〖精选4套试卷〗贵州省毕节地区2020年高二第二学期数学期末达标检测模拟试题

合集下载

贵州省毕节地区2020年高二下数学期末达标检测试题含解析

贵州省毕节地区2020年高二下数学期末达标检测试题含解析

贵州省毕节地区2020年高二下数学期末达标检测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设()f x 是定义在R 上恒不为零的函数,对任意实数,x y R ∈,都有()()()f x f y f x y =+,若112a =,()()n a f n n N +=∈,则数列{}n a 的前n 项和n S 的取值范围是( )A .1,12⎡⎫⎪⎢⎣⎭B .1,22⎡⎫⎪⎢⎣⎭C .1[,2]2D .1[,1]2【答案】A 【解析】 【分析】根据f (x )•f (y )=f (x+y ),令x =n ,y =1,可得数列{a n }是以12为首项,以12为等比的等比数列,进而可以求得S n ,进而S n 的取值范围. 【详解】∵对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y ), ∴令x =n ,y =1,得f (n )•f (1)=f (n+1),即()()11n n f n a a f n ++==f (1)12=, ∴数列{a n }是以12为首项,以12为等比的等比数列, ∴a n =f (n )=(12)n ,∴S n 11122112n ⎛⎫- ⎪⎝⎭==-1﹣(12)n ∈[12,1). 故选:C . 【点睛】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y )得到数列{a n }是等比数列,属中档题.2.将两颗骰子各掷一次,设事件A =“两个点数不相同”, B =“至少出现一个6点”,则概率()|P A B 等于( ) A .1011B .511C .518D .536【答案】A 【解析】解:由题意事件A={两个点数都不相同},包含的基本事件数是36-6=30至少出现一个6点的情况分二类,给两个骰子编号,1号与2号,若1号是出现6点,2号没有6点共五种2号是6点,一号不是6点有五种,若1号是出现6点,2号也是6点,有1种,故至少出现一个6点的情况是11种∴=10113.i 是虚数单位,若集合S={1,0,1}-,则 A .i S ∈ B .2i S ∈ C .3i S ∈D .2S i∈ 【答案】B 【解析】 【分析】 【详解】试题分析:由21i =-可得,2i S ∈,i S ∉,3i i S =-∉,22i S i=-∉. 考点:复数的计算,元素与集合的关系.4.即将毕业,4名同学与数学老师共5人站成一排照相,要求数学老师站中间,则不同的站法种数是 A .120 B .96 C .36 D .24【答案】D 【解析】分析:数学老师位置固定,只需要排学生的位置即可.详解:根据题意得到数学老师位置固定,其他4个学生位置任意,故方法种数有44A 种,即24种. 故答案为:D.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决. 5.已知函数()f x 的定义域为R ,且函数(2)3sin y f x x =+的图象关于y 轴对称,函数(2)3cos y f x x =+的图象关于原点对称,则()3f π=( )A .333+B 333-C 333+ D 333-+【答案】A 【解析】分析:根据奇函数与偶函数的定义,可求得函数的解析式;根据解析式确定’3f π⎛⎫⎪⎝⎭的值。

贵州省毕节地区2019-2020学年数学高二第二学期期末达标测试试题含解析

贵州省毕节地区2019-2020学年数学高二第二学期期末达标测试试题含解析

贵州省毕节地区2019-2020学年数学高二第二学期期末达标测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.已知ABC ∆的边AB ,AC 的长分别为20,18,120BAC ∠=︒,则ABC ∆的角平分线AD 的长为( )A B .9019C .18019D 2.命题P :“关于x 的方程220x ax ++=的一个根大于1,另一个根小于1”;命题q :“函数1()1xx h x e +=-的定义域内为减函数”.若p q ∨为真命题,则实数a 的取值范围是( ) A .()3-+∞, B .()3-∞-, C .(]3-∞,D .R3.定义方程()()f x f x '=的实数根0x 叫做函数()f x 的“新驻点”,若函数()g x x =,()()ln 1h x x =+,()31x x ϕ=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为( )A .γαβ>>B .βγα>>C .βαγ>>D .αβγ>>4.7(1)x +的展开式中2x 的系数是( ) A .42B .35C .28D .215.若点()000,P x y 在椭圆22221(0)x y a b a b+=>>内,则被0P 所平分的弦所在的直线方程是2200002222x x y y x y a b a b +=+,通过类比的方法,可求得:被()1,1P 所平分的双曲线2214x y -=的弦所在的直线方程是( ) A .430x y -+= B .450x y +-= C .450x y --=D .430x y ++=62,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( )A .3B .3C .3D .47.不等式|3|1x+<的解集是( ) A .{| 2 }x x >- B .{|4}x x <-C .{|4 2 }x <x <--D .{| 4 x x <-或2}x >-8.知11617a =,16log b =,17log c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >>9.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .1610.既是偶函数又在区间(0)π,上单调递减的函数是( ) A .sin y x =B .cos 2y x =C .sin 2y x =D .cos y x =11.在ABC ∆中,60BAC ∠=︒,3AB =,4AC =,点M 满足2B M M C =,则AB AM ⋅等于( ) A .10B .9C .8D .712.已知抛物线22(0)y px p =,过其焦点且斜率为1的直线交抛物线于,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 A .1x = B .1x =- C .2x =D .2x =-二、填空题(本题包括4个小题,每小题5分,共20分)13.在等比数列{}n a 中,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =________ 14.设直线315:45x t l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),直线l 与曲线1C 交于,A B 两点,则AB =__________.15.设m R ∈,若z 是关于x 的方程2210x mx m ++-=的一个虚根,则z 的取值范围是____. 16.已知函数32()2f x x ax bx c =+++有两个极值点1x ,2x ,且12x x <,若存在0x 满足等式012(1)x x x λλ+=+,()0λ>,且函数0()()()g x f x f x =-至多有两个零点,则实数λ的取值范围为__________.三、解答题(本题包括6个小题,共70分)17.等比数列{}n a 的各项均为正数,且12233a a +=,23269a a a =.(1)求数列{}n a的通项公式;(2)设1 nnnba+=,求数列{}nb的前n项和nT.18.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为22cos22sin10ρρθρθ+--=.(1)求曲线C的直角坐标方程;(2)求曲线C上的直线6cos032πρθ⎛⎫++=⎪⎝⎭距离最大的点的直角坐标.19.(6分)某工厂甲、乙两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,甲、乙两条生产线生产的产品为合格品的概率分别为p相21p-()0.51p≤≤.(1)若从甲、乙两条生产线上各抽检一件产品。

