测量误差的分类以及解决方法
全站仪在测量中的常见问题及解决方法

全站仪在测量中的常见问题及解决方法全站仪是一种高精度的测量仪器,在土木工程、建筑工程等领域中被广泛应用。
然而,在实际的测量过程中,常常会出现一些问题,影响测量的准确性和效率。
本文将探讨全站仪在测量中的常见问题,并提供相应的解决方法。
一、误差校正问题全站仪是通过激光或电磁波进行测量,因此在测量中会存在一定的误差。
常见的误差有仪器本身的误差、环境因素引起的误差以及操作人员造成的误差。
解决方法:1. 仪器校准:在使用全站仪前,需要进行仪器的准确校准。
校准包括水平、垂直、角度等方面的校准。
可以通过参考标尺、挂线、圆心定位等方法进行校准,确保测量的准确性。
2. 环境调整:在测量过程中,要注意环境因素的影响。
如大风、强光、高温等都可能对测量结果产生影响。
可以采用遮光罩、避风屏等措施来调整环境,保证测量的稳定性。
3. 操作规范:操作人员在使用全站仪时,必须遵守操作规范。
例如,避免手抖、稳定全站仪的姿势、减少触碰仪器的干扰等。
这都可以减少人为误差的发生。
二、数据处理问题在测量完成后,需要对采集的数据进行处理和分析。
数据处理过程中可能会出现数据异常、计算错误等问题,影响结果的准确性。
解决方法:1. 数据筛选:在进行数据处理前,要对采集的数据进行筛选。
排除异常数据,如测量时仪器发生故障、采集过程中人为误操作等导致的异常数据。
2. 计算校对:在进行数据计算时,要仔细核对计算公式和参数的准确性。
避免计算错误,确保结果的正确性。
3. 多次测量取平均值:为了提高数据的准确性,可以进行多次测量并取平均值。
多次测量可以降低误差的影响,提高结果的可信度。
三、设备维护问题全站仪是一种高精度的测量设备,需要进行定期的维护和保养。
如果设备长期不维护,可能会导致仪器故障、精度下降等问题。
解决方法:1. 定期维护:要定期对全站仪进行维护和保养,包括仪器的清洁、校准以及检查仪器的各项功能是否正常。
可以参考仪器的使用手册进行维护,也可以委托专业的维修人员进行维护。
导致试验机测量结果产生误差的原因及解决方法

导致试验机测量结果产生误差的原因及解决方法
一、仪器本身误差:
试验机作为一种精密仪器,可能存在固有的仪器误差,如传感器的非
线性、灵敏度不一致、仪器漂移等。
解决方法:
1.校正仪器:定期校正试验机的传感器,确保其准确度和稳定性。
2.选择合适的仪器:在购买试验机时,应选择品质可靠、准确度高的
仪器。
二、环境因素的影响:
环境因素如温度、湿度、振动等都可能对试验机的测量结果产生影响。
解决方法:
1.控制环境条件:在进行测量时,要尽量控制环境的稳定性,并确保
温度、湿度等参数在合理范围内。
2.考虑环境因素:在进行数据分析时要考虑环境因素的影响,进行数
据的修正和调整。
解决方法:
1.提高操作者的技术水平:通过培训和学习,提高操作者的实验技能
和仪器操作水平。
四、样本本身特性:
样本本身的性质也会对试验机的测量结果产生一定的影响,如样本不
均匀、表面粗糙等。
解决方法:
1.样本的准备:在进行测量之前,对样本进行充分的准备和处理,确
保样本的均匀性和表面的光滑度。
2.选择适当的测量方法:针对不同样本的特性,选择适合的测量方法,提高测量结果的准确度。
施工中的测量误差问题

施工中的测量误差问题在施工过程中,测量误差是一个常见的问题。
测量误差可能会导致工程的质量和安全问题,因此必须引起重视。
本文将探讨施工中的测量误差问题,并提出相应的解决方案。
一、测量误差的原因1.仪器精度:测量仪器的精度直接影响测量结果的准确度。
如果仪器的精度不够高,测量结果就会产生误差。
2.人为因素:测量操作者的技术水平和经验也会对测量结果产生影响。
不正确的测量方法或不合理的操作可能导致误差的出现。
3.环境因素:测量时环境的变化,如温度、湿度等,也会对测量结果产生一定的影响。
二、解决测量误差的方法1.选用合适的测量仪器:在施工前,需要对测量仪器进行校准和检测。
确保测量仪器的精度和准确性以及适合该工程的测量要求。
2.提高操作者的技术水平:进行专业培训,提高操作者的测量技术和操作能力,确保测量操作的准确性和一致性。
