遥感列入重点攻关项目和“863”工程。

二. 电磁辐射与地球的光谱特征

1. 电磁波谱与电磁辐射

(1)基本概念

1)波:振动的传播。如:水波、声波、地震波等。

2)机械波:振动的是弹性介质中的位移矢量。

3)电磁波:电磁振源产生的电磁振荡在空间中的传播。

4)电磁波的特点

①不需要传播介质

②电磁波是横波,在真空中以光速传播

③满足波粒二象性

④波长与频率成反比,且两者之积为光速:f×λ=c。

⑤传播遇到气体、固体、液体介质时,会发生反射、投射、折射、吸收等现象。

5)电磁波谱:按照电磁波波长的长短,依次排列成的图表称为电磁波谱。

(2)电磁辐射的量度

1)辐射源:任何物体都是辐射源,既能吸收其它物体的辐射,也能向外辐射电磁波。

2)辐射能量:电磁辐射的能量,单位:J(焦耳)。

3)辐射通量:单位时间内通过某一面积的辐射能量,单位:W。

4)辐射通量密度:单位时间内通过表面单位面积上的辐射通量。

5)辐照度:被辐射的物体表面单位面积上的辐射通量。

6)辐射出射度:辐射源物体表面单位面积上的辐射通量。

7)辐射亮度:辐射源在某一方向,单位投影表面,单位立体角内的辐射通量。

8)黑体辐射定律

①普朗克公式:描述黑体辐射出射度与温度、波长等的关系

②斯蒂芬-玻尔兹曼定律:

③维恩位移定律:

9)实际物体的辐射物体的发射率是温度和波长的函数,且与种类、物理状况(如粗糙度、颜色等)等有关。按照发射率和波长的关系,辐射源可分为:

①黑体:ελ= ε=1

②灰体:ελ=ε=常数<1

③选择性辐射体:

ελ<1,且随波长而变基尔霍夫定律:即物体的发射率等于该物体的吸收率

2. 太阳辐射及大气对辐射的影响

1)太阳辐射源:太阳是太阳系唯一的恒星,

它集中了太阳系99.865%的质量。太阳是一个炽热的气体星球,没有固体的星体或核心。

太阳能量的99%是由中心的核反应区的热核反应产生的。太阳中心的密度和温度极高。

太阳大气的主要成分是氢(质量约占71%)与氦(质量约占27%)。

2)大气成分组成:①永久气体:氮气、氧气、

CO 2、惰性气体、氢气、甲烷等。②浓度可变的气体:水蒸气、臭氧、

SO 2、氨气等。③固体和液体微粒。

3)大气垂直分层(大气结构):电离层:距地面85km 直到几百千米的范围均为热电离层,温

度范围为500K 到2000K

平流层:在平流层最下面直到

20km 的高度之内,温度几乎为常数

对流层:厚约为10km ,温度随高度的增加而降低

4)大气辐射衰弱的原因:反射、吸收、散射。

大气吸收17%,散射22%,反射30%,其余31%太阳辐射到达地面。

5)散射:①瑞利(Rayleigh )散射:当大气中粒子的直径比辐射波长小得多时发生的散射;

散射强度与波长的四次方成反比。

②米氏散射:当大气中粒子的直径与波长相当时发生的散射;

散射强度与波长的二次方成反比。

③非选择性散射:当大气中粒子的直径比波长大得多时发生的散射;

散射强度与波长无关

6)吸收作用:大气吸收电磁辐射的主要物质是:水、二氧化碳和臭氧

7)反射作用:云量越多、云层越厚,反射越强112),(52kT hc

e hc

T M 4T M b

T max )

,(),(),(T M T M T b

8)折射作用:折射率与大气密度有关,密度越大折射率越大。

3. 地球的辐射与地物波谱特征

1)太阳辐射与地表的相互作用

①温度为300K 的黑体,其电磁辐射的波长范围是: 2.5~50μm(0.3-2.5um)。

②地球表面的发射辐射能量集中于近红外波段和热红外波段;

在热红外波段,地球的发射辐射能量远远大于太阳的电磁辐射能量,通常称地球的发射辐射为热辐射

③地球表面的热辐射(能量)与自身的发射率、波长、温度有关:2)地物波谱特征在可见光与近红外波段,地表物体自身的热辐射几乎等于零。所以地物发出的波谱主要

以反射太阳辐射为主。

到达地面的太阳辐射能量=反射能量+吸收能量+透射能量

①反射率:物体反射的辐射能量P 占总入射能量0P 的百分比②物体的反射:镜面反射、漫反射和实际物体的反射。

三. 遥感成像原理与遥感图像特征

遥感平台是搭载传感器的工具。在遥感平台中,航天遥感平台目前发展最快、应用最广。

根据航天遥感平台的服务内容,可以将其分为气象卫星系列、陆地卫星系列和海洋卫星系列。

1. 气象卫星概述

第一代:20世纪60年代 TIROS

、ESSA 、Nimbus 、ATS 第二代:1970-1977年 ITOS-1

、SMS 、GOES 、GMS 、Meteosat 第三代:1978年以后 NOAA

系列我国的气象卫星发展较晚。“风云一号”气象卫星(

FY-1)是中国发射的第一颗环境遥感卫星。其主要任务是获取全球的昼夜云图资料及进行空间海洋水色遥感实验。

2. 气象卫星特点

1)轨道

气象卫星的轨道分为两种:低轨和高轨。

高轨气象卫星:轨道高度:36000公里

信息采集时间周期:约20分钟

分辨率: 1.25 ~ 5

公里)

,(),()

,(0T M T T M %

1000P P

主要应用领域:全球性大气环流;全球性天气过程

低轨气象卫星:轨道高度:36000公里

信息采集时间周期:约20分钟

分辨率: 1.25 ~ 5公里

主要应用领域:全球性大气环流;全球性天气过程

2)短周期重复观测

3)成像面积大,有利于获得宏观同步信息,减少数据处理容量

4)资料来源连续、实时性强、成本低

3. 陆地卫星系列

1)陆地卫星(Landsat)

轨道:太阳同步的近极地圆形轨道

重复覆盖周期:16 18天

图象覆盖范围:185 * 185 km(Landsat 7 185*170 km)。

Landsat上携带传感器空间分辨率不断提高,从80 m到 30 m到 15 m

2)法国SPOT卫星系列

地球观察卫星系统。由瑞典、比利时等国家参加,由法国国家空间研究中心(CNES)设计制造。1986年发射第一颗,到2002年已发射5颗。

特点:太阳同步圆形近极地轨道高度830 km

覆盖周期26天扫描宽度: 60 (×60 ) 公里

主要传感器:2台HRV

空间分辨率: 全色10m; 多光谱20m

能满足资源调查、环境管理与监测、农作物估产、地质与矿产勘探、土地利用、测制地图及地图更新等多方面需求

SPOT 卫星系列优势特征:卫星搭载的传感器具有倾斜(侧视)能力

信息获取的重复周期:一般地区3~5天;部分地区达到1天

3)中巴地球资源卫星CBERS: 1999.10.14,我国第一颗地球资源遥感卫星(又称资源一号卫星)在太原卫星发射中心成功发射

CBERS卫星特点:太阳同步近极地轨道,轨道高度778 km,卫星重访周期26天携带的传感器的最高空,间分辨率是19.5 m

4)高空间分辨率陆地卫星(IKONOS、QUICKBIRD等)

4. 摄影成像

数字摄影是通过放置在焦平面的光敏元件,经过光电转换,以数字信号来记录物体的影

像。依据探测波长的不同,可分为近紫外摄影、可见光摄影、红外摄影、多光谱摄影等。

1)摄影机分类

①分幅式:一次曝光得到目标物一幅像片;镜头:常角、宽角和特宽角

②全景式: 分为缝隙式和镜头转动式

对可见光遥感,摄影机外壳只需是不透光材料,对红外摄影,只能用金属材料。镜头则需根据摄取的波段选择材料。

③多光谱摄影机:多相机组合、多镜头组合、光束分离型

可同时直接获取可见光和近红外范围内若干个分波段影像

2)摄影像片的几何特征

根据摄影机主光轴与地面的关系,可分为垂直摄影和倾斜摄影。

①垂直摄影像片的几何特征:

1.像片的投影:中心投影

中心投影与垂直投影的区别

(1)投影距离的影响

(2)投影面倾斜的影响

(3)地形起伏的影响

②摄影胶片的物理特性

感光度:指胶片的感光速度。胶片感光度高,在光线较弱时也能方便摄影。

反差:指胶片的明亮部分与阴暗部分的密度差。

灰雾度:未经感光的胶片,显影后仍产生轻微的密度,呈浅灰色,故称灰雾。

宽容度:指胶片表达被摄物体亮度间距的能力。

解像力:通常称为感光胶片的分辨力。

③常用的遥感摄影胶片:

1. 黑白摄影胶片:色盲片,正色片,分色片,全色片,红外黑白片

2. 天然彩色胶片

3. 红外彩色片

5. 扫描成像

扫描成像是依靠探测元件和扫描镜对目标物体以瞬时视场为单位进行的逐点、逐行取样,

以得到目标地物电磁辐射特征信息,形成一定谱段的图像。其探测波段可包括紫外、红外、

可见光和微波波段。

1)光/机扫描成像

光机扫描的几何特征:取决于瞬时视场角、总视场角

进行扫描成像时,总视场角不宜过大,否则图像边缘的畸变太大。通常在航空遥感中,总

视场角取70~120

光机扫描仪可分为单波段和多波段两种。多波段扫描仪的工作波段范围很宽,从近紫外、可见光至远红外都有。

多波段扫描仪:地面物体的辐射波束----扫描---反射-----聚焦---分光---再聚焦到感受不同波长的探测元件上。

2)固体自扫描成像

固体扫描是用固定的探测元件,通过遥感平台的运动对目标进行扫描的一种成像方式。

用固定的探测元件,通过遥感平台的运动对目标地物进行扫描的成像方式。

目前常用的探测元件是电荷耦合器件CCD

3)高光谱成像扫描

对遥感而言,在一定波长范围内,被分割的波段数愈多,即波谱取样点愈多,愈接近于连

续波谱曲线,因此可以使得扫描仪在取得目标地物图像的同时也能获取该地物的光谱组成。

这种既能成像又能获取目标光谱曲线的“谱像合一”的技术称为成像光谱技术。按该原理制成的扫描仪称为成像光谱仪。

高光谱成像光谱仪:图像由多达数百个波段的非常窄的连续的光谱波段组成光谱波段覆盖了可见光,近红外,中红外和热红外区域全部光谱带

多采用扫描式或推帚式,可以收集200或200以上波段的数据。图像中的每一像元均得到连续的反射率曲线

6. 微波遥感与成像

在电磁波谱中,波长在1mm~1m的波段范围称微波。

微波遥感是指通过微波传感器获取从目标地物发射或反射的微波辐射,经过判读处理来识别地物的技术。

1)微波遥感的特点

①全天候、全天时的信息获取能力

②对某些地物的特殊识别能力,如水和冰(微波波段发射率的差异)

③对冰、雪、森林、土壤(尤其对干燥、松散物质)有一定的穿透能力

④适宜对海面动态情况(海面风、海浪)进行监测

2)微波遥感方式和传感器

①主动微波遥感

是指通过向目标地物发射微波并接受其后向散射信号来实现对地观测遥感方式。主要传感器是雷达。

雷达意为无线电测距和定位。其工作波段大都唉微波范围。雷达是有发射机通过天线在很短时间内,向目标地物发射一簇很窄的大功率电磁波脉冲,然后用同一天线接受目标地物反射的回波信号而进行显示的一种传感器。不同物体,回波信号的振幅、相位不同,故接收处理后,可测出目标地物的方向、距离等数据。

②被动微波遥感

是指通过传感器,接收来自目标地物发射的微波,而达到探测目地的遥感方式。

3)遥感图像的特征

目标地物——传感器——遥感图像——遥感图像处理

空间分辨率——几何特征——目标地物的大小、形状及空间分布

光谱分辨率(辐射分辨率)——物理特征——目标地物的属性特点

时间分辨率——时间特征——目标地物的变化动态特点

①空间分辨率/地面分辨率

图像的空间分辨率指像素所代表的地面范围的大小

扫描成像----像元:扫描仪瞬时视场所对应的地面实际大小

摄影成像----线对/米。( 线对:能分辨的地物的最小距离)

②波谱分辨率

指传感器在接收目标辐射的波谱时能分辨的最小波长间隔。

传感器的波段选择须考虑目标的光谱特征值,才能取得好效果。

③辐射分辨率

指传感器接收波谱信号时,能分辨的最小辐射度差。在遥感图像上表现为每一像元的辐

射量化级。

④时间分辨率

卫星的覆盖周期、重访周期。

重复获得同一地区的最短时间间隔。(注意和卫星运行周期的区别)

四. 遥感图像处理

1. 光学原理与光学处理

电磁波谱中0.38~0.76μm波段能够引起人的视觉。

1)颜色视觉

①视觉特征:

亮度对比(反差):视场中对象与背景的亮度差与背景亮度之比。

颜色对比(色差):视场中相邻区域的颜色差异。

②颜色性质的描述

明度(lightness):人眼对光源或物体明亮程度的感觉。(与物体的反射率有关)

色调(hue):指色彩的差异。(与视觉接收到的波长有关)

饱和度(saturation):指色彩纯洁的程度。(与色光中是否混有白光以及白光占有的比例)

③颜色立体

为了形象的描述颜色特性之间的关系,通常用颜色立体来表现一种理想化的示意关系。中间轴代表明度,从底端到顶端,由黑到灰再到白明度逐渐递增。

2)加色法与减色法

互补色:若两种颜色混合产生白色或者黑色,这两种颜色就称为互补色。

三原色:若三种颜色,其中任一种都不能由其余两种混合相加产生,这三种颜色按一定

比例混合,可以形成各种色调的颜色,称之为三原色。红、绿、蓝为最优的三原色。

2. 数字图像

数字图像是指能够被计算机存储、处理和使用的图像。遥感数据的表示既有光学图像也

有数字图像。光学图像又称为模拟量,数字图像又称为数字量,它们之间的转换称为模/数转换,记做A/D转换。

1)数字图像的来源

①遥感卫星地面站(气象卫星接收站)提供计算机兼容的数字磁带,输入计算机图像处理系统,形成数字图像。

②记录在胶片上的影像(模拟图象)在专用设备上进行数字化

2)图像的数字化

把模拟图像分割成同样形状的小单元,进行空间离散化处理叫采样(sampling)。

以各个小单元的平均亮度值或中心部分的亮度值作为该单元的亮度值,为亮度值的离

散化处理,即量化(quantization)。

3)遥感数字图像表示方式

数字图像(数字化)图像,是一种以二维数组(矩阵)形式表示的图像。或者称为相应区

域内地物电磁辐射强度的二维分布。将地球表面一定区域范围内的目标地物记录在一个二维

数组(或二维矩阵)中。

①像素(像元)是遥感数字图像最基本的单位,成像过程的采样点,计算机图像处理的最小

单元。

②像素具有空间特征和属性特征。

空间特征:地理位置的信息

属性特征:采用亮度值来表达

4)数字图像的优点

便于计算机处理与分析:

图像信息损失低:

抽象性强:

5)按照波段数量,遥感数字图象分类:

1. 二值数字图象

2. 单波段数字图象

3. 彩色数字图象

4. 多波段数字图象

3. 数字图像校正——辐射校正

进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。辐射强度越大,亮度值越大。该值主要受两个物理量影响:一是太阳辐射照射到地面的辐射强度,二是地球的光谱反射率。当太阳辐射相同时,图像上像元亮度值的差异直接反映了地物目标光谱反射率的差异。

但实际测量时,辐射强度值还受到其它因素的影响而发生改变。

这一改变的部分就是需要校正的部分,故称为辐射畸变。

1)引起辐射畸变有两个原因:

传感器仪器本身产生的误差

大气对辐射的影响

2)传感器仪器本身产生的误差

仪器引起的误差是由于多个检测器之间存在差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。一般来说,这种畸变应该在数据生产过程中,有生产单位根据传感器参数进行校正,

而不需要用户自己校正,所以用户应该考虑的是大气影响造成的畸变。

3)大气对辐射的影响

①大气影响的定量分析

进入大气的太阳辐射会发生反射、

折射、吸收、散射和透射。其中对传感器接收影响较大的是吸收和散射。

假设无大气存在时,设

E 0λ为波长λ的辐照度,θ为入射方向的天顶角,地面上单位面积的辐照度为:假定地面是郎伯体,其表面是漫反射,则某方向物体的亮度为:式中,R λ是地球反射率;π是球面度。传感器接收信号时,受仪器影响还有一个系统增益系数因子

S λ,这时进入传感器的亮度值为:cos 0E E

cos

00E R E R L cos

0'0S E R L

由于大气的存在,在入射方向有与入射天顶角

θ和波长λ有关的透过率T θλ;反射后,在反射方向上有与反射天顶角Ф和波长λ有关的透过率

T Фλ。因此进入传感器的亮度值为:cos

01S T E T R L 大气对辐射散射后,来自各个方向的散射又重新以漫入射的形式照射地物,其辐照度为

E D ,经过地物的反射及反射路径上大气的吸收进入传感器,其亮度值为:

D

E S T R L 2相当部分的散射光向上通过大气直接进入传感器,

这部分辐射称为程辐射度,亮度为p λ。可见,由于大气影响的存在,实际到达传感器的辐射亮度是前面所分析的三项之和,即

P D P SL E T E S RT L L L L L

)cos

(0021比较以下两个公式:

P D SL E T E S RT L )cos

(00可以看出,大气的主要影响是减少了图像的对比度,

使原始信号和背景信号都增加了因子。

②大气影响的粗略校正去掉公式:P

D SL

E T E S RT L )cos (0中的L P ,即程辐射度,从而改善图像质量。可以认为程辐射度在同一幅图像的有限面积内是一个常数,其值的大小只与波段有关。

校正方法

A. 直方图最小值去除法

直方图以统计图的形式表示图像亮度值与像元数之间的关系。

最小值去除法的基本思想在于一幅图像中总可以找到某种或某几种地物,其辐射亮度或发射率接近

0。这时在图像中对应位置的像元亮度值应为

0。实测表明,这些位置上的像元亮度不为0。这个值就应该是大气

散射导致的程辐射度值。

校正方法很简单,首先确定条件满足,即该图像上确有辐射亮度或反射亮度应为0的地区,cos 00

E R E R L

则亮度最小值必定是这一地区受大气影响的呈辐射度增值。校正时,将每一波段中每个像元

的亮度值都减去本波段的最小值,使图像亮度动态范围得到改善,对比度增强,从而提高图像质量。

B. 回归分析法

假定某红外波段,存在程辐射为主的大气影响,且亮度增值最小,接近于0,设为波段a。现需要找到其他波段相应的最小值,这个值一定比a波段的最小值大一些,设为波段b,分别以a,b波段的像元亮度值为坐标,作二维光谱空间,两个波段中对应像元在坐标系内用

一个点表示。由于波段之间的相关性,通过回归分析在众多点中一定能找到一条直线与波段

b的亮度Lb相交,且:Lb=βLα +α,β为斜率

2_

_

) ()

)(

(

b

a b

b

a

a

L

L L

L

L

L

式中:

_

a

L,

_

b

L分别为a,b波段亮度的平均值。

a=Lb-βLa ;式中a为波段a中的亮度为零处在波段b中所具有的亮度。可以认为

a就是波段b的程辐射度。

校正方法是将波段b中每个像元的亮度值减去a,来改善图像,去掉程辐射。

4. 几何校正

几何畸变: 当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等.遥感影像的总体变形(相对于地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。产生畸变的图像给定量分析

及位置配准造成困难。

遥感影像变形的原因:

? 遥感器的内部畸变:由遥感器结构引起的畸变。

? 遥感平台位置和运动状态变化的影响

? 地形起伏的影响

? 地球表面曲率的影响

? 大气折射的影响

? 地球自转的影响

1)遥感平台位置和运动状态变化的影响

航高:卫星运行的轨道本身就是椭圆的。航高始终发生变化,而传感器的扫描视场角

不变,从而导致图像扫描行对应的地面长度发生变化。航高越向高处偏离,图像对应的地面越宽。

航速:卫星的椭圆轨道本身就导致了卫星飞行速度的不均匀,其他因素也可导致遥感

平台航速的变化。航速快时,扫描带超前,航速慢时,扫描带滞后,由此可导致图像在卫星

前进方向上(图像上下方向)的位置错动。

俯仰:遥感平台的俯仰变化能引起图像上下方向的变化,即星下点俯时后移,仰时前

移,发生行间位置错动。

翻滚:遥感平台姿态翻滚是指以前进方向为轴旋转了一个角度。可导致星下点在扫描

线方向偏移,使整个图像的行翻滚角引起偏离的方向错动。

偏航:指遥感平台在前进过程中,相对于原前进航向偏转了一个小角度,从而引起扫

描行方向的变化,导致图像的倾斜畸变。

地形起伏的影响当地形存在起伏时,会产生局部像点的位移,由于高差的原因,实际

像点P距像幅中心的距离相对于理想像点P0距像幅中心的距离移动了△r。

地表曲率的影响地球是椭球体,地球表面是曲面。这一曲面的影响主要表现在两个方

面,一是像点位置的移动,当选择的地图投影平面是地球的切平面时,使地面点P0相对于投影平面点P有一高差△h。

地表曲率的影响:全景畸变:当传感器扫描角度较大时,影响更加突出,造成边缘景

物在图像显示时被压缩。

大气折射的影响,折射后的辐射传播不再是直线而是一条曲线,从而导致传感器接收的像点发生位移。

地球自转的影响,例如:卫星自北向南接收图像运动,这时地球自西向东自转。相对

运动的结果,使卫星的星下位置逐渐产生偏离。

2)遥感数字图像的几何校正

①几何校正方法:控制点校正法

校正步骤:

A、原始图像与校正图像统一坐标系、投影

B、确定GCP(Ground Control Point),即在原始畸变图像空间与标准空间寻找对应的控制点对

C、选择畸变数学模型,并利用GCP数据求出畸变模型的未知参数,然后利用此畸变模型

对原始畸变图像进行几何精校正

D、再采样计算,得到校正后的新图像

基本思路:校正的最终目的是确定校正后图像的行列数,然后找到新图像中每一像元的亮

度值。

②具体步骤——1)象素坐标变换(空间上的重采样)

找到一种数学关系,建立变换前图像坐标(x,y)与变换后图像坐标(u,v)的关系

计算校正后图像中的每一点所对应原图中的位置(x,y)。计算时按行逐点计算,每行结

束后进入下一行计算,直到全图结束。

多项式的项数(即系数个数)N与其阶数n有着固定关系:N=(n+1)(n+2)/2

多项式系数ai,bj(i,j=0,1,2,,N-1)一般利用已知控制点的坐标值按最小二

乘法求解。

③计算方法:内插计算(灰度值重采样)

计算每一点的亮度值。纠正后的新图像的每一个像元,根据变换函数,可得到它在原始

图像上的位置。如果求得的位置为整数,则该位置处的像元灰度就是新图像的灰度值。

计算方法:如果位置不为整数,新点的亮度值介于邻点亮度值之间,常用内插法计算。

有几种方法:

最近邻法

双线性内插法

三次卷积内插法。

最近邻法:距离实际位置最近的像元的灰度值作为输出图像像元的灰度值。

双线性内插法:取(x ,y )点周围4邻点,在y 方向(或x 方向)内插二次,再在

x 方向(或y 方向)内插一次,得到(x ,y )点的亮度值

f(x ,y ),该方法称双线性内插法。三次卷积内插法:取与计算点(x ,y )周围相邻的

16个点,先在某一方向上内插,每4个值依次内插4次,求出 f ( x , j-1 ),f(x,j) ,f(x,j+1),f(x,j+2),再根据这四个计算结果在另一方向上内插,得到

f(x ,y )。④控制点的选取

几何校正的第一步便是位置计算,对所选取的二元多项式求系数。

控制点选取原则:1)特征变化大的地区应多选些。

2)图像边缘部分要选取控制点,以避免外推。3) 表征空间位置的可靠性,道路交叉点,标志物,水域的边界,山顶,小岛中心,机场等。4)同名控制点要在图像上均匀分布;

