气动机械手关节结构设计及运动学仿真分析毕业论文

合集下载

气动机械手 毕业设计

气动机械手 毕业设计

气动机械手毕业设计气动机械手毕业设计随着科技的不断进步,机器人技术在工业领域的应用越来越广泛。

其中,气动机械手作为一种重要的机器人类型,具有灵活、高效、精准的特点,被广泛应用于生产线上的装配、搬运、喷涂等工作。

本文将探讨气动机械手的设计与优化,以及其在工业生产中的应用前景。

一、气动机械手的设计与优化1.1 气动机械手的结构与原理气动机械手主要由气动执行器、传动机构、控制系统和机械结构等组成。

其中,气动执行器是实现机械手运动的关键部件,常用的气动执行器包括气缸和气动马达。

传动机构通过传递气动能量,将气动执行器的运动传递给机械结构,实现机械手的动作。

1.2 气动机械手的设计要点在气动机械手的设计过程中,需要考虑以下几个要点:首先,根据实际应用需求确定机械手的工作范围、负载能力和精度要求。

不同的应用场景对机械手的要求不同,因此需要根据具体情况来确定设计参数。

其次,选择合适的气动执行器和传动机构。

气缸和气动马达具有不同的特点,需要根据机械手的工作特点来选择适合的气动执行器。

传动机构的设计也需要考虑传递效率、运动平稳性等因素。

最后,进行机械结构的设计与优化。

机械结构的设计要考虑刚度、稳定性、重量等因素,通过优化设计,提高机械手的工作效率和精度。

二、气动机械手在工业生产中的应用前景2.1 气动机械手的优势相比于其他类型的机械手,气动机械手具有以下几个优势:首先,气动机械手具有较高的工作速度和响应速度。

由于气动执行器的特点,气动机械手能够快速完成各种动作,提高生产效率。

其次,气动机械手具有较高的负载能力。

气动执行器能够提供较大的推力和扭矩,适合于承载较重的物体。

最后,气动机械手具有较低的成本。

相比于电动机械手,气动机械手的成本较低,适合于中小型企业的应用。

2.2 气动机械手的应用案例气动机械手在工业生产中有着广泛的应用。

以汽车制造业为例,气动机械手可以用于汽车零部件的装配、焊接和喷涂等工作。

在电子行业,气动机械手可以用于电子产品的组装和测试。

机械手设计的毕业论文

机械手设计的毕业论文

机械手设计的毕业论文机械手设计的毕业论文在现代工业领域,机械手作为一种重要的自动化设备,被广泛应用于生产线上的各个环节。

机械手的设计与优化是一个复杂而又关键的任务,需要考虑到多个因素,如精度、速度、负载能力等。

本篇论文将探讨机械手设计的一些关键问题,并提出一种新的设计方案。

首先,机械手的结构设计是决定其性能的关键因素之一。

常见的机械手结构包括串联结构、并联结构和混合结构。

串联结构由多个连杆组成,具有较高的精度和刚度,适用于需要高精度操作的场景。

并联结构由多个平行连杆和执行器组成,具有较高的负载能力和速度,适用于需要承载重物和快速操作的场景。

混合结构则结合了串联结构和并联结构的优点,可以根据具体需求进行灵活配置。

本论文将采用混合结构设计机械手,以兼顾精度和负载能力。

其次,机械手的运动学分析是设计过程中的重要一环。

通过对机械手的运动学分析,可以确定各个关节的运动范围和姿态,为后续的轨迹规划和控制提供依据。

机械手的运动学分析可以通过解析方法和数值方法两种途径进行。

解析方法适用于简单的机械手结构,通过代数方程求解关节角度和末端位置。

数值方法适用于复杂的机械手结构,通过迭代计算关节角度和末端位置。

本论文将采用数值方法进行机械手的运动学分析,以适应复杂的设计需求。

然后,机械手的轨迹规划是实现预定任务的关键一步。

轨迹规划旨在确定机械手末端执行器的运动轨迹,使得其能够在给定的时间内到达指定位置,并保持所需的速度和加速度。

常见的轨迹规划算法包括插值方法和优化方法。

插值方法通过在给定的关键点之间进行插值,生成平滑的轨迹。

优化方法通过优化目标函数,如最小化时间、最小化能量消耗等,生成最优的轨迹。

本论文将采用插值方法进行机械手的轨迹规划,以保证运动的平滑性和连续性。

最后,机械手的控制系统是实现精确控制的核心。

机械手的控制系统包括传感器、执行器和控制器等组成部分。

传感器用于获取机械手和工件的状态信息,执行器用于执行控制指令,控制器用于计算控制指令并发送给执行器。

气动机械手的设计毕业设计

气动机械手的设计毕业设计

气动机械手的设计毕业设计首先是气动机械手的机械结构设计。

机械结构设计是气动机械手设计中的核心部分,它直接影响机械手的运动轨迹、载荷能力和稳定性。

在设计过程中,需要考虑机械手的工作空间、自由度、运动速度和负载要求等因素。

根据任务需求,可以选择不同类型的机械结构,例如直线型、旋转型、球面型等。

在选定机械结构后,需要进行强度计算和动力学仿真分析,以确定各种零部件的尺寸和材料,保证机械手的稳定性和可靠性。

其次是气动机械手的气动系统设计。

气动机械手的气动系统是实现机械手动作的关键,它由气源、气缸、气控阀和管路组成。

在气源选择上,一般采用压缩空气作为动力源,可以通过压缩机、气瓶或者空气压缩机组来提供气源。

气缸的选择和配置要根据机械手的设计要求和工作负载来确定,需要考虑气缸的工作压力、行程长度和移动速度等因素。

气控阀的种类有很多,例如单向阀、双向阀、比例阀等,根据具体的动作要求选用合适的气控阀。

管路设计可以采用集中式或分布式设计,根据机械手的运动方式和工作空间来确定。

最后是气动机械手的控制系统设计。

控制系统设计是实现机械手自动化操作和精确控制的关键,它包括传感器、执行器、控制器和人机界面等部分。

传感器可以添加在气缸或机械手关节处,用于检测气压、位置、力量等参数,实现机械手的反馈控制和保护功能。

执行器可以是气缸或其他电动执行器,用于实现机械手的各种动作。

控制器可以采用PLC或微控制器等设备,用于编程、逻辑控制和通信功能。

人机界面可以通过触摸屏、键盘或按钮等设备与机械手进行交互,实现操作和监视。