贵州省毕节地区2019-2020学年数学高二下期末达标测试试题含解析

贵州省毕节地区2019-2020学年数学高二下期末达标测试试题含解析

贵州省毕节地区2019-2020学年数学高二下期末达标测试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若12nx ⎛⎫- ⎪⎝⎭的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为 A .132B .164C .1-64D .1128【答案】B 【解析】 由题意知:2n (1)C 152n n -==,所以6n =,故611()()22n x x -=-,令1x =得所有项系数之和为611()264=. 2.已知函数()32f x x ax bx c =+++,那么下列结论中错误的是( )A .若0x 是()f x 的极小值点,则()f x 在区间()0,x -∞上单调递减B .函数()y f x =的图像可以是中心对称图形C .0x R ∃∈,使()00f x =D .若0x 是()f x 的极值点,则()00f x '= 【答案】A 【解析】分析:求导f′(x )=3x 2+2ax+b ,导函数为二次函数,若存在极小值点,根据二次函数的图象便知一定存在极大值点,并且该极大值点在极小值点的左边,从而知道存在实数x 1<x 0,使f (x )在(﹣∞,x 1)上单调递增,从而判断出A 的结论错误,而根据f (x )的值域便知f (x )和x 轴至少一个交点,从而B 的结论正确,而a=b=c=0时,f (x )=x 3为中心对称图形,从而判断C 正确,而根据极值点的定义便知D 正确,从而得出结论错误的为A .详解:A .f′(x )=3x 2+2ax+b ,导函数为二次函数;∴在极小值点的左边有一个极大值点,即方程f′(x )=0的另一根,设为x 1; 则x 1<x 0,且x <x 1时,f′(x )>0;即函数f (x )在(﹣∞,x 1)上单调递增,∴选项A 错误;B .该函数的值域为(﹣∞,+∞),∴f (x )的图象和x 轴至少一个交点; ∴∃x 0∈R ,使f (x 0)=0;∴选项B 正确;C .当a=b=c=0时,f (x )=x 3,为奇函数,图象关于原点对称; ∴f (x )是中心对称图形,∴选项C 正确;D .函数在极值点处的导数为0,∴选项D 正确. 故选:A .点睛:本题利用导函数研究了函数的极值点,零点,对称性,单调性等性质,考查了学生分析问题解决问题的能力,属于中档题.3.若0k m n ≤≤≤,且,,m n k N ∈,则mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C【答案】D 【解析】 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110CC C C C C 2mn mk n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题. 4.已知随机变量ξ服从正态分布()2,Nμσ,若(2)(6)0.15P P ξξ<=>=,则(24)P ξ≤<等于( )A .0.3B .0.35C .0.5D .0.7 【答案】B【解析】根据正态分布密度曲线的对称性可知,若(2)(6)P P ξξ<=>,函数的对称轴是4ξ= ,所以(24)0.50.150.35P ξ≤<=-=,故选B.5.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。