5)清楚辨认;6)数量应当超过多项式系数的个数((n+1)*(n+2)/2)。

5. 数字图像增强

当一副图像的目视效果不太好,或者有用的信息突出不够时,就需要作图像增强处理。例如,图像对比度不够,或者希望突出的某些边缘看不清,

就可以用计算机图像处理技术改善图像质量。这样可以提高图像质量和突出所需信息,有利于分析判读或作进一步的处理。

1)对比度变换通过改变图像像元的亮度值来改变图像像元的对比度,从而改善图像质量的处理方法。

因为亮度值是辐射强度的反映,所以也称之为辐射增强。

常用的方法是:对比度线性变换和非线性变换。

假定像元亮度随机分布时,直方图应是正态分布的。

峰值偏向亮度坐标轴左侧,图像偏暗。

峰值偏向坐标轴右侧,图像偏亮,

峰值提升过陡、过窄,图像的高密度值过于集中

以上情况均是图像对比度较小,图像质量较差的反映。

①线性变换

A. 线性变换变换函数是线性的或分段线性的,这种变换就是线性变换。线性变换是图像增

强处理最常用的方法。

B. 亮度值0~15图像拉伸为0~30,要设计一个线性变换函数,横坐标

xa 为变换前的亮度值,纵坐标xb 为变换后的亮度值。当亮度值

xa 从0~15变换成xb 从0~30,变换函数

在图中是一条直线,方程式为:b b a b

x x x x 21530

线性变换前图像亮度范围

xa 为a1~a2,变换后图像亮度范围

xb 为b1~b2,变换关系是直线,则变换方程为:11121212112

1)(b a x a a b b x a a a x b b b x a b a b

通过调整参数a1,a2,b1,b2,即改变变换直线的形态,可以产生不同的变换效果:a2-a1

a2-a1>b2-b1,亮度范围缩小,图像被压缩。

对于a2与a1 ,是取在图像亮度值的全部或部分,偏亮或偏暗处,均可根据对图像显示效果的需要而人为地设定。

有时为了更好的调节图像的对比度,需要在一些亮度段拉伸,而在另一些亮度段压缩,这种变换称为分段线性变换。

②非线性变换

当变换函数是非线性时,即为非线性变换。非线性变换的函数很多,常用的是指数变换和对数变换。

指数变换:其意义是在亮度值较高的部分扩大亮度间隔

--属于拉伸,在亮度值较低的部分缩小亮度间隔--属于压缩,数学表达式为:c

be x a ax b a ,b ,c 为可调参数,可以改变指数函数曲线的形态,从而实现不同的拉伸比例。

对数变换:与指数变换相反,意义是在亮度值较低的部分拉伸,而在亮度值较高的部

分压缩,其数学表达式为:c

ax b x a b )1lg(a ,b ,c 仍为可调参数,由使用者决定其值。

2)空间滤波

对比度扩展的辐射增强:通过单个像元的运算从整体上改善图像的质量。

空间滤波:以重点突出图像上的某些特征为目地的采用空间域中的邻域处理方法。属于几何增强处理,主要包括平滑和锐化。

①图像卷积运算

空间滤波是图象卷乘积运算的一种特殊应用。在空间域上对图像作局部检测的运算,以实现平滑和锐化。

具体作法:选定一卷积函数(又称“模板”,实际上是一个

M ×N 图像),二维的卷积运

算是在图像中使用模板来实现运算的。

从图像左上角开始开一与模板同样大小的活动窗口,图像窗口与模板像元的亮度值对应

相乘再相加。假定模板大小为M*N ,窗口为Φ(m,n),模板为t(m ,n),则模板运算为: M m N

n n m t n m j i r 11

),(),()

,(②平滑

图像中某些亮度变化过大的区域,或出现不该有的亮点(“噪声”),采用平滑的方法减小变化,使亮度平缓或去掉不必要的“噪声”点。具体方法有:

均值平滑

是将每个像元在以其为中心的区域内取平均值来代替该像元值,

以达到去掉尖锐“噪声”

和平滑图像的目地。区域范围取作M ×N 时,求均值公式为:M m N n n m MN j i r 11

)

,(1

),(

具体计算时常用的3×3的模板作卷积运算,其模板为:

9

1919

1

91919

1

919191

),(n m t 中值滤波是将每个像元在以其为中心的邻域内取中间亮度值来代替该像元值,以达到去尖锐“噪声”和平滑图像目的的。

锐化(边界增强)

为了突出图像的边缘、线状目标或某些亮度变化率大的部分,可采用锐化方法。锐化后的图像已不再具有原遥感图像的特征而成为边缘图像。常用几种:

罗伯特梯度

索伯尔梯度

拉普拉斯算法

定向检测

3)彩色变换

不同的彩色变换可大大增强图像的可读性,常用的三种彩色变换方法。

单波段彩色变换

多波段彩色变换

HSI 变换

①单波段彩色变换(密度分割)

单波段黑白遥感图像按亮度分层,

对每层赋予不同的色彩,使之成为一幅彩色图像。即按图像的密度进行分层,每一层所包含的亮度值范围可以不同。

②多波段彩色变换

加色法彩色合成原理

---选择遥感影像的某三个波段---分别赋予红、绿、蓝三种原色---合成彩色影像。

真彩色合成

假彩色合成

多波段影像合成时,方案的选择决定彩色影像能否显示较丰富的地物信息

,或突出某一方面的信息。

③HSI 变换

HSI 代表色调、饱和度和明度(hue ,saturation,intensity )。色彩模式可以用近似的颜色立体来定量化。颜色立体曲线锥形改成上下两个六面金字塔状。

4)图象运算

两幅或多幅单波段影像,完成空间配准后,通过一系列运算,可以实现图像增强,提取某些信息或去掉某些不必要信息。

差值运算

比值运算

①差值运算

即两幅同样行、列数的图像,对应像元的亮度值相减。两个波段相减,反射率差值大的被

突出来。图像的差值运算有利于目标与背景反差较小的信息提取,如冰雪覆盖区,海岸带的潮汐线等。

差值运算还常用于研究同一地区不同时相的动态变化。如监测森林火灾发生前后变化和计

算过火面积;监测水灾发生前后的水域变化和计算受灾面积及损失;监测城市在不同年份的扩展情况及计算侵占农田的比例等。

②比值运算

两幅同样行、列数的图像,对应像元的亮度值相除(除数不为0)

植被指数,常用算法:近红外波段/红波段或(近红外-红)/(近红外+红)

5)多光谱变换

多光谱变换通过函数变换,达到保留主要信息,降低数据量;增强或提取有用信息的目

的。其变换的本质:对遥感图像实行线性变换,使多光谱空间的坐标系按一定规律进行旋转。6. 多源信息复合

1)信息复合的概念:

定义:信息复合指同一区域内遥感信息之间或遥感信息与非遥感信息之间的匹配复合。

内容:包括空间配准和内容复合

目的:突出有用的专题信息,消除或抑制无关的信息,改善目标识别的图像环境。

多种遥感信息各具有一定的空间分辨率、波谱分辨率与时间分辨率

信息复合:非多种信息源简单叠加,而是可得到原来几种单个信息所不能提供的新信息

2)信息复合的发展

同种遥感信息多波段、多时相的信息复合

不同类型遥感数据的复合

遥感与非遥感信息的复合

3)遥感信息的复合

遥感信息复合包括:不同传感器的遥感数据和不同时相的遥感数据

复合方式的确定:根据目标空间分布、光谱反射特性及时相规律方面的特征选择不同的遥感图像;在空间分辨率、光谱分辨率和时间分辨率方面相互补充

①不同传感器的遥感数据复合

复合步骤:

配准

先完成配准,使两幅图像所对应的地物吻合,分辨率一致。

复合

彩色合成方法的效果比较明显应尽可能生成三幅新图像,分别赋予红、绿、蓝色,进行彩色合成

②不同时相的遥感数据复合

步骤:

配准:

直方图调整:图像亮度值趋于协调,便于比较。

复合:用来研究时间变化所引起的各种动态变化。采用的复合方法主要有:

彩色合成方法

差值方法

比值方法

五. 遥感图像目视解译原理

1. 遥感图像目视解译原理

遥感图像解译(Imagery Interpretation):是从遥感图像上获取目标地物信息的过程:目视解译:

计算机解译:即遥感图像理解(Remote Sensing Imagery Understanding)

1)遥感图像目标地物的识别特征

目标地物特征:

色:颜色,色调、颜色和阴影等;

形:形状,形状、纹理、大小、图型;

位:空间位置,目标地物分布的空间位置、相关布局等;

目标地物识别特征

色调(tone):全色遥感图像中从白到黑的密度比例叫色调(也叫灰度)。如海滩的砂砾色调标志是识别目标地物的基本依据,依据色调标志,可以区分出目标地物。

颜色(colour):是彩色遥感图像中目标地物识别的基本标志。日常生活中目标地物的颜

色:遥感图像中目标地物的颜色:地物在不同波段中反射或发射电磁辐射能量差异的综合反

映。彩色遥感图像上的颜色:真假彩色

真彩色图像上地物颜色能真实反映实际地物颜色特征,符合人的认知习惯。

目视判读前, 需了解图像采用哪些波段合成,每个波段分别被赋予何种颜色。

阴影(shadow):遥感图像上光束被地物遮挡而产生的地物的影子

根据阴影形状、大小可判读物体的性质或高度。不同遥感影像中阴影的解译是不同的

形状(shape):目标地物在遥感图像上呈现的外部轮廓。

遥感图像上目标地物形状:顶视平面图

解译时须考虑遥感图像的成像方式。

纹理(texture):内部结构,指遥感图像中目标地物内部色调有规则变化造成的影像结

构。如航空像片上农田呈现的条带状纹理。纹理可以作为区别地物属性的重要依据。

等等。

2)目视解译的认知过程

遥感图像的认知过程包括:

自下向上的信息获取、特征提取与识别证据积累过程

自上向下的特征匹配、提出假设与目标辨识过程。

①自下而上过程:

图像信息获取→特征提取→识别证据选取

②自上而下过程:

特征匹配:指人脑利用记忆存储中的地物类型模式与地物特征匹配的过程。

地物类型模式与目标地物全局特征进行相似性测量,判别其相容性或不相容性。

2. 遥感图像目视解译基础

1)遥感摄影像片的判读

①常见的遥感扫描影像类型:

MSS影像:多光谱扫描仪;

TM图像:为专题绘图仪获取的图像;

SPOT图像:具有较高的地面分辨率;

资源一号卫星CBERS影像

②摄影像片的特点

遥感摄影像片绝大部分为大中比例尺像片

遥感摄影像片绝大部分采用中心投影方式成像

从航空像片上看到的是地物的顶部轮廓

③摄影像片的解译标志

解译标志(又称判读标志):

解译标志分为直接判读标志和间接解译标志。

直接判读标志

指能够直接反映和表现目标地物信息的遥感图像的各种特征包括遥感摄影像片的色调、

色彩、大小、形状、阴影、纹理、图型。

间接解译标志

指能够间接反映和表现目标地物信息的遥感图像的各种特征,借助它可以推断与某地物属性相关的其他现象。

遥感摄影像片上常用到的间接解译标志:

目标地物与其相关指示特征:

地物与环境的关系:

目标地物与成像时间的关系:

2)遥感扫描影像的判读

①遥感扫描影像特征

宏观综合概括性强:

信息量丰富:

动态观测:

扫描影像的判读遵循原则:

“先图外、后图内”

“先整体,后局部”

“勤对比,多分析”

②遥感扫描影像的主要解译方法

1. 目视解译方法:

指根据遥感影像目视解译标志和解译经验,识别目标地物的办法与技巧。

(1)直接判读法

根据遥感影像目视判读直接标志,直接确定目标地物属性与范围的一种方法。

(2)对比分析法

包括同类地物对比分析法、空间对比分析法和时相动态对比法。

同类地物对比分析法:在同一景遥感影像上,由已知地物推出未知目标地物的方法。

空间对比分析法:由已知熟悉影像区域为依据判读未知区域影像的一种方法。

时相动态对比法:利用同一地区不同时间成像的遥感影像加以对比分析,了解同一目

标地物动态变化。

(3)信息复合法

利用透明专题图或地形图与遥感图像重合,根据专题图或地形图提供的多种辅助信息,识别遥感图像上目标地物的方法。

(4)综合推理法

综合考虑遥感图像多种解译特征,结合生活常识,分析、推断某种目标地物的方法。

(5)地理相关分析法

根据地理环境中各种地理要素之间的相互依存,相互制约的关系,借助专业知识,分析推断某种地理要素性质、类型、状况与分布的方法。

3)目视解译步骤

目视解译准备工作阶段

明确解译任务与要求;

收集与分析有关资料;

选择合适波段与恰当时相的遥感影像。

初步解译与判读区的野外考察

室内详细判读

野外验证与补判

目视解译成果的转绘与制图

六. 遥感数字图像计算机解译

1. 遥感数字图像的计算机(自动识别)分类

遥感图像计算机解译的主要目地是将遥感图像的地学信息获取发展为计算机支持下的

遥感图像智能化识别,其最终目地是实现遥感图像理解。其基础工作就是遥感数字图像的分类。

遥感图像的计算机分类方法包括监督分类和非监督分类。

监督分类:事先有类别的先验知识,根据先验知识选择训练样本,由训练样本得到分类准则。

监督分类中常用的具体分类方法包括:

①最小距离分类法:classifier):用特征空间中的距离表示像元数据和分类类别特征

的相似程度,在距离最小时(相似度最大)的类别上对像元数据进行分类的方法。

②多级切割分类法:根据设定在各轴上的值域,分割多维特征空间的分类方法。

③特征曲线窗口法:特征曲线:地物光谱特征参数构成的曲线。以特征曲线为中心取一个条带,构造一个窗口,凡是落在此窗口范围内的地物即被认为是一类,反之则不属于该类。

④最大似然比分类法:求出像元数据对于各类别的似然度(likelihood),把该像元分到似然度最大的类别中去的方法。

遥感导论复习重点

1.遥感的基本概念。 广义:泛指一切无接触的远距离探测,包括对电磁场、重力场、声波、地震波的探测; 狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.结合P2图,阐述遥感系统的组成。 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.按遥感平台、探测波段、传感器的工作方式来分,遥感可分成哪几种类型。 按遥感平台分类:地面遥感、航空遥感、航天遥感、航宇遥感 按探测波段分类:紫外遥感:探测波段在0.05-0.38微米; 可见光探测:探测波段为0.38-0.76微米; 红外遥感:探测波段在0.76-1000微米; 微波遥感:探测波段在1mm-1m,收集与记录目标物发射、散射的微波能量。 按工作方式分类:主动和被动遥感:二者主要区别在于传感器是否发射电磁波。被动式遥感是被动地接受 地表反射的电磁波,受天气状况的影响比较大。主动式遥感多为微波 波段,受天气和云层影响较小。 成像和非成像遥感:成像方式:把目标物发射或反射的电磁波能量以图像形式来表示。 非成像方式:将目标物发射或反射的电磁辐射的各种物理参数记录为 数据或曲线图形式,包括:光谱辐射计、散射计、高度计等。4.阐述遥感的特点。 ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。 ②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。 ③数据的综合性和可比性:综合性是指,可以根据地物在不同波段的光谱特性,选取相应的波段组合来判断地物的属性。可比性是指,可以将不同传感器得到的数据或图像进行对比。 ④经济性:遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。 ⑤局限性:遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 5.地物辐射和反射电磁波的特点有哪些。 6.什么叫电磁波谱。 按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。 7. 目前遥感所使用的电磁波有哪些波段(其波长范围、特点、应用)。 可见光波段:0.38-0.76 μm,作为鉴别物质特征的主要波段,是遥感中最常用的波段 红外波段:0.76—1000μm,采用热感应方式探测地物本身的辐射(如热污染、火山、森林火灾等),可进行全天时遥感。 微波波段:1mm—1m,能穿透云、雾而不受天气影响,能进行全天时全天候的遥感探测。能直接透过植被、冰雪、土壤等表层覆盖物。 紫外线波段:0.01—0.4μm,主要用于探测碳酸盐岩的分布和油污染的监测。由于大气层中臭氧对紫外线的强烈吸收和散射作用,通常探测高度在2000米以下。 8.大气对太阳辐射的影响有哪些。 吸收、散射及反射作用、折射。 11.大气对太阳辐射的吸收带主要位于哪几个波段? 在紫外——微波之间,具明显吸收作用的主要是O3、O2、CO2和H20;此外NO2、CH4对电磁辐射也有吸收,多种成份吸收特定波和的电磁波,形成相应的吸收带。

循证医学知识点总结.

循证医学:是遵循科学证据的医学,指的是临床医生在获得了患者准确的临床依据的前提下,根据自己纯熟的临床经验和知识技能,分析并抓住患者的主要临床问题,应用最佳的和最新的科学证据,作出科学的 诊治决策,联系具体的医疗环境,并取得患者的合作和接受,以实践这种诊治决策的具体医疗过程。循证医学的基础:①素质良好的医生;②当前最佳的研究证据;③临床流行病学的基本方法和知识; ④患者的参与及合作;⑤必要的医疗环境和条件。循证医学实践的目的:①弄清疾病发病的危险因素,为疾病的防治提供依据;②提供可靠的诊断依据;③帮助医生为患者选择当前最科学、合理的治疗措施;④ 分析和应用促进患者康复的有利因素,改善患者预后和提高其生存质量;⑤提供可用于卫生管理的最佳研 究证据,促进管理决策科学化。医学实践的基本步骤:①提出明确的问题;②系统检索相关文献,全面收 集证据;③严格评价证据;④应用证据指导决策;⑤后效评价,通过实践进一步提高。 证据的质量的分级:①第一级:按照特定病种的特定疗法收集所有多个质量可靠的随机对照试验后所作的 系统评价;②第二级:单个的大样本随机对照试验;③第三级:有对照但未用随机方法分组的研究(如设 计很好的队列研究、病例—对照研究或无对照。④第四级:无对照的系列病例观察⑤第五级:专家意见。医学如何评价证据是否最佳?①首先是分析评价证据的真实性;②其次是评价其对于临床医疗实践是否具 有重要价值;③最后是分析是否能适用于面临的临床问题。Meta分析的目的是:①增加统计学检验效能;

②定量估计研究效应的平均水平;③评价研究结果的不一致性;④寻找新的假说和研究思路。Meta分析 的指征是:目前认为Meta分析主要适用于随机化对照试验(RCT结果的综合,尤其存在以下指征:①需 要做出一项紧急决定,而又缺乏时间进行一项新的试验;②目前没有能力开展大规模的临床试验;③有关 药物和其他治疗,特别是副作用评价方法的研究;④研究结果矛盾时。 Meta分析的基本步骤:①提出问题,制定研究计划;②检索资料;③选择符合纳入标准的研究;④纳入研 究的质量评价;⑤提取纳入文献的数据信息;⑥资料的统计学处理;⑦敏感性分析;⑧形成结果报告。 考试要点研究证据的来源:(1原始资料来源包括专著、高质量期刊上发表的论著、电子出版物等。例如医学索引在线(Medline、Embase数据库(Embase Database、中国生物医学文献数据库(CBM、中 国循证医学/Cochrane中心数据库(CEBM/CCD和国立研究注册(NRR等等。(2经系统评价的二次 研究资料包括循证医学教科书、与证据有关的数据库、网站等。例如Cochrane图书馆(CL、循证医学 评价(EBMR、循证医学杂志(EBM、国立指南库(NGC、指南(Guidelines等等。 从发展的观点出发试说明循证医学的局限性:(1虽然循证医学将会大大提高医疗卫生服务的质量和效率,但它并不能解决所有与人类健康有关的问题,如社会、自然或环境问题;(2建立有效的产生、总结、传播和利用医疗证据的体系,需要花费一定的资源,虽然从长远看,循证医学会降低医疗费用,但其

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

综合遥感实验报告

本科学生实验报告 姓名周文娜学号094130090 专业_地理科学_班级 B 实验课程名称遥感导论 实验名称遥感图像分类---监督分类,非监 督分类 指导教师及职称胡文英 开课学期2011 _至__2011 学年_下学期云南师范大学旅游与地理科学学院编印

一、实验准备 实验名称:遥感图像分类---监督分类,非监督分类 实验时间:2011年6月10日 实验类型:□验证实验□综合实验□设计实验 1、实验目的和要求: (1)理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的。 (2)进一步理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的,同时深刻理解监督分类与非监督分类的区别。 2、实验相关设备: 计算机一台,及ERDAS软件 3、实验理论依据或知识背景: (1)监督分类的概念: 首先需要从研究区域选取有代表性的训练场地作为样本。根据已知训练区提供的样本,通过选择特征参数(如像素亮度均值、差等),建立判别函数,据此对样本像元进行分类,依据样本类别的特征来识别非样本像元的归属类别。 监督分类包括利用训练区样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。 (2)非监督分类的概念: 非监督分类的前提是假定遥感影像上的同类物体在同样条件下具有相同的光谱信息特征。非监督分类方法不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息(或纹理信息)进行特征提取,再统计特征的差别来达到分类的目的,最后对巳分出的各个类别的实际属性进行确认。 监督分类和非监督分类的根本区别点在于是否利用训练场地来获取先验的类别知识,监督分类根据训练场提供的样本选择特征参数,建立判别函数,对待分类点进行分类。因此,训练场地选择是监督分类的关键。由于训练场地要求有代表性, 训练样本的选择要考虑到地物光谱特征,样本数目要能满足分类的要求,有时这些还不易做到, 这是监督分类不足之处。

遥感导论复习要点

复习要点 第一章 遥感概述 遥感定义:遥远的感知。通过遥感器(传感器)这类对电磁波敏感的仪器,在远 离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息,进行处理、分析和应用的一门科学和技术。 主动遥感:传感器主动发射一定电磁波能量,并接受目标的后向散射信号。 被动遥感:传感器不向目标发射电磁波,仅被动的接受目标物体的自身发射和对 自然辐射的反射能量。 按遥感平台分:地面遥感、航空遥感、航天遥感、宇航遥感等。 按探测波段分: 紫外遥感:0.05-0.38μm 可见光遥感:0.38-0.76μm 红外遥感:0.76-1000μm 微波遥感:1mm-1000mm 遥感技术系统:遥感信息源信息获取、遥感数据传输与接收、信息处理、信息应用。 遥感特点:5个小标题: 大面积同步观测 时效性强 数据的综合性和可比性好 较高的经济与社会效益 一定的局限性 第二章 电磁辐射与地物光谱特征 2.1 电磁波谱与电磁辐射 横波:在真空中以光速传播。 满足方程: f λ = c 电磁辐射的度量:辐射能量,辐射通量,辐射通量密度,辐射照度,辐射出射度 绝对黑体:对任何波长的电磁辐射全部吸收 吸收率(,)1T αλ≡,反射率(,)0T ρλ≡,与波长与温度无关。 恒星和太阳的辐射可近似看作黑体辐射。 斯忒藩-玻尔滋蔓定律:p20

绝对黑体的辐射出射度与其温度的4次方成比例:4M T σ= 其中 0()T M M d λλ∞ =? 维恩位移定律:p20,注意p20图2.7和p21表2.2 最强辐射的波长 max λ 与其温度T 成反比:max T b λ?= 基尔霍夫定律:p21-22。公式,0M M ε= 某实际物体与同一温度、同一波长绝对黑体的辐射出射度之间存在关系:0M M α= 其中,α为实际物体的吸收系数, 0M 为绝对黑体的辐射出射度,α也称为比辐射率或发射率,记作0M M ε=。 2.2 太阳辐射及大气对辐射的影响 太阳辐射: 太阳是遥感主要的辐射源,又叫太阳光。 大气吸收:大气中的各种成分对太阳辐射有选择性吸收,形成太阳辐射的大气吸收带。 大气散射 ?不同于吸收作用,只改变传播方向,不能转变为内能。 ?大气的散射是太阳辐射衰减的主要原因。 ?对遥感图像来说,降低了传感器接收数据的质量,造成图像模糊不清。 ?散射主要发生在可见光区。 大气发生的散射主要有三种:(p29-30) 瑞利散射:d <<λ,分子为主,无方向性,可见光,4I λ-∝ 米氏散射:d ≈λ,微粒,强度有明显方向性,红外,2I λ-∝ 非选择性散射:d >>λ,强度与波长无关。 大气折射:传播方向发生改变。折射虽只改变电磁波的方向,不改变强度,但会 导致传感器接收的地物信号发生形状和比例尺的改变。 大气反射:大气反射主要发生在云层顶部,取决于云量,各波段均会受其影响。 大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段。 这些波段是被动遥感的工作波段。 2.3 地球辐射及地物波谱

循证医学重点教学内容

循证医学重点

1循证医学:临床医生在获取患者疾病相关资料的基础上,分析患者主要临床问题(病因、诊断、治疗、预后及康复等),通过检索评价当前最新的相关研究成果和最佳证据,在结合患者的实际临床问题与临床医疗的具体环境做出科学、适用的诊治决策,在患者的配合下付诸实施并最后做出相关分析与效果评价。 2临床问题的类型(1)背景问题:关于疾病一般知识的问题,主要由询证医学初学实践者提出。提出问题涉及的知识除基础医学外,还有人类健康和疾病的生物、心理及社会因素等诸多方面。(2)前景问题:往往是医学的前沿问题,是关于疾病最新治疗学、实验诊断学和当前关于病因知识的问题,这些问题是循证医学的核心问题。 3、*原始研究证据:是直接以人群,即病人和(或)健康人为研究对象,进行有关病因、诊断、预防、治疗和预后等研究所获得的第一手研究资料,经统计学处理、分析、总结而形成的研究报告。 4、*二次研究证据:是在全面收集针对某一问题的所有原始证据的基础上,应用科学的标准,经严格评价、整合处理、分析总结而形成的研究报告。它是对原始研究证据进行二次加工后得到的更高层次的研究证据。 5、系统评价:是指针对某一特定临床问题,系统全面的收集全世界所有已经发布或尚未发表的相关研究,采用统一的文献评价原则和方法,筛选出符合质量标准的文章,进行合并分析,尽可能的减少偏倚,得到综合、可靠的结论。可分为定性和定量两种。 6、Meta分析:又称荟萃分析,是对同一课题的多项独立研究的结果进行系统的、定量的综合性分析。是对文献的量化综述,是以同一课题的多项独立研究的结果为研究对象,在严格设计的基础上,运用适当的统计学方法对多个研究成果进行系统、客观、定量的综合分析。 7、病因学:研究病因作用于人体,在内外环境综合影响下,导致人体发病及其发病机制的科学。 8、危险因素:又称致病因素,是指与疾病的发生及其消长具有一定因果关系的因素,但尚未充分证据能阐明其致病效应。然而,当这些因素存在时或被消除后,其相关的疾病发生率会相应的增高或下降。 9、药物不良反应ADR:一般是指在正常用量和用法的情况下,药物在预防、诊断、治疗疾病或调节生理功能时所发生意外的、与防治目的无关的不利或有害的反应。 10、相对危险度RR:病因暴露组的发病率与未暴露组的发病率的比值,或治疗组不良反应的发生率与非治疗组不良反应的发生率的比值。 11、比值比OR:病例组中暴露于该因素者与未暴露者之间的比值为对照组中该项比值的倍数。 12、致成危害需要的人数NNH:导致一例病例的发生所需要暴露在该可疑危险的因素中易感个体的人数。