3.制定科学的测量方法:根据实际工程需要,制定科学合理的测量方法和步骤,确保测量过程的准确性和可重复性。
4.在测量过程中避免环境影响:尽量选择合适的测量时间和环境,避免测量时环境因素对测量结果造成干扰。
三、测量误差的影响测量误差可能会对工程的质量和安全产生重大影响。
例如,如果在土建测量中产生误差,可能导致结构不稳定或者容易出现裂缝;如果在电气测量中产生误差,可能导致电气设备的故障和事故发生。
因此,合理控制测量误差对工程的质量和安全至关重要。
四、测量误差的管理1.建立科学的质量管理体系:通过建立科学合理的质量管理体系,对施工过程中的测量进行全面管理,严格控制误差的发生。
2.定期检查和校准测量仪器:对使用的测量仪器进行定期检查和校准,确保其精度和准确性符合要求。
3.重视质量检测:在施工过程中进行重点质量检测,及时发现和纠正测量误差,确保工程质量的稳定和可靠。
4.加强沟通与协调:施工过程中,测量与其他工序之间的沟通与协调非常重要。
各个工序之间要密切合作,确保测量数据的准确传递和正确应用。
结论:在施工中,合理控制测量误差是保证工程质量和安全的重要措施之一。
数据分析中常见的偏差及其解决方法

数据分析中常见的偏差及其解决方法在数据分析过程中,我们经常会遇到各种偏差,这些偏差可能会导致我们对数据的理解有误。
因此,了解并解决这些常见的偏差是非常重要的。
本文将介绍数据分析中常见的偏差,并提供相应的解决方法。
一、选择偏差选择偏差是指由于样本选择不当导致结果出现系统性偏差的情况。
在数据分析中,如果样本选择不具有代表性,结果就会产生偏差。
解决选择偏差的方法包括:1. 随机抽样:通过随机选择样本,可以减小选择偏差的影响。
随机抽样能够确保每个个体被选择的概率相等,从而使样本能够更好地代表总体。
2. 控制变量:为了降低选择偏差的影响,需要控制并考虑样本选择的相关变量。
通过将其他相关变量保持不变,我们可以更好地理解样本选择对结果的影响。
二、测量偏差测量偏差指的是由于测量工具的不准确性或者测量方法的限制而导致的数据误差。
为了减小测量偏差的影响,我们可以采取以下解决方法:1. 校准测量工具:校准测量工具可以确保测量结果更加准确。
通过定期校准仪器,并检查其准确性,可以减少测量偏差的影响。
2. 多次测量取平均值:由于单次测量可能会出现偏差,我们可以通过多次测量取平均值的方法来减小测量偏差。
多次测量可以平衡测量误差,提供更准确的结果。
三、抽样偏差抽样偏差是指由于样本选择的方式或者样本数据的不完整性导致结果出现的偏差。
为了减小抽样偏差的影响,我们可以采取以下解决方法:1. 增加样本容量:通过增加样本容量,可以减小抽样偏差的影响。
更大的样本容量可以提供更准确的结果,使得样本更好地代表总体。
2. 考虑特殊抽样方法:对于特定领域的数据分析,我们可以考虑使用特殊的抽样方法来减小抽样偏差。
例如,对于分布不均匀的数据,可以使用分层抽样方法来确保样本更具代表性。
四、确认偏差确认偏差是指由于在数据分析过程中对某种观点或假设持有偏见而导致结果的偏差。
为了减小确认偏差的影响,我们可以采取以下解决方法:1. 使用多个分析方法:通过使用多种不同的分析方法,可以减小确认偏差的影响。
测量工作中常见的问题及其解决方法

测量工作中常见的问题及其解决方法测量工作是工业、建筑、交通、环保等领域中重要的一环,负责保障生产和生活中各项数据的准确性。
然而,在测量工作中,常常会遇到一些问题,如误差、精度不够、设备失灵等等,这些问题如果不及时解决,将会给生产、生活带来不可估量的危害。
因此,本文将围绕着测量工作中常见问题及其解决方法展开讨论。
一、测量误差测量误差是测量工作中最常见、最严重的问题之一。
测量误差是指测量结果与真实值之间的差距,这个差距可能由于一些不可控因素造成,比如测量设备的精度不够,环境干扰等。
解决测量误差的方法很多,比如:1.提高测量设备的精度测量设备的精度直接关系到测量误差的大小,如果设备的精度不够,那么测量误差就会增加。
因此,我们可以通过更新测量设备,提高其精度的方式来减小误差。
2.消除环境干扰环境中的多种因素,如温度、湿度、磁场等都会影响测量结果的准确性。
所以,需要对环境干扰进行分析和消除。