贵州省毕节地区2019-2020学年数学高二第二学期期末达标测试试题含解析

贵州省毕节地区2019-2020学年数学高二第二学期期末达标测试试题含解析

贵州省毕节地区2019-2020学年数学高二第二学期期末达标测试试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.已知三棱柱ABC ﹣A 1B 1C 1的六个顶点都在球O 的球面上,且侧棱AA 1⊥平面ABC ,若AB=AC=3,12,83BAC AA π∠==,则球的表面积为( )A .36πB .64πC .100πD .104π【答案】C 【解析】分析:求出BC ,由正弦定理可得可得ABC ∆外接圆的半径,从而可求该三棱柱的外接球的半径,即可求出三棱柱的外接球表面积.详解:3,120AB AC BAC ==∠=o Q ,BC ∴=199233()332+-⨯⨯⨯-=∴三角形ABC 的外接圆直径2r =3336=,13O A r ∴==,1AA ⊥Q 平面1,8ABC AA =,14OO =,∴该三棱柱的外接球的半径9165R OA ==+=,∴该三棱柱的外接球的表面积为22445100S R πππ==⨯=,故选C .点睛:本题主要考查三棱柱的外接球表面积,正弦定理的应用、余弦定理的应用以及考查直线和平面的位置关系,意在考查综合空间想象能力、数形结合思想以及运用所学知识解决问题的能力. 2.已知函数()()2ln 2f x a x x a x =+-+恰有两个零点,则实数a 的取值范围是( )A .()1,0-B .()1,-+∞C .()2,0-D .()2,1--【答案】A【解析】 【分析】先将函数有零点,转化为对应方程有实根,构造函数()22x xg x x lnx-=-,对函数求导,利用导数方法判断函数()g x 单调性,再结合图像,即可求出结果. 【详解】由()220alnx x a x +-+=得22x xa x lnx-=-,令()22x xg x x lnx-=-,则()()()()2122x x lnx g x x lnx -+--'=, 设()22h x x lnx =+-, 则()21h x x'=-, 由()0h x '>得2x >;由()0h x '<得02x <<,所以()h x 在()02,上单调递减,在()2,∞+上单调递增; 因此()()24220min h x h ln ==->,所以220x lnx +->在()0∞+,上恒成立; 所以,由()0g x '>得1x >;由()0g x '<得01x <<;因此,()g x 在()01,上单调递减,在()1∞+,上单调递增; 所以()()11min g x g ==-;又当()01x ∈,时,220x x -<,()220x x g x x lnx-=<-,作出函数()g x 图像如下:因为函数()()2ln 2f x a x x a x =+-+恰有两个零点,所以y a =与()22x xg x x lnx-=-有两不同交点,由图像可得:实数a 的取值范围是10a -<<. 故选A 【点睛】本题主要考查函数零点以及导数应用,通常需要将函数零点转化为两函数交点来处理,通过对函数求导,利用导数的方法研究函数单调性、最值等,根据数形结合的思想求解,属于常考题型. 3.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由2()()()()()n ac bd K a b c d a c b d -=++++得2250(2015105)8.33330202525K ⨯-⨯=≈⨯⨯⨯参照附表,得到的正确结论是( ).附表:A .有99.5%以上的把握认为“爱好该项运动与性别有关”B .有99.5%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 【答案】A 【解析】 【分析】对照表格,看2K 在0k 中哪两个数之间,用较小的那个数据说明结论. 【详解】由2K ≈8.333>7.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A .【点睛】本题考查独立性检验,属于基础题.4.已知{|12}A x x =-<<,2{|20}B x x x =+<,则A B =I A .(1,0)- B .(0,2)C .(2,0)-D .(2,2)-【答案】A 【解析】{|12},A x x =-<<2 {|20}B x x x =+<{|20},x x A B =-<<⋂ {|10}x x =-<<(1,0)=-,故选A.5.若12i +是关于x 的实系数一元二次方程20x bx c ++=的一个根,则( ) A .2b =,5c = B .2b =-,5c = C .2b =-,5c =- D .2b =,1c =-【答案】B 【解析】 【分析】由题意可知,关于x 的实系数一元二次方程20x bx c ++=的两个虚根分别为12i +和12i -,然后利用韦达定理可求出实数b 与c 的值. 【详解】由题意可知,关于x 的实系数一元二次方程20x bx c ++=的两个虚根分别为12i +和12i -,由韦达定理得()()()()12121212b i i c i i ⎧-=++-⎪⎨=+⋅-⎪⎩,解得25b c =-⎧⎨=⎩. 故选B. 【点睛】本题考查利用实系数方程的虚根求参数,解题时充分利用实系数方程的两个虚根互为共轭复数这一性质,并结合韦达定理求解,也可以将虚根代入方程,利用复数相等来求解,考查运算求解能力,属于中等题. 6.已知3sin 5ϕ=,且,2πϕπ⎛⎫∈ ⎪⎝⎭,函数()()()sin 0f x x ωϕω=+>的图象的相邻两条对称轴之间的距离等于2π,则4f π⎛⎫⎪⎝⎭的值为( ) A .35-B .45-C .35D .45【答案】B 【解析】试题分析:根据函数()()sin (0)f x x ωϕω=+>的图象的相邻两条对称轴之间的距离等于2π,可得222T ππωω==∴=,.由3sin 5ϕ=,且,2πϕπ⎛⎫∈ ⎪⎝⎭,可得34arcsin cos 55ϕπϕ=-=-,,∴()3sin(2arcsin )5f x x π=+-,则334sin arcsin cos arcsin 42555f ππππ⎛⎫⎛⎫⎛⎫=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选B .考点:正弦函数的图象.7.设[0,1]()1,[1,0)x f x x x ∈=+∈-⎪⎩,则11()f x dx -⎰等于( ) A .12π+B .122π+ C .124π+ D .14π+【答案】C 【解析】 【分析】 利用()10111()f x dx dx x x --+=+⎰⎰⎰计算出定积分的值.【详解】 依题意得()10111()f x dx dx x x --+=+⎰⎰⎰202111π|π12424x x -⎛⎫=++⨯⨯=+ ⎪⎝⎭,故选C.【点睛】本小题主要考查定积分的计算,考查运算求解能力,属于基础题. 8.()()511x x -+展开式中2x 项的系数是 A .4 B .5 C .8 D .12【答案】B 【解析】 【分析】把(1+x )5 按照二项式定理展开,可得(1﹣x )(1+x )5展开式中x 2项的系数. 【详解】(1﹣x )(1+x )5=(1﹣x )(1+5x+10x 2+10x 3+5x 4+x 5),其中可以出现的有1*10x 2 和﹣x*5x ,其它的项相乘不能出现平方项,故展开式中x 2项的系数是10﹣5=5, 故选B . 【点睛】这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.9.函数()ln f x x x =的大致图象是( )A .B .C .D .【答案】C 【解析】 【分析】根据特殊位置的x 所对应的()f x 的值,排除错误选项,得到答案. 【详解】因为()ln f x x x =所以当01x <<时,()0f x <,故排除A 、D 选项, 而()ln ln f x x x x x -=--=-, 所以()()f x f x -=-即()f x 是奇函数,其图象关于原点对称,故排除B 项, 故选C 项. 【点睛】本题考查根据函数的解析式判断函数图象,属于简单题.10.点(,)P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为( ) A 22 B .22C 6D .4【答案】A 【解析】 【分析】设,2sin )P θθ,由此24sin )x y θθθϕ+=+=+,根据三角函数的有界性可得结果. 【详解】椭圆方程为22164x y +=,设,2sin )P θθ,则24sin )x y θθθϕ+=+=+ (其中tan 4ϕ=),故2x y +≤2x y +,故选A .【点睛】本题主要考查椭圆参数方程的应用,辅助角公式的应用,属于中档题. 利用公式()sin cos )f x a x b x x ωωωϕ=+=+ 可以求出:①()f x 的周期2πω;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域⎡⎣;④对称轴及对称中心(由2x k πωϕπ+=+可得对称轴方程,由x k ωϕπ+=可得对称中心横坐标.11.在四边形ABCD 中,如果0AB AD ⋅=u u u v u u u v ,AB DC =u u u v u u u v,那么四边形ABCD 的形状是( ) A .矩形 B .菱形C .正方形D .直角梯形【答案】A 【解析】 【分析】由AB DC =u u u r u u u r 可判断出四边形ABCD 为平行四边形,由0AB AD ⋅=uu u r uuu r可得出AB AD ⊥,由此判断出四边形ABCD 的形状.【详解】AB DC =uu u r uuu rQ ,所以,四边形ABCD 为平行四边形,由0AB AD ⋅=uu u r uuu r可得出AB AD ⊥,因此,平行四边形ABCD 为矩形,故选A. 【点睛】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.12.912x x ⎛⎫- ⎪⎝⎭展开式中的所有项系数和是( )A .0B .1C .256D .512【答案】B【解析】 【分析】令1x =,可求出展开式中的所有项系数和. 【详解】令1x =,则9121x x ⎛⎫-= ⎪⎝⎭,即展开式中的所有项系数和是1,故选B. 【点睛】本题考查了二项式定理的应用,考查了展开式的系数和的求法,属于基础题. 二、填空题(本题包括4个小题,每小题5分,共20分)13.设集合{}{}12310(,,,...,)1,0,1,1,2,3,...,10i A x x x x x i =∈-=,则集合A 中满足条件“123101+9x x x x ≤+++≤…”的元素个数为_____. 【答案】58024 【解析】 【分析】依题意得12310+x x x x +++⋯的取值是1到10的整数,满足123101+9x x x x ≤+++≤…的个数等于总数减去12310+0x x x x +++⋯=和12310+10x x x x +++⋯=的个数. 【详解】集合A 中共有个元素10359049= ,其中12310+0x x x x +++⋯=的只有1个元素,12310+10x x x x +++⋯=的有1021024= 个元素,故满足条件“123101+9x x x x ≤+++≤…”的元素个数为56049-1-1024=58024. 【点睛】本题考查计数原理,方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.14.已知一组数据从小到大排列为-1,0,4,x,6,15,且这组数据的中位数为5,则这组数据的众数为______. 【答案】6 【解析】这组数据按从小到大的顺序排列其中中间的两个数为4,x ,这组数据的中位数为452x+=∴x=6,故这组数据的众数为6,填6. 15.已知△中,,,()的最小值为,若为边上任意一点,则的最小值是 .【答案】【解析】 【分析】 【详解】 令==++=,当时,取最小值12,解得,所以,则建立直角坐标系,,,设,则,,所以==.综上所述,当时,取得最小值.考点:1、平面向量的数量积;2、平面向量的模.16.如图,在梯形ABCD 中,AB CD ∥,4AB =,3AD =,2CD =,2AM MD =u u u u v u u u u v,如果3AC BM ⋅=-u u u v u u u u v ,则AB AD ⋅=u u u v u u u v________.【答案】32【解析】试题分析:因为122()()23233AC BM AD AB AB AD AB AD ⋅=+⋅-+=--⋅=-u u u r u u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,所以3.2AB AD ⋅=u u u r u u u r考点:向量数量积三、解答题(本题包括6个小题,共70分) 17.已知函数()21f x ax x=+,其中a 为实数. (1)根据a 的不同取值,判断函数f(x)的奇偶性,并说明理由; (2)若()1,3a ∈,判断函数f(x)在[1,2]上的单调性,并说明理由.【答案】(1)0a =时奇函数,0a ≠时非奇非偶函数;(2)单调递增,证明见解析.【解析】 【分析】(1)讨论0,0a a =≠两种情况,分别利用奇偶性的定义判断即可;(2)设1212x x ≤<≤,再作差()()12f x f x -,通分合并,最后根据自变量范围确定各因子符号,得差的符号,结合单调性定义作出判断即可. 【详解】 (1)当时,,显然是奇函数;当时,,,且,所以此时是非奇非偶函数.(2)设,则因为,所以,,,所以,,所以,所以,即,故函数在上单调递增.【点睛】本题主要考查函数的奇偶性以及函数的单调性,属于中档题.利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数18.已知函数1()||()3f x x a a =-∈R . (1)当2a =时,解不等式1()13x f x -+≥;(2)设不等式1()3x f x x -+≤的解集为M ,若11,32M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1){|0x x ≤或1}x ≥;(2)14,23⎡⎤-⎢⎥⎣⎦ 【解析】【分析】(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式|31|||3x x a x -+-≤在11,32⎡⎤⎢⎥⎣⎦恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当2a =时,原不等式可化为|31||2|3x x -+-≥. ①当13x ≤时, 则33012x x x -++-⇒≤≥,所以0x ≤; ②当123x <<时, 则32113x x x -+≥⇒≥-,所以12x ≤<;⑧当2x ≥时, 则332132x x x +≥⇒≥--,所以2x ≥. 综上所述:当2a =时,不等式的解集为{|0x x ≤或1}x ≥.(2)由1||()3x f x x -+≤, 则|31|||3x x a x -+-≤,由题可知:|31|||3x x a x -+-≤在11,32⎡⎤⎢⎥⎣⎦恒成立, 所以31||3x x a x -+-≤,即||1x a -≤,即11a x a -≤≤+,所以1114312312a a a ⎧-≤⎪⎪⇒-≤≤⎨⎪+≥⎪⎩故所求实数a 的取值范围是14,23⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.19.已知点O (0,0),A (2,一1),B (一4,8).(1)若点C 满足30AB BC +=u u u v u u u v v ,求点C 的坐标;(2)若OA kOB -u u u v u u u v 与2OA OB +u u u v u u u v 垂直,求k .【答案】(1)()2,5-;(2)18k =-.【解析】【分析】(1)设出C 点的坐标,利用终点减起点坐标求得AB u u u r 和BC uuu r 的坐标,利用向量运算坐标公式,得到,x y 满足的条件求得结果;(2)利用向量坐标运算公式求得(24,18)OA kOB k k -=+--u u u r u u u r ,2(0,6)OA OB +=u u u r u u u r ,利用向量垂直的条件,得到等量关系式,求得结果.【详解】(1)因为()2,1A -,()4,8B -,所以(6,9)AB =-u u u r. 设点C 的坐标为(),x y ,则()4,8BC x y =+-u u u r .由3(36,315)0AB BC x y +=+-=u u u r u u u r r ,得360,3150,x y +=⎧⎨-=⎩解得2x =-,5y =,所以点C 的坐标为()2,5-.(2)(24,18)OA kOB k k -=+--u u u r u u u r ,2(0,6)OA OB +=u u u r u u u r ,因为OA kOB -u u u r u u u r 与2OA OB +u u u r u u u r 垂直,所以(24)0(18)60k k +⨯+--⨯=,解得18k =-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量坐标运算公式及法则,向量垂直的条件,数量积坐标公式,属于简单题目.20.已知函数f(x)=1112x a ⎛⎫+ ⎪-⎝⎭x 3(a >0,且a≠1). (1)讨论f(x)的奇偶性;(2)求a 的取值范围,使f(x)>0在定义域上恒成立.【答案】(1)函数f(x)是偶函数(2)a ∈(1,+∞)【解析】【分析】(1)先求函数f(x)的定义域,再判断f(-x)与f(x)是否相等即可得到结果;(2)由f(x)是偶函数可知只需讨论x >0时的情况,则有1112x a ⎛⎫+⎪-⎝⎭x 3>0,从而求得结果. 【详解】(1)由于a x -1≠0,则a x ≠1,得x≠0,∴函数f(x)的定义域为{x|x≠0}.对于定义域内任意x ,有f(-x)=1112x a -⎛⎫+ ⎪-⎝⎭(-x)3 =112x x a a⎛⎫+ ⎪-⎝⎭(-x)3 =11112x a ⎛⎫--+ ⎪-⎝⎭(-x)3 =1112x a ⎛⎫+ ⎪-⎝⎭x 3=f(x), ∴函数f(x)是偶函数.(2)由(1)知f(x)为偶函数,∴只需讨论x >0时的情况,当x >0时,要使f(x)>0, 则1112x a ⎛⎫+⎪-⎝⎭x 3>0, 即11x a -+12>0, 即()121x x a a +->0,则a x >1. 又∵x >0,∴a >1.∴当a ∈(1,+∞)时,f(x)>0.【点睛】本题考查判断函数奇偶性的方法和恒成立问题,判断函数的奇偶性先求定义域,再判断f(-x)与f(x)是否相等或者互为相反数,相等即为偶函数,互为相反数则为奇函数,属中档题.21.已知关于x 的不等式32x x a -+-<.(1)当3a =时,解不等式;(2)如果不等式的解集为空集,求实数a 的取值范围.【答案】 (1)}{14x x <<;(2)1a ≤.【解析】试题分析:(1)当3a =时,不等式32x x a -+-<变为233x x -+-<。