微波遥感复习题Word版

第一章 1. 微波遥感的微波波段:频率范围:300MHz – 40GHz ;波长范围:1m – 0.75cm.。太阳辐射微波小于地球辐射 微波。地球辐射微波:100MHz – 10GHz :3 nWm-2,100MHz – 1GHZ :29 pWm-2。有鉴于 此,微波遥感多为主动遥感。 2.微波遥感的特点:由于微波的波长较长,能穿透云、雾而不受天气影响,所以能进行全天时全天候的遥感探测。微波对某些物质具有一定的穿透能力,能直接透过植被、冰雪、土壤等表层覆盖物。因此广覆盖。全天候、全气候、广覆盖。 3.微博遥感中较多应用相同相位、微小频率差的干涉。 第二章 1.成像几何的一些概念 斜距方向:微波束传播方向。 地距方向:地面上与飞行器飞行方向垂直的方向。 方位方向:飞行器飞行方向。 天线覆盖区:天线波束射到地面的覆盖区。 幅宽 :在地距方向上,微波束’照亮’地球表面的宽度。天线覆盖区在地距方向的 宽度。 近地距线 :幅宽最接近地面轨迹的边。 远地距线:幅宽最远离地面轨迹的边。 视角:天线到地面的垂线与斜距方向的夹角。(技术参数) 入射角:入射线与地面点的法线 的夹角。入射角越小地面起伏越大,反射越强图像上越亮 星下点:飞行器在地面的垂直投影点。 卫星高度:飞行器离开地面的高度 H 。 天线尺度:方位长度 la 和垂直长度 lv 。方位长度平行与飞行方向,垂直长度垂直与飞行方向。 2. 距分辨率:雷达系统在距方向上分辨两个相邻目标点的能力,即返回脉冲在时间上没有重叠 3.斜距分辨率: r r = 2τc 地距分辨率: g r =θ τsin 2c

关于距分辨率:当 = 0,地距分辨率 rg 无穷大 采用侧视 雷达的原因;地距和斜距分辨率均与搭载平台的飞行高度 H 无关;地距分辨率与入射角 有关。近地距 处的分辨率低于远地距处的分辨率。 4. 脉冲压缩技术(关键技术,提高地距分辨率) 知道过程 发射调频宽脉冲,其频率随时间线性变化,称为线性调频脉冲;返回的线性调频脉冲与发射线性调频脉冲的副本经相关器压缩成窄脉冲。压缩的窄脉冲宽度远远小于发射脉冲的宽度。解决了发射功率与提高地距分辨率的矛盾。 压缩的接收调频信号 sinc (πBct ), 其中 Bc = τr -1 为调频带宽,为压缩比。sinc( x )= x x sin 距分辨率:斜距分辨率:r r = Bc 2c ;地距分辨率:g r =θ sin 2Bc c 5. 合成孔径雷达技术:现代雷达遥感的核心技术,旨在提高雷达图像的方位分辨率。利用天线的移动合成一个虚 拟‘长’天线。合成天线的长度(孔径)为实际天线第一次和最后一次探测某一地面点的时 间 间隔内实际天线移动的距离。(利用多普勒效应—>频带加宽—>相关操作(压缩技术)—>窄脉冲,现代雷达技术又一关键技术,提高方位分辨率)。 6.脉冲频率(pulse repetition frequency = prf )约束 雷达脉冲在地球表面投射覆盖区。当微波发射器运动时,形成一系列平行覆盖区。为了能 够连续观测地球表面,要求两个相邻的覆盖区在空间上无间断。 在方位方向覆盖区宽度等于方位分辨率 r a 。设搭载平台的移动速度为 v ,发射脉冲周期为T ,频率为 f 。如两个相邻脉冲无间距,则要求在一个脉冲周期内,搭载平台的移动距离不应该超过 r a ,即 T r a / v 。频率下限: prf min = a r v =a l 2v 。 为了能够辨识两个实际上相邻的两个返回脉冲,要求前一个发射脉冲在远地距端的返回不 应迟于后一个发射脉冲在 进地距端的返回。脉冲频率上限: prf min = θsin 2S c = tan S 2θ c =θΘtan 2c 0R v =θλtan 20R c l v

遥感导论知识点整理(梅安新版)

遥感导论知识点整理 【题型】 一、选择题 二、填空题 三、名词解释 四、简答题 五、论述题 注意:标注页码的地方比较难理解,希望大家多看看书,看看ppt。【第一章】绪论 1、【名】遥感(remote sensing) 广义:泛指一切无接触的远距离探测; 定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。 2、遥感系统 包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用。(5个哦亲!详见书第2页图哈~) 3、【名】信息源:任何目标具有发射、反射和吸收电磁波的性质,被称为遥感的信息源。 4、遥感的类型: a)按照遥感平台分 地面遥感、航空遥感、航天(空间)遥感、航宇遥感 b)按传感器的探测波段分 紫外遥感(0.05μm-0.38μm)、可见光遥感(0.38-0.76μm)、红外遥感(0.76-1000μm)、微波遥感(1mm-10m) c)按工作方式分 主动遥感、被动遥感;成像遥感、非成像遥感 5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性 6、遥感发展简史 Remote Sensing 的提出:美国学者布鲁伊特于1960年提出,61年正式通过。 遥感发展的三个阶段:

(1)萌芽阶段 1839年,达格雷发表第一张空中相片; 1858年,法国人用气球携带照相机拍摄了巴黎的空中照片。 1882年,英国人用风筝拍摄地面照片; J N Niepce (1826, France) The world’s first photographic image Intrepid balloon, 1862 1906, Kites Pigeons, 1903. (2)航空遥感阶段 1903年,莱特兄弟发明飞机,创造了条件。 1909年,意大利人首次利用飞机拍摄地面照片。 一战中,航空照相技术用于获取军事情报。 一战后,航空摄影用于地形测绘和森林调查与地质调查。 1930年,美国开始全国航空摄影测量。 1937年,出现了彩色航空像片。 (3)航天遥感阶段 1957年,苏联发射第一颗人造地球卫星,意义重大。 70年代美国的陆地卫星 法国的Spot卫星 发展中国家的情况:中国,印度,巴西等。 卫星遥感 Landsat Spot NOAA EO-1 Terra/modis Ikonos 7、我国遥感发展概况 50年代航空摄影和应用工作。 60年代,航空摄影工作初具规模,应用范围不断扩大。 70年代,腾冲遥感实验获得巨大成功。 70.4.24发射第一颗人造地球卫星。 80年代是大发展阶段。 目前在轨运行卫星:海洋卫星、气象卫星、中巴资源卫星、环境卫星等。 8、遥感的应用 (1)资源调查与应用 1. 在农业、林业方面的应用 农、林土地资源调查、病虫害、土壤干旱、盐化沙化的调查及监测。 土地利用类型调查 精细农业 作物估产 “三北”防护林遥感综合调查

入党必备基本知识

入党必备基本知识 1、中国共产党的性质是什么? 答:中国共产党是中国工人阶级的先锋队,同时是中国人民和中华民族的先锋队,是中国特色社会主义事业的领导核心,代表中国先进生产力的发展要求,代表中国先进文化的前进方向,代表中国最广大人民的根本利益。 2、中国共产党的最高理想和最终目标是什么? 答:中国共产党的最高理想和最终目标是实现共产主义。 3、中国共产党的行动指南是什么? 答:中国共产党以马克思列宁主义、毛泽东思想、邓小平理论和"三个代表"重要思想作为自己的行动指南。 4、党的宗旨是什么? 答:全心全意为人民服务。 5、党的思想路线是什么? 答:党的思想路线是一切从实际处罚,理论联系实际,实事求是,在实践中检验真理和发展真理。 6、党的群众路线是什么?

答:一切为了群众,一切依靠群众,从群众中来,到群众中去,把党的正确主张变为群众的自觉行动。 7、中国共产党在社会主义初级阶段的基本路线是什么? 答:领导和团结全国各族人民,以经济建设为中心,坚持四项基本原则,坚持改革开放,自力更生,艰苦创业,为把我国建设成为富强、民主、文明的社会主义现代化国家而奋斗。 8、四项基本原则的内容是什么? 答:坚持社会主义道路、坚持人民民主专政、坚持中国共产党的领导、坚持马克思列宁主义毛泽东思想。 9、党的民主集中制的基本原则是什么? 答:党员个人服从党的组织,少数服从多数,下级组织服从上级组织,全党各个组织和全体党员服从党的全国代表大会和中央委员会。 10、现阶段我国社会的主要矛盾是什么? 答:在现阶段,我国社会的主要矛盾是人民日益增长的物质文化需要同落后的社会生产之间的矛盾。

循证医学规培大纲知识点

1. 循证医学:慎重、准确和明智地应用目前可获取的最佳研究证据, 同时结合临床医师个人的专业技能和长期临床经验,考虑患者的价值观和意愿,完美地将三者结合在一起,制定出具体的治疗方案。 2. 遵循证据是EBM的核心思想。循证医学的核心是患者。 3. 狭义EBM:循证临床实践;广义EBM:包括一切医疗卫生服务的循证实践。 4. 循证临床实践(EBCP)三要素:患者意愿、临床医生地专业知识和研究证据。 5. 临床研究作为医学证据(按研究内容分类): a关于病因的临床研究;b关于诊断或筛查的临床研究; c关于治疗或干预的临床研究;d关于预后的临床研究。 6. 证据的分类:原始研究证据(观察性研究:队列研究、病例对照研 究、横断面调查、描述性研究、病例分析、个案报道,实验性研究:随机对照实验、非随机同期对照实验、交叉实验、前后对照实验)、二次研究证据(系统评价,临床实践指南,临床决策分析,卫生技术评估,卫生经济学研究) 8. 证据分级(干预的临床研究) 一级:所有随机对照试验的系统评价/Meta-分析二级:单个的样本量足够的RCT结果 三级:设有对照组但未用随机方法分组四级:无对照的病例观察五级:临床经验,专家意见

新9级:系统评价或Meta分析、随机双盲对照实验、队列研究、病例对照研究、病例系列报告、个案报告、专家的观点评述及意见、动物实验、体外/试管内实验 9.治疗性研究的设计类型: 系统评价、随机对照试验、非随机的对照试验、队列研究(观察)、无对照的病例系列、个案报告。诊断性研究的设计类型:系统评价、队列研究。病因研究的设计类型:系统评价、随机对照试验、队列研究、病例-对照研究。预后研究的设计类型系统评价: 系统评价、队列研究、病例-对照研究。系统评价是最高级别的证据。 10. 需要治疗的病人数(Number Needed to Treat, NNT):指获得(或避免)1个事件需要治疗的病人数。NNT越大,效应值越小 11.循证临床实践的步骤方法:A.发现和提出临床问题;B.检索相关研究证据;C.对证据的真实性和重要性进行评价;D.应用当前最佳证据指导具体患者的临床决策;E.决策效果评估。 12.临床问题的类型:治疗问题、诊断问题、病因问题、预后问题。基于主题的学习(系统,以教材为中心,效率低下,缺乏目的性) 基于问题的学习(零散,以学习者为中心,印象深刻,针对性强)13.证据来源:(1)原始资料来源包括专著、高质量期刊上发表的论 著、电子出版物等。例如医学索引在线(Medline)、Embase数据库(Embase Database)、中国生物医学文献数据库(CBM)、中国循证医学/Cochrane中心数据库(CEBM/CCD)和国立研究注册(NRR)等等。(2)经系统评价的二次研究资料包括循证医学教科

遥感概论知识点整理

第一章绪论 遥感 广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。狭义:应用探测仪器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感探测系统 根据通感的定义,遥感系统包括被测目标的信息特征、信息的获取、信息的 传输与记录、信息的处理和信息的应用五大部分 主动遥感和被动遥感 主动遥感和被动遥感,主动遥感由探测器主动发射一定电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量 与常规观测相比,遥感观测的特点 遥感观测可以实现大面积同步观测,并且不受地形阻隔等限制。 遥感探测,尤其是空间遥感探测,可以在短时间对同一地区进行重复探测,发现地球上许多事物的动态变化。 与传统地面调查和考察比较,遥感数据可以较大程度地排除人为干扰。 与传统的方法相比,可以大节省人力、物力、财力和时间,具有很高的经济效益和社会效益。 分别从遥感平台、传感器类型、工作方式和应用简述遥感类型 遥感平台:地面遥感,航空遥感,航天遥感,航宇遥感