3.加强人员培训不同的操作者对同一设备进行测量时,误差大小有较大区别。
加强人员培训,提高操作者的专业技能,有助于减小误差大小。
二、精度不够测量精度不够会对后续的工作产生严重的影响,进而影响到工程的质量和进度。
解决这个问题的方法主要有以下几种:1.对测量对象进行分类依据测量对象不同的特殊性质,将其分为不同的类别,然后采用不同的测量方法和设备进行测量,这样可以提高测量精度。
2.选择好的测量设备不同设备与测量对象的匹配度不同,需要根据测量对象的特征和测量范围选择精度较高的设备。
如果这样还无法满足特殊测量需要的精度,可以参考测量对象的特征进行测量设备的改造或者定制。
3.使用补偿作法例如,测量体积时,在计算体积时,可以将高度测量误差在计算中进行补偿。
这样可以有效提高测量精度。
三、设备失灵设备失灵是测量工作的普遍问题之一。
比如,设备老化、机械故障、电路故障都会造成设备失灵。
在这种情况下需要注意:1.加强设备维护及时对设备进行保养保养,以确保设备始终工作在良好的状态下。
(整理)测量误差的分类以及解决方法

测量误差的分类以及解决方法1、系统误差能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。
系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。
由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。
系统误差越小,测量结果的准确度就越高。
2、偶然误差偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。
产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。
偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。
系统误差和偶然误差是两类性质完全不同的误差。
系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。
3、疏失误差疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。
显然,凡是含有疏失误差的测量结果都是应该摈弃的。
解决方法:仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。
消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。
必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。
所以应根据测量的要求和两者对测量结果的影响程度,选择消除方法。
一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。
1、系统误差的消除方法(1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。
(2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。
如何判断测量误差并进行校正
如何判断测量误差并进行校正测量是我们生活中常见的一项活动,无论是在日常生活中还是在科学研究和工程实践中,测量都扮演着重要的角色。
然而,测量过程中难免会出现测量误差,这给我们带来了困惑和不确定性。
因此,我们需要了解如何判断测量误差并进行校正。
首先,我们需要明确什么是测量误差。
测量误差是指测量结果与真实值之间的差异。
在正常的测量过程中,由于诸多因素的影响,比如仪器的精度、环境因素、操作者的技术水平等,测量结果往往会存在偏差。
这种偏差就是测量误差。
接下来,我们需要了解如何判断测量误差的大小。
一种常见的方法是重复测量法。
重复测量法是通过多次对同一物理量进行测量,然后计算测量结果之间的差异来判断测量误差的大小。
如果测量结果之间的差异很小,则说明测量误差较小;反之,如果差异较大,则说明测量误差较大。