〖精选4套试卷〗贵州省贵阳市2020年高二下数学期末学业水平测试模拟试题

〖精选4套试卷〗贵州省贵阳市2020年高二下数学期末学业水平测试模拟试题

2019-2020学年高二下学期期末数学模拟试卷一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂P ,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r【答案】D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.2.若复数z 满足(1)2i z +=,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】由题先解出z ,再利用z 来判断位置 【详解】Q (1)2i z +=,()()()2121111i z i i i i -∴===-++- 1z i ∴=+z ∴在复平面对应的点为()1,1,即在第一象限,故选A【点睛】本题考查复数的除法,复数的概念及几何意义,是基础题.3.在ABC ∆中,a = 1b =,3A π∠=,则B Ð等于( ) A .3π或23π B .3πC .6π或56πD .6π【答案】D 【解析】 【分析】已知两边及其中一边的对角,求另一边的对角,先由正弦定理求sin B ,再求B Ð. 【详解】由正弦定理sin sin a b A B =,可得π1sin sin 1sin 2b A B a ⨯===. 由b a <,可得B A ∠<∠,所以π6B ∠=.故选D. 【点睛】本题考查正弦定理的应用. 已知两边及其中一边的对角,由正弦定理求另一边的对角,要注意判断解的个数.4.已知函数()f x 满足()(2)f x f x =-,与函数|1|y x =-图象的交点为1122(,),(,),,(,)m m x y x y x y L ,则12m x x x +++L =( ) A .0 B .mC .4mD .2m【答案】B 【解析】 【分析】由题意知函数()y f x =的图象和函数1y x =-的图象都关于直线1x =对称,可知它们的交点也关于直线1x =对称,于此可得出12m x x x +++L 的值。