传感器:紫外遥感,可见光遥感,红外遥感,微波遥感,多波段遥感 工作方式:主动遥感和被动遥感,成像遥感和非成像遥感 应用:外层空间遥感,大气层遥感,陆地遥感,海洋遥感 第二章电磁辐射与地物光谱特征 基本概念: 电磁波谱 按电磁波在真空中传播的波长或频率,递增或递减排序,构成了电磁波谱。 按照波长递减的顺序: 长波,中波和短波,超短波,微波,红外波段(超远红外,远红外,中红外,近红外),可见光(红橙黄绿青蓝紫,0.38~0.76微米),紫外线,X射线,γ射线。朗伯源、朗伯面 辐射亮度L与观察角无关的辐射源,称为朗伯源。一些粗糙的表面可近似看做朗伯源。严格来说,只有绝对黑体才是朗伯源。对于漫反射面,当入射幅照度一定时,从任何角度观察反射面,其反射亮度是一个常数,这种反射面称朗伯面。把反射比为1的朗伯面叫做理想朗伯面。 绝对黑体、灰体、选择辐射体 绝对黑体:一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。 灰体:没有显著的选择吸收,吸收率虽然小于1,但基本不随波长变化,这种物体叫灰体。如果发射率与波长无关,那么可把物体叫作灰体,否则叫选择性辐射体

遥感导论_章节重点

第一章 一、名词解释 遥感:广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。 狭义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 二、遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。 三、简述遥感(技术)的特点  (1) 大面积的同步观测  (2) 时效性  (3) 数据的综合性和可比性  (4) 经济性  (5) 局限性(信息的提取方法、数据挖掘技术、思维方式等有等改善) 四、论述遥感应用的主要方面: (1) 在资源调查方面的应用 (2)在环境测评及对抗自然灾害方面的应用 (3) 在区域分析及建设规划方面的应用 (4) 在全球性宏观研究中的应用 (5) 在其他方面的应用:<1>在测绘制图方面的应用 <2>在历史遗迹、考古调查方面的应用 <3>在军事上的应用 5、 遥感的类型 按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感 根据传感器的工作方式不同,可分为 主动式传感器:主动遥感 被动式传感器:被动遥感 成像方式:成像遥感 非成像方式:非成像遥感 按传感器的探测波段分 可见光遥感、红外遥感、微波遥感、紫外遥感数据等。 按应用领域分 大的研究领域:外层空间遥感、大气层遥感、陆地遥感、海洋 遥感。 具体应用领域:资源遥感、环境遥感、农业遥感、林业遥感、渔 业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥 感、灾害遥感、军事遥感等等。 第二章 一、名词解释

1、电磁波:光波、热辐射、微波、无限电波等由振源发出的电磁振荡 在空间的传播,这些波叫电磁波。 2、电磁波谱:电磁波在真空中传播的波长或频率,递增或递减排列, 构成了电磁波谱。 3、大气窗口 :通常把透过大气而较少被吸收、散射的透射率较高的电 磁辐射波称为大气窗口。 4、地物反射光谱:地物的反射率随波长变化的规律。 5、地物反射光谱曲线:按地物反射率与波长之间关系绘成的曲线(横 轴为波长,纵轴为反射率) 。 6、反射率:物体反射的辐射能量占总入射能量的百分比。 7、发射率:表示实际物体辐射与黑体辐射之比。 8、瑞利散射:当微粒的直径比辐射波长小许多时发生的散射。 9、米氏散射:当微粒与辐射光波长接近时发生的散射。 10、非选择性散射:当微粒的直径比辐射波长长很多时发生的散射。 二、遥感技术常用的电磁波有哪些?各有什么特性? 遥感中较多地使用紫外线、可见光、红外和微波波段。 紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000m以下。 可见光:0.4—0.76um。它由红、橙、黄、绿、青、蓝紫色光组成。人眼对可见光可直接感觉,不仅对可见光的全色光,而且对不同波段的单色光,也具有这种能力。所以可见光是作为鉴别物质的主要波段。 红外线:0.76—1000um,为了实际应用方便,又将其划分为:近红外(0.76—3.0 um),中红外(3.0—6.0um),远红外(6.0—15.0um)和超远红外(15-1000um)。 微波:1mm—1m。来源于地物的热辐射由于其波长比可见光、红外线要长,受大气层中云、雾的散射干扰要小,因此能全天候进行遥感。 三、大气散射有何特点?它分为哪几种散射,各有什么特点? 散射作用:是指辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开。散射使原传播方向辐射减弱,而增加其他各方向的辐射。 大气的散射集中于太阳辐射能量较强的可见光区。因此,大气对太阳辐射的散射是太阳辐射衰减的主要原因。散射强度可用散射系数γ来表示:γ∞1/λw,γ散射系数、w为波长指数, 由大气微粒直径(d)决定。 <1>瑞利散射d<<λ当微粒的直径比辐射波长小许多时,也叫分子散射。W(4),大气对可见光 的影响很大。 <2>米氏散射d≈λ当微粒与辐射光波长接近时,是由于大气溶胶所引起的,其W(2) 。云、雾对红 外线的米氏散射是不可忽视的。 <3>非选择性散射d>>λ当微粒的直径比辐射波长长很多时的情况,W(0) 任何波长散射强度相 同。 四、什么是大气窗口?试写出对地遥感的主要大气窗口. 遥感是怎样利 用大气窗口的? (1) 通常把透过大气而较少被吸收、散射的透射率较高的电磁辐射波称为大气窗口。

党基本知识简答题总结

五、简答题(25题) 1、中国共产党党徽党旗是什么? 中国共产党党旗为旗面缀有金黄色党徽图案的红旗。中国共产党党徽为镰刀和锤头组成的图案。” 12.申请入党必须具备的基本条件? 答:年满十八岁的中国工人、农民、军人、知识分子和其他社会阶层的先进分子,承认党的纲领和章程,愿意参加党的一个组织并在其中积极工作,执行党的决议和按期交纳党费的,可以申请加入中国共产党. 2、新时期党所面临的两大历史性课题是什么? 不断提高党的领导水平和执政水平,提高拒腐防变和抵御风险的能力 3、党在社会主义初级阶段的基本路线是什么? 领导和团结全国各族人民,以经济建设为中心,坚持四项基本原则,坚持改革开放,自力更生,艰苦创业,为把我国建设成为富强、民主、文明的社会主义现代化国家而奋斗。” 4、为什么说中国共产党是中国工人阶级的先锋队? 第一,中国共产党是以工人阶级为阶级基础的。 第二,中国共产党是由工人阶级先进分子组成的。 第三,中国共产党是用先进理论武装起来的。 第四,中国共产党是按照民主集中制的原则建立的。

5、为什么说中国共产党是中国特色社会主义事业的领导核心? 第一,党的领导地位是在长期的革命和建设中形成的。 第二,党的领导是中国特色社会主义事业胜利的根本保证。 第三、坚持和改善党的领导,适应建设中国特色社会主义事业的要求。 6、发展党员为什么要征求党内外有关群众的意见? 这样做,有助于党组织更准确地掌握党员标准,保证新发展的党员质量,也有利于防止发展党员工作中的不正之风,避免不具备党员条件的人进入党内。 7、上级党组织在批准申请人入党以前,为什么要派人同申请人谈话? 一方面是为了使上级党组织直接了解申请人的情况,作进一步的考察,有助于防止产生偏差,保持审批的正确性,从而保证发展党员的质量;另一方面,有助于加深党组织和申请人之间的相互了解,可以有针对性地帮助申请人进一步提高对党的认识,端正入党动机。 8、作为申请入党的积极分子,加入党的组织,必须履行的入党手续有哪些? 首先,必须以书面形式,正式向党组织提出入党申请,即写好一份入党申请书; 第二,接受党组织的培养和考察; 第三,接受新党员,必须有两名正式党员作为入党介绍人; 第四,发展党员,必须填写入党志愿书,必须经过党的支部大会讨论; 第五,发展党员必须经上级党组织审查批准,才能成为预备党员; 第六,预备党员必须面向党旗进行入党宣誓; 第七,预备党员经过一年的预备期考察,预备期满后支部大会讨论通过才能转正。 9、党的建设必须坚决实现哪些基本要求? 第一,坚持党的基本路线。