除了重复测量法外,还有一种常见的方法是比较法。
比较法是通过与已知准确值进行比较来判断测量结果的准确性。
例如,我们可以使用一个精确的标准器进行测量,然后将测量结果与标准器的读数进行比较,进而判断误差的大小。
这种方法适用于那些有已知准确值的物理量的测量。
在判断了测量误差的大小后,我们需要进行校正。
校正是指对测量结果进行修正,使其更接近真实值。
校正的方法有多种,下面介绍两种常见的校正方法。
一种是零点校正法。
这种方法适用于那些存在零点偏差的测量。
零点偏差是指测量仪器在零点位置上的指示值与真实值之间的差异。
为了进行校正,我们需要使用已知准确值的物理量作为参照,然后通过调整仪器的零点位置,使其指示值与真实值一致。
另一种是比例校正法。
这种方法适用于那些存在比例偏差的测量。
比例偏差是指测量仪器的比例关系与真实值之间的差异。
为了进行校正,我们需要使用已知准确值的物理量作为参照,然后通过调整仪器的比例关系,使其与真实值一致。
在进行校正时,我们还需要考虑不确定度。
不确定度是对测量结果的不确定性的度量。
在校正过程中,我们需要估计和控制不确定度,以提高测量结果的准确性。
小学物理实验教学中的误差分析及处理方法
小学物理实验教学中的误差分析及处理方法在小学物理实验教学中,误差是不可避免的。
误差可以分为系统误差和随机误差。
系统误差是由实验仪器、实验环境或实验操作等因素引起的,导致测量结果整体偏离真实值的误差。
处理系统误差的方法包括:
仪器校准:确保实验仪器的准确性和稳定性。
可以定期进行校准,并记录仪器的校准日期。
检查实验环境:确保实验环境符合实验要求,尽量减少外界因素对实验结果的影响。
注意实验操作:遵循实验步骤和要求,注意操作细节,减少人为误差的产生。
随机误差是由测量本身的不确定性引起的,使得多次测量结果存在变动的误差。
处理随机误差的方法包括:
多次测量:进行多次测量,求平均值可以减小随机误差的影响。
交叉验证:使用不同的测量方法或不同的测量仪器进行相同或类似的测量,将测量结果进行比较,以减小随机误差的影响。
数据分析:对测量数据进行统计分析,计算测量数据的标准差、平均偏差等指标,以评估测量结果的准确性和可靠性。
除了上述方法,还可以采用其他有效的处理方法,如使用合适的图表和图像展示数据,进行误差传递分析等。
需要注意的是,在小学物理实验教学中,鼓励学生养成严谨的实验态度,重视实验过程中的观察和记录,培养他们对误差的认识和处理能力。
同时,教师也应该通过实例和练习,引导学生正确理解和应用误差分析及处理方法。
测绘技术中的常见误差及解决方法
测绘技术中的常见误差及解决方法导言测绘技术是一门关于地理空间数据采集、处理和分析的学科,广泛应用于土地利用规划、基础设施建设和自然资源管理等领域。
然而,在测绘过程中,常常会出现一些误差,影响测绘结果的准确性和可靠性。
本文将探讨测绘技术中的常见误差及解决方法。
常见误差一:人为操作误差人为操作误差是测绘过程中最常见的误差之一。
例如,操作员不准确地操作测量仪器或工具,或者存在主观判断和个人经验的干扰,都可能导致误差的产生。
为了解决人为操作误差,我们可以采取以下措施:1. 培训和提高操作员的技能水平:通过培训和教育,提高操作员的技能和专业知识水平,减少操作误差的发生。
2. 标准化操作过程:建立统一的操作规范和流程,明确各项操作步骤和要求,降低主观操作的干扰。
3. 引入自动化和数字化技术:利用现代科技手段,尽可能减少人为操作的介入,降低操作误差的概率。
常见误差二:仪器误差仪器误差是另一个常见的测绘误差来源。
测量仪器的不准确性和精度限制了测绘数据的质量。
为了解决仪器误差,我们可以采取以下措施:1. 定期校准仪器:校准仪器是消除仪器误差的关键一步。
定期检验和校准测量仪器,确保其准确性和可靠性。
2. 选择合适的测量仪器:不同的测量任务有不同的仪器要求。
根据实际需要,选择适合的仪器,提高测量的准确性。
3. 实施多次测量取平均值:多次测量取平均值可以减小仪器误差对结果的影响。
通过重复测量并取平均值,减少仪器误差的影响。
常见误差三:环境条件误差环境条件误差是指测量过程中环境条件的变化导致的误差。