贵州省毕节地区2020年高二下数学期末达标检测试题含解析

贵州省毕节地区2020年高二下数学期末达标检测试题含解析

贵州省毕节地区2020年高二(下)数学期末达标检测试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意)1.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的k 的值为( )A .4B .5C .6D .72.从8名女生和4名男生中选出6名学生组成课外活动小组,则按性别分层抽样组成课外活动小组的概率为( )A .4284612C C CB .3384612C C C C .612612C A D .4284612A A A 3.设地球的半径为,地球上,两地都在北纬的纬度线上去,且其经度差为,则,两地的球面距离是( ) A .B .C .D .4.当(),1,1m n ∈-时,总有33sin sin m n n m -<-成立,则下列判断正确的是() A .m n >B .||||m n <C .m n <D .||||m n >5.内接于半径为R 的半圆且周长最大的矩形的边长为( ). A .2R 和32RB .45R 和75RC .5R 和165RD .55R 和455R6.设随机变量X 服从正态分布2(4,)N σ,若()0.4P X m >=,则(8)P X m >-=( ) A .0.6B .0.5C .0.4D .与σ的值有关7.把边长为a 的正ABC ∆沿BC 边上的高线AD 折成60o 的二面角,则点A 到BC 的距离是( ) A .aB .62a C .33a D .154a8..若直线1y =是曲线ln ay x x=+的一条切线,则实数a 的值为() A .1B .2C .3D .49.如表是某厂节能降耗技术改造后,在生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y2.53m4.5若根据如表提供的数据,用最小二乘法可求得y 对x 的回归直线方程是$0.70.35y x =+,则表中m 的值为( ) A .4B .4.5C .3D .3.510.已知x ,y 满足不等式组{2,2y xx y x ≤+≥≤则z="2x" +y 的最大值与最小值的比值为A .12B .43C .32D .211.2021年起,新高考科目设置采用“312++”模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论: ①样本中的女生更倾向于选历史; ②样本中的男生更倾向于选物理; ③样本中的男生和女生数量一样多;④样本中意向物理的学生数量多于意向历史的学生数量. 根据两幅条形图的信息,可以判断上述结论正确的有( )A .1个B .2个C .3个D .4个12.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形C .直角三角形D .以上三种情况都可能二、填空题(本题包括4个小题,每小题5分,共20分)13.ABC ∆中,1,2AB AB AC =⋅=u u u r u u u r,则tan ACB ∠的最大值为____________.14.已知函数()2ln 2f x mx x x =+-在定义域内存在单调递减区间,则实数m 的取值范围是______15.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线2222x y 1a b-=的离心率e >______.16.在斜三棱柱111ABC A B C -中,底面边长和侧棱长都为2,若1AA a =u u u v v,AB b =u u u v v AC c =u u uv v ,且1160BAA CAA ∠=∠=︒,则11AB BC ⋅u u u v u u u u v的值为________三、解答题(本题包括6个小题,共70分)17.(1)化简求值:222cos 12tan sin 44x x x ππ-⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭(2000cos40sin501++000sin20sin40cos20cos40-- 18.在直角坐标系中,已知圆C 的圆心坐标为()20,,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的参数方程为:1x ty t =-⎧⎨=+⎩(t 为参数).(1)求圆C 和直线l 的极坐标方程;(2)点P 的极坐标为12π⎛⎫⎪⎝⎭,,直线l 与圆C 相交于A ,B ,求PA PB +的值.19.(6分)已知复数1z 与21(2)8z i +-都是纯虚数,复数21z i =-,其中i 是虚数单位. (1)求复数1z ; (2)若复数z 满足12111z z z =+,求z. 20.(6分)(1)求过点()3,4且与两坐标轴截距相等的直线的方程; (2)已知直线0x y b -+=和圆2220x y x +-=相交,求b 的取值范围.21.(6分)在平面直角坐标系xOy 中,对于点00(,)P x y 、直线:0l ax by c ++=,我们称δ=为点00(,)P x y 到直线:0l ax by c ++=的方向距离.(1)设双曲线2214x y -=上的任意一点(,)P x y 到直线1:20l x y -=,2:20l x y +=的方向距离分别为12,δδ,求12δδ的值;(2)设点(,0)(,0)E t F t -、、到直线:cos 2sin 20l x y αα+-=的方向距离分别为12,ηη,试问是否存在实数t ,对任意的α都有121ηη=成立?说明理由;(3)已知直线:0l mx y n -+=和椭圆22221(0)x y a b a b+=>>,设椭圆E 的两个焦点12F F 、到直线l 的方向距离分别为12λλ、满足212b λλ>,且直线l 与x 轴的交点为A 、与y 轴的交点为B ,试比较||AB 的长与+a b 的大小.22.(8分)把四个半径为R 的小球放在桌面上,使下层三个,上层一个,两两相切,求上层小球最高处离桌面的距离.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.B 【解析】 【分析】模拟程序运行,依次计算可得所求结果 【详解】当4a =,3b =,2c =时,12S =<,2k =; 当5a =,4b =,3c =时,612S =<,3k =; 当6a =,5b =,4c =时,27124S =<,4k =;当7a =,6b =,5c =时,12S =>,5k =; 故选B 【点睛】本题考查程序运算的结果,考查运算能力,需注意1k k =+所在位置 2.A【解析】按性别分层抽样男生 女生各抽4人和2人;从8名女生中抽4人的方法为48C 种;,4名男生中抽2人的方法为24C 种;所以按性别分层抽样组成课外活动小组的概率为4284612.C C C 故选A 3.C【解析】 分析:设在北纬纬圆的圆心为,球心为,连结,根据地球纬度的定义,算出小圆半径,由两地经度差为,在中算出,从而得到,利用球面距离的公式即可得到两地球面的距离.详解:设在北纬纬圆的圆心为,球心为,连结,则平面, 在中,,同理,两地经度差为,, 在中,,由此可得是边长为的等边三角形,得,两地球面的距离是,故选C.点睛:本题考查地球上北纬圆上两点球的距离,着重考查了球面距离及相关计算,经纬度等基础知识,考查运算求解能力,考查空间想象能力,属于中档题. 4.C 【解析】 【分析】构造函数()()3sin 11f x x x x =+-<<,然后判断()f x 的单调性,然后即可判断,m n 的大小.【详解】令()()3sin 11f x x xx =+-<<,则()2cos 30f x x x '=+>所以()f x 在()1,1-上单调递增因为当(),1,1m n ∈-时,总有33sin sin m n n m -<-成立 所以当(),1,1m n ∈-时,()()f m f n < 所以m n < 故选:C 【点睛】解答本题的关键是要善于观察条件中式子的特点,然后构造出函数. 5.D 【解析】 【分析】作出图像,设矩形ABCD ,圆心为O ,AOB θ∠=,再根据三角函数关系表达矩形的长宽,进而列出周长的表达式,根据三角函数的性质求解即可. 【详解】如图所示:设矩形ABCD ,AOB θ∠=, 由题意可得矩形的长为2cos R θ,宽为sin R θ,故矩形的周长为()4cos 2sin 25R R θθθϕ+=+,其中,sin 55ϕϕ==. 故矩形的周长的最大值等于25此时,()sin 1θϕ+=.155θθ+=,再由22sin cos 1θθ+=可得cos 55θθ==故矩形的长为52cos 5R R θ=,宽为5sin 5RR θ=, 故选:D . 【点睛】本题主要考查了根据角度表达几何中长度的关系再求最值的问题,需要根据题意设角度,结合三角函数与图形的关系求出边长,再利用三角函数的性质求解.属于中档题. 6.A 【解析】分析:根据随机变量X 服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得(8)P X m >-,从而求出(8)P X m >-即可.详解:Q 随机变量X 服从正态分布()24,N σ,∴正态曲线的对称轴是4x =, Q ()0.4P X m >=,而m 与8m -关于4x =对称,由正态曲线的对称性得:()()80.4P X m P X m >=<-=,故()810.40.6P X m >-=-=. 故选:A.点睛:解决正态分布问题有三个关键点:(1)对称轴x =μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x =0. 7.D 【解析】 【分析】取BC 中点O ,连接,AO DO ,根据垂直关系可知60BDC ∠=o 且AD ⊥平面BCD ,通过三线合一和线面垂直的性质可得BC DO ⊥,BC AD ⊥,从而根据线面垂直的判定定理知BC ⊥平面AOD ,根据线面垂直性质知AO BC ⊥,即AO 为所求距离;在Rt AOD ∆中利用勾股定理求得结果. 【详解】取BC 中点O ,连接,AO DO ,如下图所示:AD Q 为BC 边上的高 CD AD ∴⊥,BD AD ⊥BDC ∴∠即为二面角的平面角,即60BDC ∠=o 且AD ⊥平面BCDABC ∆Q 为正三角形 CD BD ∴= BCD ∴∆为正三角形又O Q 为BC 中点 BC DO ∴⊥AD ⊥Q 平面BCD BC AD ∴⊥,AD DO ⊥ BC ∴⊥平面AOD又AO ⊂平面AOD AO BC ∴⊥AO ∴即为点A 到BC 的距离又4DO a =,2AD a =4AO a ∴== 本题正确选项:D 【点睛】本题考查立体几何中点到直线距离的求解,关键是能够通过垂直关系在立体图形中找到所求距离,涉及到线面垂直的判定定理和性质定理的应用,属于中档题. 8.A 【解析】 【分析】设切点()0,1x ,根据导数的几何意义,在切点处的导数是切点处切线的斜率,求a . 【详解】设切点()0,1x ,21a y x x'=-+ 00200ln 110ax x a x x ⎧+=⎪⎪⎨⎪-+=⎪⎩ ,解得011x a =⎧⎨=⎩ . 故选A. 【点睛】本题考查了已知切线方程求参数的问题,属于简单题型,这类问题的关键是设切点,利用切点既在切线又在曲线上,以及利用导数的几何意义共同求参数. 9.A 【解析】 由题意可得11(3+4+5+6)=4.5,(2.53 4.5)0.25 2.544x y m m ==+++=+,故样本中心为(4.5,0.25 2.5)m +。