循证医学考试重点总结

第01章绪论 1、循证医学EBM:遵循科学证据的医学,是指临床医生在获得患者准确临床依据的前提下,根据自己纯熟的临床经验和知识技能,分析并抓住患者主要的临床问题,应用最佳和最新的科学证据,做出科学的诊治决策,联系具体的医疗环境,并取得患者的合作和接受,以实践这种医疗决策的具体医疗过程。因此,这种决策是建立在科学证据的基础之上的,同时在患者合作下接受和执行这种诊治决策,从而尽可能的获取最好临床效果,这种临床实践成为循证医学。 2、循证医学的实践包括:患者、医生、证据、医疗环境。 3、循证医学实践的基础:高素质的临床医生、最佳的研究证据、临床流行病学基本方法和知识、患者的参与。 4、循证医学分两种类型:最佳证据提供者、最佳证据应用者。前者称之为循证医学,后者称之为循证医学实践 5、最佳证据提供者:临床流行病学家和统计学家、各专业的临床医生、卫生经济学家和社会学家、医学科学信息工作者 6、最佳证据应用者:临床医生、医疗管理者、卫生政策决策者。 7、循证医学实践的方法:a、找准患者存在且需要解决的临床问题;b、检索有关医学文献;c、严格评价文献;d、应用最佳证据指导临床决策;e、总结经验与评价能力。 8、循证医学有着强烈的临床性 9、临床实践循证医学的目的:a、加强临床医生的临床训练,提高专业能力,紧跟先进水平;b、弄清疾病的病因和发病的危险因素;c、提高疾病早期正确诊断率;d、帮助临床医生帮患者选择真是、可靠、具有临床价值并且实用的治疗措施,指导临床用药,充分利用卫生资源,提高效率减少浪费。 e、改善患者预后。F、促进卫生管理决策。G、有利于患者本身的信息检索,监督医疗,保障自身权益。 第02章提出临床需要解决的问题 1、提出临床问题的重要性1忽略提出临床问题的重要性,导致临床研究和临床实践的盲目性 2.“提出一个好的问题,用可靠的方法回答这个问题”是保障临床研究质量的两个至关重要的方面 2、临床医生提出一个好问题对自己的益处 1.有利于医生集中使用有限的时间,解决与患者直接需要相关的问题 2.有利于制定高产出的证据收集策略,提高解决问题的针对性3.有利于形成一种优良的行为模式 4.有利于成为更好的、决策更快的临床医生。 3、循证医学问题的来源 1.疾病情况、处理方法、预期效果存在不确定性2、注重临床实践、保持好奇心 3承认自己的不足 4.临床问题来源于临床实践具体如下病史和体检;研究病因;临床表现;诊断问题;鉴别诊断;预后;治疗方案;疾病预防 4、问题的种类 1背景问题a问题词+动词 b一种疾病或疾病的某个方面 2.前景问题 a病人或(和)问题b干预措施c对比措施d重要临床结局 第03章研究证据的分类、来源与检索 1、证据:经过试验所得出的结论。 2、试验的特征:大样本、随机、盲法、对照 3、研究证据的分类?原始研究证据?二次研究证据:①系统评价(SR)②临床决策分析③临床证据手册④卫生技术评估⑤临床实践指南 4、研究证据的来源?原始研究证据:①医学索引在线Medline②Embase数据库③中国生物医学文献数据库CBM④中国循证医学/Cochrane中心临床研究数据库⑤NNR⑥Current controlled trials⑦Clinical trials?二次研究证据:①Cochrane图书馆②循证医学评价③评价与传播中心数据库CRDD④临床证据⑤循证医学杂志⑥ACP⑦循证护理杂志 5、循证医学文献检索的特点:①带着解决患者的特定临床问题而检索文献(PICO策略)②文献的整理与评价③系统评价法 6、PICO策略:P:为patient或population的缩写,表示他(她)或他们患的是什么病、存在什么临床或防治需要解决的问题。I:为intervention (干预措施)的缩写,表示根据病人存在的临床问题,我们拟探求使用的干预措施是什么?C:为comparison(比较)的缩写,表示拟探求使用的干预措施的对照比较措施是什么?如随机、双盲、安慰剂等。O:为outcome(结果)的缩写,表示拟探求使用的干预措施最终结局是什么?如像事件的发生率、相对/绝对危险降低率、挽救每一个病例需治的病例数等 7、Cochrane系统评价:是Cochrane协作网成员在Cochrane协作网统一工作手册指导下,在相应Cochrane评价组编辑部指导和帮助下,按照特定的病种和疗法,收集全世界所有能收集到的质量可靠的随机对照试验进行Meta-分析,从而得出简明、扼要的综合结论---即这种疗法究竟有效、无效,还是尚需进一步研究。 第05章循证医学用证的个体化原则 1、最佳证据具备的特性 1.真实性分析来自什么样的研究,是否有恰当的对照组;分析研究对象的诊断标准及其纳入和排除标准是否明确;分析组间的临床基线是否可比,干预措施和方法是否科学、有效、安全;终点指标是否确切、有何偏移因素存在及其采取了什么防止和处理方法;资料收集、整理、统计分析是否合适2重要性确定“真实性好”之后要评价有无临床应用价值3应用性任何最佳证据的应用和推广,都必须结核病人的实际病况、医疗条件、医务人员的知识水平、技能水平、患者的接受程度及社会经济状况的承受能力等 2、应用最佳证据需要考虑的问题a生物学证据 b 病理生理学证据c社会-心理及经济特点d应用研究证据要权衡利弊e个体化干预的效果预测 第06章循证医学中常用的统计指标与方法 1统计方法抉择的基本原则:a分析目的(统计描述、统计推断)b资料类型(数值变量、分类变量)c.设计方法d.数理统计条件 2EER::实验组中某事件的发生率 3CER:对照组中某事件的发生率 4RD:即率差,危险差,两个发生率的差。两率差为0时,两组的某事件发生率没有差别,而两率差的可信区间不包含0(上下限均大于0或上下限均小于0),则两个率有差别,反之,两率差的可信区间包含0,无统计学意义。 5RR:相对危险度,是指暴露组的发病率与非暴露组的发病率之比,常用来表示暴露与疾病联系的强度及其在病因学上的意义大小。RR大于一,实验因素 是疾病的有害因素,RR小于一,实验因素是疾病的 有益因素,RR等于1,实验因素与疾病无关。其可 信区间不包含1时有统计学意义,包含1时无统计 学意义。 6OR:优势比在病例-对照研究中OR指病例组暴露 人数与非暴露人数的比值(a/b)除以对照组暴露人 数与非暴露人数的比值(c/d),即ad/bc。 7RRR:相对危险度降低率。RRR=1减RR,可反映实验 组与对照组某事件发生率增减的相对量,无法衡量 增减的绝对值。 8ARR:绝对危险降低率,等于CER减EER,用以反映 实验组与对照组某事件发生率增减的绝对量。 9NNT:需要处理的病人数,扣除对照组效应后,对 病人采用某种防治措施处理后,得到一例有利结局 需要防制的病例数。NNT越小,该防治效果越好, 临床意义越大。 10NNH:采用某种防治措施处理后,治疗多少病例 数可出现一例副作用。 11假设检验的基本步骤:a提出检验假设又称无效 假设,符号是H0;备择假设的符号是H1。b选定统 计方法,由样本观察值按相应的公式计算出统计量 的大小,如X2值、t值等。根据资料的类型和特点, 可分别选用Z检验,T检验,秩和检验和卡方检验 等c根据统计量的大小及其分布确定检验假设成立 的可能性P的大小并判断结果。 12:假设检验的注意事项:a.两个前提:一是研究 者需要通过样本的信息去推断总体的结论,各样本 资料对其总体应具有良好的代表性。b.假设检验不 能判断差别的大小。C.假设检验的结论不能绝对 化。d.假设检验的方法与科研设计、资料的分布特 征有关。 13.临床意义与统计学意义的关系。见课本68页最 下面的表格,可以考虑写桌上。 第07章系统评价的方法与评价原则 1、系统评价:系统评价是一种全新的文献综合方 法,指针对某一具体临床问题(如疾病的病因、诊 断、治疗、预后),系统、全面地收集全世界所有 已发表或未发表的临床研究,采用临床流行病学的 原则和方法严格评价文献,筛选出符合质量标准的 文献,进行定性或定量合成,得出综合可靠的结论。 系统评价可以是定性的,也可以是定量的,即包含 Meta-分析过程,系统评价的整个过程非常明确, 使其具有独特的优点即良好的重复性。 2、文献综述:由作者根据特定的目的和需要或兴 趣,围绕某一题目收集相关的医学文献,采用定性 分析的方法,对论文的研究目的、方法、结果、结 论和观点等进行分析和评价,结合自己的观点和临 床经验进行阐述和评论,总结成文,可为某一领域 或专业提供大量的新知识和新信息,以便读者在较 短时间内了解某一专题的研究概况和发展方向,解 决临床实践中遇到的问题。常常缺乏严谨的规范方 法,易发生各种偏倚。 3、为什么要进行系统评价?1应对信息时代的挑战 2及时转化和应用研究成果3提高统计效能 4、Meta分析与系统评价的区别与联系:1联系: Meta-分析是一种统计分析方法,它将多个独立的、 可以合成的临床研究综合起来进行定量分析。 Meta分析也称为系统评价。2区别:系统评价可以 使定性系统评价和定量系统评价,即包含Meta分 析。Meta分析数学上更为精确,易受选择偏倚的影 响。高质量的Meta分析必须采用系统分析的方法, 减少偏倚和误差的影响。 5、叙述性文献综述与系统评价的区别与联系 在1研究的问题、2原始文献的来源、3检索方法、 4选择标准、5原始文献的评价、6结果的合成、7 结论的推断、8结果的更新,这几个方面区别于联 系分别是。 叙述性文献综述:1涉及的范畴常比较广泛2常不 予说明,收集不全面3常不予说明4常不予说明, 易产生偏倚5评价方法不统一6多采用定性的方法 7有时遵循研究证据8无定期更新 系统评价:1常集中于某个具体问题2有明确的检 索策略3有明确的检索策略4有明确的选择标准5 有系统、严格的评价方法6多采用定量的方法7多 遵循研究证据8根据新的试验结果定期更新 6、系统评价的方法步骤:1确立题目、制定系统评 价计划书2检索文献3选择文献4评价文献质量5 收集数据6分析资料和报告结果(1定性分析2定 量分析a同质性检验bMeta-分析c敏感性分析)7 解释系统评价的结果8更新系统评价 7、同质性检验:指对不同原始研究之间结果的变 异程度进行检验 8、系统评价原则:一、系统评价的结果是否真实1 是否为随机对照试验,随机对照试验能较好的控制 各种偏倚因素。2“方法”部分是否描述清楚,收 集的文献越系统全面,结论受发表偏倚影响就越 小,可信度就越高。3不同研究结果是否一致。如 果原始研究疗效相似或方向一致,合成结果可信度 就较高。如果同质性检验有显著差异,则应解释产 生差异的原因,并考虑能否合并。二、系统评价的 结果是否重要1疗效如何2疗效是否精确三、系统 评价的结果是否适用于我们的患者1患者与研究对 象的差异2干预措施本院是否可行3干预措施对于 患者利弊4对干预措施的疗效和不良反应,患者自 己的价值观和选择如何 9、系统评价的应用:一、临床实践的需要,如:美 国政策研究所经常应用系统评价的结果制定临床 实践指南。如呼吁禁止盲目使用白蛋白。二、科研 工作的需要,如:英国国家医学会提供资助的临床 试验要求提供相关系统评价。三、反映学科新动态, 围绕专业发展的需要,检索某个领域的文献资料, 做好有关专题的系统评价,可以深入反映该领域目 前的动态、存在的问题和发展的方向,促进学科的 发展。四、医学教育的需要,教科书出版周期长, 系统评价是快速获取有关知识的途径之一。五、卫 生决策的需要,1990年魁北克的Meta分析报告指 出,没有证据表明使用高渗造影剂比低渗造影剂更 危险。1990-1992净节约1千2百万美元。 第08章 Meta-分析在循证医学实践中的应用 第一节Meta-分析的概述 Meta-分析:又称荟萃分析,是对具有相同研究题 目的多个多个医学研究进行综合分析的一系列过 程,包括提出研究问题、制定纳入和排除标准、检 索相关研究、汇总基本信息、综合分析并报告结果 等。目的在于增大样本含量,减少随机误差所致的 随机误差,增大检验效能。. Meta-分析的基本步骤: 1、提出临床问题,制定研究计划 2、建立检索策略, 收集所有相关的研究文献与资料。3、制定纳入与 排除标准,筛选原始研究文献,并逐一进行严格研 究。4、纳入研究的质量评价。5、提取纳入文献的 数据信息。6、资料的统计学处理 7、敏感性分析8、形成结果报告 Meta分析的指证: 目前认为Meta分析主要适用于随机化对照试验 (RCT)结果的综合,尤其存在以下指证: 1、需要做出一项紧急决定,而又缺乏时间进行一 项新的试验。2、目前没有能力开展大规模的临床 试验3、有关药物或其他治疗,特别是副作用评价 结果的研究。4、研究结果矛盾时。 Meta分析的目的是: 1、增加统计学检验效能 2、定量估计研究效应的平 均水平 3、评价研究结果的不一致性 4、寻找新的假说和研 究思路 第二节Meta分析的统计分析过程 一、效应量的统计描述 效应量(ES):是指临床上有意义或实际价值的数 值或观察指标改变量。观察指标为分类变量资 料:RR相对危险度、OR比值比、ARR绝对危险度 降低率;数值变量资料:WMD加权均数差值、SMD 标准化差值 森林图是由多个原始文献的效应量及其95%可信区 间绘制而成,横坐标为效应量尺度,纵坐标为原始 文献的编号,按照一定的顺序,将各个研究的效应 量及其95%可信区间依次绘制到图上。可用于描述 每个原始研究的效应量分布及其特征,同时展示研 究间结果的差异情况。 二、异质性检验(Meta分析前的必要准备) 异质性检验的目的是检查各个独立研究的结果是 否具有一致性(可合并性) (一)Q检验(方差倒数为权重,其检验效能低) (二)异质性来源与处理 来源:研究设计、干预措施、结果测量时点与方法、 统计模型及分析方法、纳入和排除标准等方面均数 异质性潜在来源。对原始研究文献进行严格评价。 处理:亚组分析、敏感性分析、随机模型、Meta 回归及混合模型、放弃Meta分析只做一般统计描 述 三、合并效应量的估计与统计推断 合并效应量实际上是多个研究效应量的加权平均 值。 步骤:逐一计算每个研究的效应量(OR、RR、ARR 等)及其95%可信区间。根据资料类型和异质性检 验的结果,选择适合统计分析模型,估计合并效应 量及其统计推断 四、敏感性分析 主要方式:改变纳入标准、排除低质量的研究、采 用不同统计方法/模型分析同一资料等。 例如:在排除某个低质量研究结果后,重新估计合 并效应量,并与未排除前的Meta分析结果比较, 探讨该研究对合并效应量影响程度及结果稳定性。 如未发生大的变化,说明敏感性低,结果较为稳健 可信。