例如,温度、湿度、大气压等因素的变化影响了测量数据的精确性。
为了解决环境条件误差,我们可以采取以下措施:1. 控制环境条件:在测量过程中,尽量控制环境条件的波动范围。
例如,可以在恒温室中进行测量,减小温度变化的影响。
2. 记录环境参数:测量过程中,记录并监测环境参数的变化。
在数据处理过程中,对环境参数进行校正和修正,以减小环境条件误差的影响。
水准测量方法中的常见问题与解决技巧
水准测量方法中的常见问题与解决技巧水准测量是测量高程的一种重要方法,广泛应用于土木工程、建筑工程、地质勘探等领域。
然而,在实际的测量过程中,常常会遇到各种问题,如测量精度不高、设备故障等。
本文将以水准测量中常见问题为切入点,介绍解决技巧,帮助读者更好地进行水准测量。
一、测距误差的导致在水准测量中,测距误差是一种常见问题,常常由以下几个方面引起。
1.设备精度问题:首先,测距误差可能与设备的精度有关。
如果使用的水准仪或测距设备不够精密,测量结果就会产生误差。
解决这个问题的方法是选择精度高的设备,并进行定期的校准和维护。
2.测量环境问题:测距误差还可能受到测量环境的影响。
例如,存在较强的风力或地面震动可能会导致仪器晃动,从而影响测距结果。
解决这个问题的方法是选择较为稳定的测量环境,并尽量减少外界干扰。
3.人为操作误差:除了设备和环境因素外,测距误差还可能由于人为操作不当引起。
例如,操作水准仪或测距设备时没有保持水平,或没有准确读取刻度等。
解决这个问题的方法是提高操作技巧,并严格按照操作规程进行测量。
二、高程放样误差的原因与对策在水准测量中,高程放样误差也是一个常见的问题。
以下是一些可能引起高程放样误差的原因以及相应的对策。
1.放样仪器精度问题:高程放样误差可能与放样仪器的精度有关。
如果使用的放样仪器不够精密,测量结果就会产生误差。
解决这个问题的方法是选择精度高的放样仪器,并进行定期的校准和维护。
2.传感器漂移问题:放样仪器中的传感器可能存在漂移问题,导致高程放样结果不准确。
解决这个问题的方法是在使用前进行传感器校准,并定期检查传感器的工作状态。
3.测量过程中顶杆倾斜:在进行高程放样时,顶杆的倾斜可能导致放样结果不准确。
解决这个问题的方法是使用水平仪来检查顶杆的水平度,并进行必要的调整。
三、数据处理中的问题与技巧在水准测量中,数据处理是一个不可忽视的环节。
以下是一些可能出现的问题以及相应的处理技巧。
1.数据传输错误:在数据传输过程中,可能会出现误码、断码等问题,导致传输的数据不准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量误差的分类以及解决方法1、系统误差能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。
系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。
由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。
系统误差越小,测量结果的准确度就越高。
2、偶然误差偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。
产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。
偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。
系统误差和偶然误差是两类性质完全不同的误差。
系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。
3、疏失误差疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。
显然,凡是含有疏失误差的测量结果都是应该摈弃的。
解决方法:仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。
消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。