2020年毕节地区名校数学高二第二学期期末调研试题含解析

2020年毕节地区名校数学高二第二学期期末调研试题含解析

2020年毕节地区名校数学高二第二学期期末调研试题一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏2.若函数()()2212f x ax a x =+-+在区间(],4-∞上为减函数,则a 的取值范围为()A .105a <≤B .105a ≤≤C .105a <<D .15a >3.设a =b =2log 15c =,则下列正确的是A .a b c <<B .b a c <<C .c b a <<D .b c a <<4.已知i 为虚数单位,z 41i i =+,则复数z 的虚部为( ) A .﹣2i B .2iC .2D .﹣2 5.已知()f x 的定义域为()0,∞+,()'f x 为()f x 的导函数,且满足()()'f x xf x <-,则不等式()()()2111f x x f x +>--的解集()A .()(),12,-∞-+∞UB .()1,+∞C .()1,2D .()2,+∞6.已知l 、m 、n 是空间三条直线,则下列命题正确的是( )A .若l // m ,l // n ,则m // nB .若l ⊥m ,l ⊥n ,则m // nC .若点A 、B 不在直线l 上,且到l 的距离相等,则直线AB // lD .若三条直线l 、m 、n 两两相交,则直线l 、m 、n 共面7.在数列{}n a 中,111,3n n a a a +==,则4a 等于( )A .9B .10C .27D .818.已知函数()y f x =是可导函数,且()'12f =,则()()011lim2x f x f x ∆→+∆-=∆( ) A .12 B .2 C .1D .1- 9.设离散型随机变量X 的概率分布列如表:则x 等于( )A .110B .15C .25D .12 10.已知函数()sin(2)3f x x π=+,将其图象向右平移(0)ϕϕ>个单位长度后得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为( )A .12πB.512π C.6π D .56π 11.设x ,y =z ,则x ,y ,z 的大小关系是( )A .x >y >zB .z >x >yC .y >z >xD .x >z >y12.已知函数(3)5,1()2,1a x x f x a x x-+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是 A .(0,3) B .(0,3] C .(0,2) D .(0,2]二、填空题(本题包括4个小题,每小题5分,共20分)13.设121i z i i-=++,则||z =______. 14.已知X 的分布列为设23Y X =+,则E (Y )的值为________15.直线1y = 与抛物线2:=C y x 围成的封闭图形的面积等于___________.16.已知一组数据从小到大排列为-1,0,4,x,6,15,且这组数据的中位数为5,则这组数据的众数为______.三、解答题(本题包括6个小题,共70分)17.已知函数()2f x x =-.(1)解不等式()()242f x f x -+<;(2)若()()232f x f x m m ++≥+对x ∈R 恒成立,求实数m 的取值范围. 18.如图,在四棱锥P —ABCD 中,底面ABCD 为平行四边形,∠ADC=45°,AD=AC=1,O 为AC 的中点,PO ⊥平面ABCD ,PO=1,M 为PD 的中点.(Ⅱ)设直线AM 与平面ABCD 所成的角为α,二面角M —AC —B 的大小为β,求sinα·cosβ的值.19.(6分)选修4-5:不等式选讲已知函数()1f x ax =-.(1)当2a =时,解不等式()1f x x >+;(2)若关于x 的不等式()()1f x f x m +-<-有实数解,求m 的取值范围.20.(6分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (Ⅰ)若抽取后又放回,抽3次.(ⅰ)分别求恰2次为红球的概率及抽全三种颜色球的概率;(ⅱ)求抽到红球次数η的数学期望及方差.(Ⅱ)若抽取后不放回,写出抽完红球所需次数ξ的分布列.21.(6分)设函数f (x )是增函数,对于任意x ,y ∈R 都有f (x+y )=f (x )+f (y ).(1)求f (0);(2)证明f (x )是奇函数;(3)解不等式f (x 2)—f (x )>f (3x ).22.(8分)某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。