反之,在解释结果时候要慎重 第四节固定效应模型与随机效应模型 一、固定效应模型 (一)二分类变量资料的固定效应模型(二)数值 变量资料的固定效应模型 二、随机效应模型 (一)二分类变量资料的随机效应模型(二)数值 变量资料的随机效应模型 合并效应量多个原始研究效应量的加权平均 值; 固定效应模型以每个研究内的方差的倒数作为权 重 随机效应模型一研究内方差与研究间方差之和的 倒数作为权重,部分消除异质性的影响 三、Meta回归及混合效应模型 四、其他一些方法学进展 固定效应模型使用条件:在异质性可被忽略时,可 选用固定效应模型,此时可认为即使研究间的效应 量有差别,也是由于抽样误差造成的。 随机效应模型与固定效应模型相比,主要步骤完全 相同,逐一计算每个研究的效应量及其95%可信区 间,然后估计合并效应量及其95%可信区间。 第五节Meta分析结果评价 一、 Meta分析结果的评价标准 1、Meta分析提出的临床问题是否敏感:要求干预 措施产生的效应在生物学上是唯一的。 2、文献检索方法是否详尽清楚:要求查全与查新结 合。 3、原始文献的纳入标准是否合适 4、是否对每一个纳入研究都进行了真实性评价: 要求原始研究必须真实 5、评价结果可重复性如何:要求至少2名作者分 别对纳入研究进行评价。 6、结果合并是否合适:借助异质性检验与敏感性 分析判断。 二、评估发表性偏倚的影响(二)如何识别发表性 偏倚1、绘制漏斗图:以样本含量或效应量标准 误的倒数为纵坐标,以效应量或效应量对数为横坐 标所绘制的散点图。类似倒漏斗。不对称分布时, 存在发表偏倚。 2、计算失安全数:回答“需新增多少个无统计学 意义的研究,才使合并效应量无统计学意义”。数 值越大,发表偏倚越小。 三Meta分析结果的外部真实性评价及证据个体化 Meta 分析的结果在推广应用时,应注意干预对象 的生物学特征,以及干预场所、干预措施、依从性、 辅助治疗等方面的差异。不能推荐没有Meta分析 证据支持的建议。 在无肯定性结论时应注意:是证据不充分而不能定 论,还是有证据表明确实无效 Meta 分析的结论不断更新。 第09章病因和危险因素的循证医学实践 1、病因和危险因素的研究方法有:随机对照试验、 病例对照研究、队列研究、现况调查。 2、评价病因和危险因素研究结果真实性的原则。a 病因和危险因素研究是否采用了强度高的研究设 计方法,b试验组与对照组的暴露因素、结局的测 量方法是否一致?是否采用了盲法?c观察期是否 足够长?结果是否包含了全部纳入的病例?d病因 和危险因素研究因果效应的先后顺序是否合理?e 危险因素与疾病之间是否有剂量效应关系?f病因 和危险因素研究的结果是否符合流行病学的规 律?g病因致病的因果关系是否在不同的研究中反 映出一致性?h病因致病效应的生物学依据是否充 分? 3病因学研究结果的应用。a纳入研究的对象是否 与自己面临的具体病人不同b具体病人发生疾病的 危险性多大c确定患者的喜好和希望解决的问题d 是否应终止接触危险因素或更改治疗措施。 4病因学研究对医疗决策的价值。a依据流行病学 的宏观证据作出决策b依据临床医疗实践的观察作 出决策c医疗决策应注重社会效益 5随机对照试验(RCT):是前瞻性研究,因果关系 论证强度最佳。当探讨病因时,可以选择健康无病 人群,用随机法分成两组,一组接触可能的致病因 子,另一组接受安慰剂,以观察其致病效应,虽然 可获得最佳的因果证据,但如果违反伦理道德就不 可行。现常用于评估新药和新的治疗方法 6队列研究:是从因到果的研究设计,对因果联系 的论证强度较佳且可行性好。该设计是将明确的无 病自然人群,以有或未接触被研究的可能致病因素 自然地形成两组,观察一段时间后,将两组某病的 发病率或死亡率进行比较,确定其因果关系及其危 险程度,这种前瞻性观测,称为前瞻性队列研究。 另种是回顾性队列研究,回顾性追溯若干年前群体 中某些个体是否暴露于某个可能的致病因素,研究 其与现存的某种疾病之间的关系。 7病例对照研究:是回顾性研究病因和危险因素最 常用的方法。它选定患有某病的病例组和相应配对 的无该病者为对照组,同时回顾调查分析某种致病 因素的致病效应和程度。从中找出该因素是否与某 病之间存在关联。这种研究设计的方法,多用于发 病率很低,致病的自然病程长,很难作前瞻性病因 学研究者。 8现况调查:又称为横断面调查,是流行病学病因和 有关危险因素调查中最常用的方法。通过抽样调查 来描述疾病发生的时间、地点、人群的特征,以及 对同时存在的可疑危险因素进行定量研究,探求原 因不明性疾病的病因线索。 第10章疾病诊断证据的分析与评价 1、对诊断性试验研究评估的基本要求: ①确定金标准②确定新的诊断性试验 ③正确选择的研究对象④新诊断性试验与金标准 结果做比较 2、诊断性试验常用的指标: ①敏感度SEN②特异度SPE③阳性预测值⑩阳性预 测值:诊断性试验中,真阳性在“有病”患者中的 比例与假阳性在“无病”例数中比例的比值。 3、ROC曲线:又称受试者工作特征曲线,以该试验 的灵敏度(真阳性率)为纵轴,而以1-特异度(假 阳性率)为横坐标,依照连续分组测定的数据,分 别计算SEN和SPE,按照平面几何的方法,将给出 各点连成曲线,即为ROC曲线。 应用目的有二:其一用于正常至临界点的选择,其 二用于优选性质类似的诊断性试验 验前比数=验前概率/(1-验前概率)验后比数=验 前比数×似然比、、验后概率=验后比数/(1+验后 比数)平行试验-----可提高灵敏度 SEN=SENA+(1-SENA)×SENB SPE=SPEA×SPEB 序 列试验-----可提高特异度SEN(A+B)=SENA×SENB SPE(A+B)=SPEA+(1-SPEA)×SPEB 4、诊断性试验的评价标准:真实性、重要性、实 用性 5、循证医学诊断性试验的应用: ①ROC曲线的应用②似然比的临床应用:似然比是 诊断性试验综合评价的理想指标,他综合了敏感度 与特异度的临床意义,而且可依据实验结果的阳性 或阴性,计算某病例患病的概率,以便在诊断性试 验检测后,更确切的对患者做出诊断。③提高诊断 性试验敏感度或特异度的方法:平行试验、序列试 验 第11章疾病防治的循证医学实践 第一节原始治疗性证据的真实性评价 1.为了正确地应用证据于循证医学防治性实践,仅 仅了解证据的等级是远远不够,需要对证据的质 量,从其(真实性、重要性及实用性)进行分析与 评价,方能决定证据的取舍。 2.临床随机对照实验(RCT)质量评价的关键因素: (1).在被评价的RCT证据中,一定要注重其研究 样本是来自随机抽样以及研究样本具体的随机分 组方法,是否采用了隐匿措施,。 (2).被纳入的研究对象之诊断依据是否可靠,有 否具体的纳入及排除标准明确这些研究对象所患 的疾病代表性如何。(3).注意试验开始时,组间 的临床基线状况是否一致?可比性如何?有无显 著性差异?(4).干预措施是否明确,是否执行了 盲法以及盲法类别是什么,药物的制剂、剂量、用 药途径是否清楚。(5).注意组间的研究对象除接 受试验措施之外,是否存在同时接受了其他治疗措 施。(6).试验观测的中间指标和终末指标是什么。 (7).入组试验研究对象的总例数,在最终试验的 证据中是否完全。(8).分析证据的统计学方法是 否正确和合理。 3.非RCT证据的两种特殊情况: (1).如果是非随机临床同期对照试验的研究结 果,其所提供的证据是无效的,B-错误水平允许的 范围之外(B-错误<0.2,power>0.8)。那么这种 证据倒是可信的。相反,如果提供的证据是阳性结 果的话,倒是值得怀疑的因为研究者发生各种偏移 的几率是颇大的。 (2).假如所治疗的疾病确为疑难重症,当前又公 认缺乏有效的治疗药物或方法,而且预后很差,病 死率高。如果检索文献发现的某种疗法即使缺乏对 照治疗结果且被证明是有效的话,那么这种证据可 被接受。当然也需要作进一步的重复验证。另一种 情况则属于确诊的某一疾病,被某一特效药物治疗 而被证明为有效者,即使为对照性的观测结果,也 可被接受。 第二节原始资料治疗性证据的重要性评价 如果对收集的证据经过真实性评价之后,被确认真 实性差而不宜采用者则应放弃,无需作临床重要性 评价。但如果确认证据是真实或较为真实而被参考 采用者,那么就要进一步分析和评价这种证据对临 床的重要意义及价值。 对于任何真实的证据,从其意义上讲概括为三种情 况。一为确认为真正阴性结果,表明无临床应用价 值。二为暂时难下结论,存在争议的证据,这就需 要进一步研究证据。三为真正有意义的阳性结果证 据,自然就有应用价值,兹分述如下: 第一真正的阴性结果(证据) 即通过临床研究论证,确实证明某一种措施对于某 一疾病的治疗没有价值或为乏效,或为弊大于利。 这样临床医生则拒绝应用。 第二真正的尚有争议的结果(证据) 任何临床治疗措施往往是有利又有弊的,特别是某 种临床常用的药物,往往是被证明利大于弊才被采 用的。 第三真实有效的治疗证据 对于真实有效的治疗证据也必需联系临床的具体 实际和病种,病情的实际来评价它的临床价值,看 看是否有临床的重要性。 1、临床治疗效果究竟有多大 判断临床效果的程度,一定要明确试验组与对照组 事件发生率各有多大(如治愈率,病死率~)以及 组间差值,然后对这些差值的临床价值和意义做出 评价。 2、治疗证据的效果之准确度如何 所谓的治疗效果可信的程度,从上述效果程度的指 标看,总是以事件或实际效果的绝对数据表示,显 示仍有机遇因素的影响,为了提供其准确的程度以 助于临床重要意义的评价和指导临床应用,常用 95%可信区间表示(95%CI)其可信区间越小,则可 信度越靠近真值,反之可信度就要差一些 3、审慎地评价中间指标及实验指标的意义 第三节原始治疗性证据的实用性评价 1、有效的证据是否与我们经治的患者情况一致。 2、 采用治疗性证据的可行性如何。3、施以患者的治 疗措施或药物,一定要权衡利弊4病人对拟采用的 治疗证据的期望及价值取向 第四节治疗性评价证据的质量分析 1.治疗性系统评价证据的真实性 2.治疗性系统评 价证据的重要性3.系统评价的治疗证据之实用性 第12章药物不良反应 1、ADR定义 指合格药品在正常用法用量下出现的与用药目的 无关的或者意外的有害反应,包括副作用,毒性反 应,特异质反应,过敏反应,致畸,致癌,致突变 反应和依赖性等。 2、ADR分型 1.A型(量效关系密切型)是由于药物的药理作用 相对增强的结果,或由药物或其代谢产物的毒性作 用。可以预测,通常与剂量有关;发生率高,但死 亡率低。副作用、毒性作用、后遗效应、继发反应 等。如降糖药引起的低血糖,抗高血压药引起的体 位性低血压,抗组胺药引起的抗胆碱作用。2. B 型ADR(量效关系不密切型)是与正常药理作用完 全无关的异常药物反应。难预测,常规毒理学难以 发现,发生率低但死亡率高,有病人异常性和药物 异常性两种,特异性反应,药物不良反应,免疫抑 制,致癌性致畸性均属此型。 3、药物不良反应的循证诊断依据 1.时序性是否明确,不良事件总是应该发生在药物 应用之后2.符合同种、同类已知不良反应发生的规 律,观察到的药物不良反应符合同种同类动物实验 或临床早就中已经肯定的反应,则药物与不良反应 之间的因果关系较肯定。3.是否可排除混杂因素的 影响,要注意药物不良反应是否可用痛死服用其他 药物或者疾病本身的病情进展解释。4.撤药实验和 去激发试验,停止使用被怀疑的药物或者减少剂量 时体内药物浓度水平下降,不良反应消失或减轻。 5.激发和再激发实验再次使用被怀疑药物后这种 不良反应又发生。 4、药物不良反应的病因学关联程度分级? WHO分六级:1,肯定有关2,很可能有关3,可能有 关4,不可能有关5,待判定6,不能评价或不能判 定 我国在此基础上分5级:1,肯定有关2,很可能有 关3,可能有关4,怀疑5,不可能有关 5、ADR的循证治疗原则? 1.减少或终止药物损害:A型ADR:首先调整剂量B 型ADR:原则上立即停药 2.严密观察:药源性疾病难以预测,应密切观察病 情变化,必要时针对性的处理,直至不良反应完全 缓解 3.治疗:症状严重时应当进行对症治疗、必要时住 院治疗或延长住院时间 6、ADR的判断和处理原则?(应用ADR的结果于 临床,从哪方面考虑) 1.文献报告中的结果是否适合于我经治的病人。2, 估计不良反应对我经治的病人的影响。3,了解病人 的医院和希望解决的问题。4,选择疾病治疗中更少 发生不良反应的方法 第13章疾病预后循证估计 1、预后----指疾病发生后,对疾病未来病程和结 局的预测。 2、预后因素—任何疾病发生以后,都要经过长短 不等的疾病过程逐渐发展为痊愈、残废、死亡等不 同的结局,在这一过程中有许多因素将对其产生影 响,发生不同的结局,这些影响疾病结果的因素均 称为预后因素。 3、预后因素包括: ①人口学特征:年龄、性别②疾病本身的特点: 病情、病程、合并症③社会-经济地位和家庭因素: ④医疗条件:⑤个性特征:心理因素和身体素质⑥ 依从性:⑦早期诊断、早期治疗⑧不同疾病的特殊 预后因素 4、描述预后常用的指标----用简单的率表示: ①有效率(response rate) 患某病经过治疗后, 证实有效病例占同期该病总病例数的百分率 ②缓解率(rimission rate)患某病经过治疗后,达 到临床疾病消失期的例数占同期该病总病例数的 百分率 ③复发率(recurrence rate)患某病已经缓解或痊 愈后,重新复发患者占同期该病总病例数的百分率 ④病死率(case-fatality)某时期内因某病死亡的 病例数占该病总病例数的百分率 ⑤5年生存率(5-year survival rate)从疾病某点 开始到5年时存活病例占该病总观察病例数百分率 应用这些指标,明确预后的终点,这样才能在研究 预后的文献中,使用相同的指标相互比较,取得最 佳证据,以期用于临床对预后的判断 5、预后研究方案:前瞻性和回顾性两大类型: (1)、前瞻性研究方案①随机对照研究②队列 研究③临床对照研究④描述性研究 (2)、回顾性研究方案①回顾性队列研究②病 例-对照研究③描述性研究 6、影响预后证据质量的偏倚:①集中偏倚②迁移 性偏倚③测量性偏倚 7、集中偏倚的控制措施:①随机化②限制③配对 ④分层⑤多因素分析 8、预后证据的质量评价分几方面: ①如何判断预后证据的真实性②预后证据的临床 重要性评价③如何应用真实且有其重要价值的证 据指导有关的预后处理(实用性) 第14章临床经济学的循证医学实践 临床经济学是研究实践中成本投入(诊疗成本)与 效果产出(诊疗效果)效率的一门学科,其研究的 结果可为不同层面的决策提供参考依据。 临床经济学评价的意义 1、合理配置卫生保健资源 2、遴选基本诊疗技术和

相关文档
最新文档