必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。
所以应根据测量的要求和两者对测量结果的影响程度,选择消除方法。
一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。
1、系统误差的消除方法(1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。
(2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。
采用特殊的测量方法如正负误差补偿法、替代法等。
例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。
在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。
2、偶然误差的消除方法消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。
根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。
所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。
.容:测量分析系统在测试数据分析中的应用周群波[1]王舒[2](杭州鸿雁电器有限公司杭州310012)摘要通过对测量数据产生偏差的原因进行分析,有针对性地描述了测量分析系统(MSA)在测试数据分析中的具体应用情况,说明MSA的应用可以减少实验室在仪器设备、人员操作、环境、方法以及应样品的差异造成的测试结果的偏差,从而有效提高实验室的检测能力和检测精度。
关键词误差测量系统分析应用1 引言在一般实验室中,检测人员对得出的实验数据的处理通常是记录下来,然后跟标准中的要求进行比较得出一个合格与否的结论。
而所使用的设备和测量仪器的好坏仅依靠一年一次的校准、检定或者定期的期间核查来做为判定依据,这样就可能无法保证实验数据的可靠性,其所代表的产品批次的质量也不能得到完全的证实。
从而浪费了大量的实验数据极其所包含的大量信息。
而如果我们能应用测量系统分析(MSA),也就是通过使用一些合适的统计技术对这些数据进行分析,就可以减少因设备引起的误差,并得到测试中所隐含的信息,从而大大提高测试数据的可靠性。
2 测试数据偏差分析对测试过程而言,产生测试数据偏差的因素一般有三种:随机误差、系统误差和测试设备本身随时间而产生的偏倚。
随机误差指在对同一测量的多次测量中,受偶然因素影响而以不可预知的方式变化的误差,它由设备的精度决定。
系统误差指在对同一测量的多次测量中,它保持不变或按某种规律而变化的误差,是除测量仪器精度以外的其他测量系统的因素所造成的。
我们平时所说的产品质量特性的测试结果就是该产品由于受到随机误差和系统误差的综合影响而表现出质量的差异和波动。
偏倚是由测试设备产生的另一种误差,指设备本身产生变化而引起的测量值与真实值之间的不一致。
也就是说随时间变化设备的同一数据产生了漂移。
针对上述三种因素,我们可以应用不同的测量统计分析技术来消除混沌的和不合理的误差来源,现分述如下:2.1 随机误差随机误差通常用重复性变差(EV)表示,即由一个评价人使用相同的测量仪器对同一个样品上同一特征进行多次测试所得到的测量变差;它是设备本身所固有的,也叫设备变差。
重复性产生的变差是随机的,因此所测得数据是服从正态分布的,可以用EXCEL中提供的统计函数AVERAGE计算数据组的均值,用函数STDEV计算数据组的偏差,根据均值和偏差得出测量值的上下限值。
将新测得的数值加入到以往的数据组中进行计算。
看测得的数值是否在上下限即统计容许区间内就可判断数据的正确性及可靠性即设备精度是否可靠。
实验室中对设备的期间核查就可应用这种方法来进行判断。