2020年贵州省毕节地区数学高二下期末预测试题含解析

2020年贵州省毕节地区数学高二下期末预测试题含解析

2020年贵州省毕节地区数学高二下期末预测试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中既是奇函数又在区间(﹣∞,0)上单调递增的函数是( ) A .y =22x x -- B .y =x 2+1C .y =x13⎛⎫ ⎪⎝⎭D .y =1x【答案】A 【解析】 【分析】由函数的奇偶性的定义和常见函数的单调性,即可得到符合题意的函数. 【详解】对于A ,y =f (x )=2x ﹣2﹣x 定义域为R ,且f (﹣x )=﹣f (x ),可得f (x )为奇函数,当x <0时,由y =2x ,y =﹣2﹣x 递增,可得在区间(﹣∞,0)上f (x )单调递增,故A 正确; y =f (x )=x 2+1满足f (﹣x )=f (x ),可得f (x )为偶函数,故B 不满足条件; y =f (x )=(13)|x|满足f (﹣x )=f (x ),可得f (x )为偶函数,故C 不满足题意; y 1x=为奇函数,且在区间(﹣∞,0)上f (x )单调递减,故D 不满足题意. 故选:A . 【点睛】本题考查函数的奇偶性和单调性的判断,注意运用常见函数的奇偶性和单调性,考查判断能力,属于基础题.2.函数()()sin ln 2xf x x =+的部分图象可能是( )A .B .C .D .【答案】A 【解析】【分析】考查函数()y f x =的定义域、在()1,0-上的函数值符号,可得出正确选项. 【详解】对于函数()y f x =,2021x x +>⎧⎨+≠⎩,解得2x >-且1x ≠-, 该函数的定义域为()()2,11,---+∞,排除B 、D 选项.当10x -<<时,sin 0x <,122x <+<,则()ln 20x +>,此时,()()sin 0ln 2xf x x =<+,故选:A. 【点睛】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点、函数值符号进行判断,考查分析问题和解决问题的能力,属于中等题.3.已知集合P={x|x 2-2x ≥0},Q={x|1<x ≤2},则(∁R P )∩Q=( ) A .[)0,1 B .(]0,2 C .()1,2D .[]1,2【答案】C 【解析】 【分析】先化简集合A ,再求RP ,进而求()R P Q ⋂.【详解】x (x-2)≥0,解得:x≤0或x≥2,即P=(-∞,0]∪[2,+∞) 由题意得,RP =(0,2),∴()()1,2R P Q ⋂=,故选C.【点睛】本题考查的是有关集合的运算的问题,在解题的过程中,要先化简集合,明确集合的运算法则,进而求得结果.4.甲乙丙丁4名师范院校的大学生分配至3所学校实习,每所学校至少分配一名大学生,且甲、乙两人不能分配在同一所学校,则不同分配方法数为() A .30 B .42C .50D .58【答案】A 【解析】 【分析】根据题意将4人分成3组,再进行排列,两步完成. 【详解】第一步,将甲乙丙丁4名同学分成3组,甲、乙两人不在同一组,有5种分法第二步,将3组同学分配到3所学校,有336A =种分法所以共有5630⨯=种分配方法 故选:A 【点睛】解决分组分配问题的基本指导思想是先分组,后分配.5. “3a >”是“函数2()22f x x ax =--在区间(,2]-∞内单调递减”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也必要条件【答案】A 【解析】 【分析】利用二次函数的单调性可得a 的取值范围,再利用简易逻辑的判定方法即可得出. 【详解】函数f (x )=x 2﹣2ax ﹣2=(x ﹣a )2﹣a 2﹣2在区间(﹣∞,2]内单调递减, ∴2≤a .∴“a >3”是“函数f (x )=x 2﹣2ax ﹣2在区间(﹣∞,2]内单调递减”的充分非必要条件. 故选:A . 【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒ q ”为真,则p 是q 的充分条件. 2.等价法:利用p ⇒q 与非q ⇒非p , q ⇒ p 与非p ⇒非q , p ⇔ q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆ B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 6.已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】A 【解析】 【分析】“a >1”⇒“11a <”,“11a<”⇒“a >1或a <0”,由此能求出结果. 【详解】a ∈R ,则“a>1”⇒“11a<”, “11a<”⇒“a >1或a <0”, ∴“a >1”是“11a<”的充分非必要条件. 故选A . 【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.7.已知各项不为0的等差数列{}n a ,满足273110a a a --=,数列{}n b 是等比数列,且77b a =,则68b b = ( ) A .2 B .4 C .8 D .16【答案】B 【解析】根据等差数列的性质得:2311773112,0a a a a a a +=--= ,变为:2772a a = ,解得772,0a a == (舍去),所以772b a == ,因为数列{}n b 是等比数列,所以2268774b b b a === ,故选B.8.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为则三棱锥D ABC -体积的最大值为A .B .C .D .【答案】B 【解析】 【分析】 【详解】分析:作图,D 为MO 与球的交点,点M 为三角形ABC 的中心,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大,然后进行计算可得.详解:如图所示,点M 为三角形ABC 的中心,E 为AC 中点, 当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===2393ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 233BE ∴== Rt OMB ∴中,有22OM 2OB BM =-=DM OD OM 426∴=+=+=()max 19361833D ABC V -∴=⨯⨯=故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当DM ⊥平面ABC 时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到2BM 233BE ==,再由勾股定理得到OM ,进而得到结果,属于较难题型. 9.己知复数,若为纯虚数,则A .-1B .1C .D .【答案】B 【解析】 【分析】根据复数的除法运算和纯虚数的概念求得. 【详解】由已知得: ,所以 解得:故选B. 【点睛】本题考查复数的除法运算和纯虚数的概念,属于基础题.10.已知点P(x ,y)的坐标满足条件11350x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩那么点P 到直线3x -4y -13=0的距离的最小值为( ) A .2 B .1C .95D .115【答案】A 【解析】 【分析】由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P 到直线34130x y --=的最小值,即可求解. 【详解】由约束条件11350x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩作出可行域,如图所示,由图可知,当P 与(1,0)A 重合时,点P 到直线34130x y --=的距离最小为2223(4)d ==+-.故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.11.函数()()ln 2f x x x =+-的单调增区间为( ) A .()1,+∞ B .()1,2 C .(),3-∞ D .(),1-∞【答案】D 【解析】 【分析】先求出函数的定义域,然后求出函数的导函数,接着求当导函数大于零时,x 的取值范围,结合函数的定义域,最后写出单调增区间. 【详解】函数的定义域为{}|2x x <,()()'1ln 2()2x f x x x f x x-=+-⇒=-,当'()0f x >时,函数单调递增,所以有1022xx x->⇒>-或1x <,而函数的定义域为{}|2x x <,所以当1x <时,函数单调递增,故本题选D. 【点睛】本题考查了利用导数求函数单调增区间问题,解题的关系是结合定义域,正确求解导函数大于零这个不等式.12.若21)nx展开式中只有第四项的系数最大,则展开式中有理项的项数为() A .1 B .2C .3D .4【答案】D 【解析】 【分析】根据最大项系数可得n 的值,结合二项定理展开式的通项,即可得有理项及有理项的个数. 【详解】21nx ⎫⎪⎭展开式中只有第四项的系数最大, 所以6n =,则621x ⎫⎪⎭展开式通项为563216621rrr rrr T C C x x --+⎛⎫=⋅= ⎪⎝⎭, 因为06r ≤≤,所以当0,2,4,6r =时为有理项, 所以有理项共有4项,故选:D. 【点睛】本题考查了二项定理展开式系数的性质,二项定理展开式通项的应用,有理项的求法,属于基础题. 二、填空题:本题共4小题13.已知函数941x y a -=-(0a >且1a ≠)恒过定点(),A m n ,则log m n =__________. 【答案】12【解析】令指数90x -=,则:99413a -⨯-=, 据此可得定点的坐标为:()9,3, 则:919,3,log log 32m m n n ====. 14.如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BA 11A C 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所成角的余弦值为104,则线段BD 的长为_______.【答案】2【解析】 【分析】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,设(0,,2)(11)D t t -≤≤,用空间向量法求得t ,进一步求得BD. 【详解】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,如下图.31(0,0,0),(,,2),(0,1,0),(0,,2)(11)22E F B D t t --≤≤ 31(,,2),(0,1,2)22EF BD t ==+2(1)4102cos 5(1)4t EF BD EF BD t θ++⋅===⋅++ 解得t=1,所以22BD =,填22.【点睛】利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.15.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2=2y (0≤y≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的范围为 【答案】0<r≤1 【解析】 【分析】 【详解】设小球圆心(0,y 0) 抛物线上点(x ,y ) 点到圆心距离平方r 2=x 2+(y ﹣y 0)2=2y+(y ﹣y 0)2=y 2+2(1﹣y 0)y+y 02 若r 2最小值在(0,0)时取到,则小球触及杯底, 此二次函数对称轴在纵轴左边, 所以1﹣y 0≥0 所以0<y 0≤1 所以0<r≤1 故答案为0<r≤1点评:本题主要考查了抛物线的应用.考查了学生利用抛物线的基本知识解决实际问题的能力.16.在区间[35,-]上随机取一个实数x ,则事件“11()42x≤≤”发生的概率为____. 【答案】14【解析】 【详解】由1142x ⎛⎫≤≤ ⎪⎝⎭,得﹣2≤x≤0,由此利用几何概型概率计算公式能求出事件“1142x⎛⎫≤≤ ⎪⎝⎭”发生的概率. ∵1142x⎛⎫≤≤ ⎪⎝⎭,∴﹣2≤x≤0, ∵在区间[﹣3,5]上随机取一个实数x , ∴由几何概型概率计算公式得:事件“1142x⎛⎫≤≤ ⎪⎝⎭”发生的概率为p=0+25+3=14. 故答案为:14. 【点睛】本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.三、解答题:解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高二下学期期末数学模拟试卷一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.在区间[0,2]上随机取两个数,,则的概率是( ).A .B .C .D .2. “1x >”是“12log (1)0x +<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知ABC ∆中,2AB =,4B π=,6C π=,点P 是边BC 的中点,则AP BC ⋅u u u v u u u v等于( )A .1B .2C .3D .44.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .15.某班级有6名同学去报名参加校学生会的4项社团活动。