例如由同一个检测人员定期用同一把数显卡尺对一个基准件测量其尺寸,测得一组n=12个数据:5.99、5.98、5.98、5.99、6.00、6.01、6.00、6.01、6.02、6.00、5.99、6.01,用AVERAGE计算数据组的均值为 5.9983,STDEV 计算数据组的偏差为0.0127,取1-a=0.95的容许区间即k(12,0.95,0.95)=2.12,可计算出上下区间Li=6.0008-2.12×0.0116=5.9714、Ls=6.0008+2.12×0.0116=6.0252,由此可见这组数据均是落在区间内的,测得的数据是可信任的。
2.2 系统误差系统误差用再现性变差(AV)表示,指不同的评价人使用相同的测量仪器对同一个样品上同一特征,进行测量所得的平均值的变差;也叫评价人变差。
在再现性的计算中包括了重复性。
从更广的定义上,再现性不仅可以用来判断因评价人的不同而导致结果的不同程度,同时还可以判断因:仪器设备、试验方法、试验室及环境(温度、湿度)的不同,即实验室与实验室的差别,而导致结果的不同程度。
可用于外部和内部的比对试验以及作为试验方法、环境等改进的依据。
我们在进行产品质量分析,根据测试结果所得到的数据,在分析哪个或哪几个因素对质量特性的差异影响显著时,需要用方差分析的方法将两种误差分离后再进行比较。
为减少计算量,一般利用EXCEL 中工具栏提供的数据分析项就可直接得出结果。
以下是单因素方差分析的具体计算方法:令:R=全部数据的平方和;Q=各组数据之和的平方除于本组数据个数n后再相加;P=全部数据之和的平方除于总的数据个数N。
于是:总方差S总=R-P随机误差S e=R-Q;系统误差S A=S总-S e= Q-P;统计量:MS A=S A/(组数-1)= Q-P/(组数-1);M S e=S e/(总的数据个数-组数)= R-Q/(总的数据个数-组数);F= MS A/ M S e=[ Q-P/(组数-1)]/ [R-Q/(总的数据个数-组数)]统计量F服从自由度为[(组数-1),(总的数据个数-组数)]的F分布,若计算的F值大于某一临界值F a可认为系统误差的影响是显著的。
一般以a=0.05做为显著性判断的临界值,a=0.01为特别显著。
一般用GRR来表示量具的重复性和再现性。
也就是说,GRR值等于系统内部变差和系统之间变差的和即GRR=[(AV)2+(EV)2]0.5.通常用%GRR来判断测量系统整体的可接受程度,%GRR <10%表示测量系统可接受, %GRR>30%表示测量系统不可接受。
%GRR=100[GRR/TV]=100 GRR/ [(GRR)2+(PV)2]0.5,其中TV为总变差,PV为样品特征值的变差由样品特征值平均值的极差(RP)乘以一个常数所决定。
2.3 偏倚偏倚(通常被称为“准确度”)指对相同样品上同一特征值与真值(参考值)的差异。
偏倚等于测量的平均值减去参考值。
造成过大的偏倚的可能原因有:仪器需要校准;仪器、设备或夹具磨损;基准的磨损或损坏,基准偏差;不适当的校准或使用基准设定;仪器质量不良;线性误差;使用错误量具;不同的测量方法;测量的特性不对;环境(温度、湿度等);变形(量具或试样)等。
得出一组偏倚值,可以按区间的计算方法算出偏倚值附近的1-a置信区间,若0落在置信区间内,则偏倚在这a水准上是可接受的(一般采用95%的置信度)。
偏倚不可接受时,应对测量系统进行仔细检查,找出原因加以解决。
如果测量系统的偏倚不等于零。
若有可能,应该采用硬件修正法、软件修正法或同时使用两种方法对量具进行重新校准以达到零偏倚。
如调整仪器零位和/或给设备添加修正值表对测量值进行修正。
3 结束语针对产生误差的不同原因,用不同的方法对测量数据进行整合统计分析,就可根据分析结论,从人、机、料、法、环各个环节对测量系统进行控制加以改进。
对复杂的或不可重复的测量系统,还可以进一步用稳定性研究和变差研究来进行分析,例如发动机或变速箱动力计试验等。
当然,在应用测量分析系统前首先要知道使用什么样的数据是重要的,要确定该系统要具备哪些可被接受的统计特征,否则就不能确定适当的统计特性,不能正确使用测量系统分析。
把测量系统分析(MSA)应用到实验室测试数据分析过程中,减少实验室在仪器设备、人员操作、环境、方法以及应样品的差异造成的测试结果的偏差,提高实验室的检测能力和检测精度,可以将产品的质量控制由事后检验提高到进行事先预防的过程控制,对推进质量管理,具有非常重要的意义。