若甲,乙两位同学不参加同一社团,每个社团都有人参加,每个人只参加一个社团,则不同的报名方案数为 A .2160B .1320C .2400D .43206.函数2y ax a =+与(0)ay a x=≠在同一坐标系中的图象可能是( ) A . B .C .D .7.某班共有52人,现根据学生的学号,用系统抽样的方法抽取一个容量为4的样本.已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( ) A .10B .11C .12D .168.设p 、q 是两个命题,若()p q ⌝∨是真命题,那么( ) A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题9.已知函数()()213xx a x af x e+---=在区间()1,2上有最大值无最小值,则实数a 的取值范围( ) A .(),4-∞-B .[1,)-+∞C .()4,1--D .[]4,1--10.若动点(),P x y 与两定点(),0M a -,(),0N a 的连线的斜率之积为常数()0k ka ≠,则点P 的轨迹一定不可能...是 ( ) A .除,M N 两点外的圆 B .除,M N 两点外的椭圆 C .除,M N 两点外的双曲线D .除,M N 两点外的抛物线11.已知 0.30.3a =, 1.30.3b =,0.31.3c =,则它们的大小关系是 A .c a b >>B .c b a >>C .b c a >>D .a b c >>12.如图梯形ABCD 中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E ,F 分别是AB ,CD 的中点,将四边形ADFE 沿直线EF 进行翻折,给出四个结论:①DF⊥BC; ②BD⊥FC;③平面DBF⊥平面BFC ; ④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为( )A .1B .2C .3D .4二、填空题(本题包括4个小题,每小题5分,共20分)13.已知直线l 的普通方程为x+y+1=0,点P 是曲线3(x cos C y sin ααα⎧=⎪⎨=⎪⎩:为参数)上的任意一点,则点P 到直线l 的距离的最大值为______.14.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC,△ECA,△FAB,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.15.已知双曲线2214y x -=的两条渐近线分别与抛物线22(0)x py p =<的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为2,则p 的值为_______.16.记122331909090(90)90k k n nn n n n n X C C C C C =-+-+⋅⋅⋅+-+⋅⋅⋅-(n 为正奇数),则X 除以88的余数为______三、解答题(本题包括6个小题,共70分) 17.选修4-4:坐标系与参数方程点P 是曲线1C :22(2)4x y -+=上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90o 得到点Q ,设点Q 的轨迹为曲线2C . (1)求曲线1C ,2C 的极坐标方程; (2)射线3πθ=,(0ρ>)与曲线1C ,2C 分别交于,A B 两点,设定点(2,0)M ,求MAB ∆的面积.18.已知函数()ln xf x x=. (1)求函数()f x 的极值;(2)当0x e <<时,证明:()()f e x f e x +>-;(3)设函数()f x 的图象与直线y m =的两个交点分别为()11,A x y ,()22,B x y ,AB 的中点的横坐标为0x ,证明:()00f x '<.19.(6分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为32,且过点1(3,)2.设F 为椭圆的右焦点, ,A B 为椭圆上关于原点对称的两点,连结,AF BF 并延长,分别交椭圆于,C D 两点.(1)求椭圆的标准方程;(2)设直线,AB CD 的斜率分别为12,k k ,是否存在实数m ,使得21k mk =?若存在,求出实数m 的值;若不存在,请说明理由.20.(6分)在平面直角坐标系xOy 中,曲线M 的参数方程为23x 3t 23t y 3t⎧=⎪-⎪⎨⎪=⎪-⎩(t 为参数,且t >0),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=4cosθ. (1)将曲线M 的参数方程化为普通方程,并将曲线C 的极坐标方程化为直角坐标方程; (2)求曲线M 与曲线C 交点的极坐标(ρ≥0,0≤θ<2π). 21.(6分)已知函数()2ln f x x x x =+.(1)求()'f x ;(2)求函数()f x 的图像上的点P (1,1)处的切线方程.22.(8分)如图,已知三棱柱111ABC A B C -的侧棱与底面垂直12AA AB AC ===,AB AC ⊥,M N 、分别是1,CC BC 的中点.(1)求异面直线1AB 与BM 所成角的余弦值; (2)求二面角C AN M --的余弦值.参考答案一、单选题(本题包括12个小题,每小题35,共60分.每小题只有一个选项符合题意) 1.C 【解析】试题分析:由题意所有的基本事件满足,所研究的事件满足,画出可行域如图,总的区域面积是一个边长为2 的正方形,其面积为4,满足的区域的面积为,则的概率为考点:几何概型 2.A 【解析】 【分析】利用充分条件和必要条件的定义进行判断 【详解】解:当1x >时,12x +>,所以 1122log (1)log 210x +<=-<,当12log (1)0x +<时,1122log (1)0log 1x +<=,所以 11x +>,即0x >所以“1x >”是“12log (1)0x +<”的充分不必要条件故选:A 【点睛】此题考查充分条件,必要条件的应用,属于基础题 3.B 【解析】 【分析】利用正弦定理求出AC 的值,用基底AB AC u u u r u u u r 、表示AB AC AP 2+=u u u r u u u r u u u r ,BC AC AB =-u u ur u u u r u u u r ,则可以得到•AP BC u u u v u u u v的值.【详解】解:在ABC ∆中,由正弦定理sin sin sin a b cA B C==得, sin sin AB ACC B=,即2122=解得AC =因为AB AC AP 2+=u u u r u u u r u u u r ,BC AC AB =-u u u r u u u r u u u r ,所以()()()22AB AC 11AP BC AC AB AC AB 842222+•=•-=-=-=u u u r u u u ru u u r u u u r u u u r u u u r u u u r u u u r故选B. 【点睛】本题考查了正弦定理、向量分解、向量数量积等问题,解题的关键是要将目标向量转化为基向量,从而求解问题. 4.B 【解析】 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题. 5.B 【解析】 【分析】依题意,分(1,1,1,3)和(1,1,2,2)两组,先分组,后排列,最后求和即可. 【详解】依题意,6名同学可分为两组,第一组为(1,1,1,3),利用间接法,有314644()388C C A -⋅=种,第二组为(1,1,2,2),利用间接法,有2224644422()932C C C A A -⨯=, 所以分类计数原理,可得3889321320+=种,故选B. 【点睛】本题主要考查了排列、组合及简单的计数原理,着重考查了分类讨论思想和转化思想的应用,以及推理与运算能力,其中解答中合理分类,做到先分组后排列的方式是解答的关键. 6.C 【解析】 【分析】由二次函数2y ax a =+中一次项系数为0,我们易得函数2y ax a =+的图象关于y 轴对称,然后分当0a >时和0a <时两种情况,讨论函数2y ax a =+的图象与函数(0)ay a x=≠的图象位置、形状、顶点位置,可用排除法进行解答. 【详解】由函数2y ax a =+中一次项系数为0,我们易得函数2y ax a =+的图象关于y 轴对称,可排除D ;当0a <时,函数2y ax a =+的图象开口方向朝下,顶点(0,)a 点在x 轴下方,函数(0)ay a x=≠的图象位于第二、四象限,可排除B ;0a >时,函数2y ax a =+的图象开口方向朝上,顶点(0,)a 点在x 轴上方,可排除A ;故选C . 【点睛】本题考查的知识点是函数的表示方法(图象法),熟练掌握二次函数及反比例函数图象形状与系数的关系是解答本题的关键. 7.D 【解析】 【分析】由题计算出抽样的间距为13,由此得解. 【详解】由题可得,系统抽样的间距为13, 则31316+=在样本中. 故选D 【点睛】本题主要考查了系统抽样知识,属于基础题. 8.C 【解析】 【分析】先判断出p q ∨是假命题,从而判断出p,q 的真假即可. 【详解】若()p q ⌝∨是真命题,则p q ∨是假命题, 则p,q 均为假命题,故选D. 【点睛】该题考查的是有关复合命题的真值表的问题,在解题的过程中,首先需要利用()p q ⌝∨是真命题,得到p q ∨是假命题,根据“或”形式的复合命题真值表求得结果.9.C 【解析】 【分析】先求导,得到函数的单调区间,函数在区间()1,2上有最大值无最小值,即导数的零点在()1,2上,计算得到答案. 【详解】()()()()221314'x xx a x a x a x f x f x e e +----+++=⇒=设()2()14g x x a x =-+++函数在区间()1,2上有最大值无最小值即()g x 在()1,2有零点,且满足:(1)04(2)01g a g a >⇒>-⎧⎨<⇒<-⎩即()4,1a ∈-- 故答案选C 【点睛】本题考查了函数的最大值和最小值问题,将最值问题转为二次函数的零点问题是解题的关键. 10.D 【解析】 【分析】根据题意可分别表示出动点P 与两定点的连线的斜率,根据其之积为常数,求得x 和y 的关系式,对k 的范围进行分类讨论,分别讨论0,0k k ><且1k ≠-和1k =-时,可推断出点P 的轨迹. 【详解】因为动点(),P x y 与两定点(),0M a -,(),0N a 的连线的斜率之积为常数k , 所以y yk x a x a⋅=+-,整理得222y kx ka -=-, 当0k >时,方程的轨迹为双曲线;当k 0<时,且1k ≠-方程的轨迹为椭圆; 当1k =-时,点F 的轨迹为圆,∴抛物线的标准方程中,x 或y 的指数必有一个是1 ,故P 点的轨迹一定不可能是抛物线,故选D . 【点睛】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00x g x y h x ⎧=⎪⎨=⎪⎩代入()00,0f x y =.本题就是利用方法①求动点P 的轨迹方程的. 11.A 【解析】由指数函数0.3xy =的性质可得 1.30.300.30.31<<<,而0.31.31>,因此0.30.3 1.31.30.30.3>>,即c a b >>。

相关文档
最新文档