综上所述,气动机械手的设计涉及机械结构、气动系统和控制系统三个方面。

通过合理设计机械结构,选择适当的气动元件和配置气动系统,以及设计稳定可靠的控制系统,可以实现气动机械手的高效、精确和安全操作。

在毕业设计中,可以进一步深入探究气动机械手的优化设计和性能测试,以满足不同工作环境和任务需求的应用。

(完整版)基于气动人工肌肉驱动的多关节机械手指动_力学仿真毕业设计

(完整版)基于气动人工肌肉驱动的多关节机械手指动_力学仿真毕业设计

南京工程学院毕业设计说明书(论文)系部:机械工程学院专业:机械电子工程题目:基于气动人工肌肉驱动的多关节机械手指动力学仿真指导者:闫华副教授评阅者:2015 年 5 月南京毕业设计说明书(论文)中文摘要由于气动人工肌肉比重小、结构紧凑,占用空间小等优点,本文提出一种曲柄滑块机构来驱动手指弯曲,让气动人工肌肉驱动滑块运动,首先设计气动肌肉手指关节结构,并用SolidWorks绘制手指的三维图,利用ADAMS和MATLAB 进行动力学联合仿真,在手指端设置一定的负载,输入手指三个关节的直线驱动,观察手指末端的角速度变化和三个驱动力的变化,最后根据气动肌肉的驱动原理进行了气动肌肉灵巧手关节运动的控制研究,利用比例压力阀对气动肌肉压力进行控制,使气动肌肉横向收缩带动滑动移动,从而实现对手指关节弯曲角度的控制。

关键词:仿人灵巧手;关节设计;气动肌肉;动力学仿真毕业设计说明书(论文)外文摘要Title Dynamic simulation of multi joint robotic fingers based on pneumatic muscle driven muscle AbstractBecause of the small proportion of pneumatic muscle, compact structure and small space occupancy, etc. In this paper, a slider crank mechanism drive the finger bending. The slider crank mechanism is driven by artificial muscles, Firstly, designing pneumatic muscle finger joint structure, And with the SolidWorks drawing fingers entity graph, using ADAMS and MATLAB co-simulation of the dynamics, the fingertip set certain load, input linear drive of the three joints of the fingers, to observe the change of the angular velocity of the finger tip and three driving force of change, finally according to the driving principle of the pneumatic muscle was analyzed by gas dynamic muscle dexterous order to realize the control of the flexion angles of finger joints.Keywords: Dexterous ; Pneumatic muscles; Dynamic simulation目录前言 (1)第一章绪论 (2)1.1课题项目的背景 (2)1.2气动人工肌肉多关节手指的国内外发展现状 (2)1.3气动技术的介绍以及发展前景 (4)1.4论文研究的内容和方法 (6)第二章多关节手指的结构设计及建模 (7)2.1 气动肌肉的介绍 (7)2.1.1 气动肌肉的内部结构 (7)2.2 气动机械手指的基本结构 (8)2.2.1 绘图软件SoildWorks介绍 (8)2.2.2 整体设计方案的设计 (8)2.2.3 手指的关节设计 (9)2.2.4手指关节的建模 (11)2.3 灵巧手指的装配和三维模型的导出 (11)第三章多关节手指的动力学仿真分析 (12)3.1仿真软件ADAMS和MATLAB简介 (12)3.2 动力学仿真过程介绍 (13)3.2.1 ADAMS参数设置过程 (13)3.2.2 建立MATLAB控制模型 (16)3.3 动力学仿真结果分析以及结论 (17)第四章气动肌肉灵巧手指的控制系统设计 (18)4.1气动肌肉回路原理和设计 (18)4.1.1气动回路器件的选择 (19)4.2灵巧手指的关节控制系统 (20)4.2.1控制系统的原理 (20)4.2.2控制系统的硬件选择 (21)4.3 DA控制界面的设计和程序的编写 (22)|第五章结论及总结 (24)参考文献 (25)致谢 (26)前言随着机器人技术的日益成熟,工业机器人极有可能最终取代机床,成为新一代工业生产的基础。

气动机械手毕业设计论文(DOC)

气动机械手毕业设计论文(DOC)

[机电一体化]论文工业机器人手*名: [**]学号: [***********] 指导教师:[**]目录第一章绪论............................................... 31.1 气动机械手概述.......................................... 31.2 机械手的组成和分类...................................... 31.2.1机械手的组成........................................ 31.2.2机械手的分类........................................ 51.3 国内外发展状况.......................................... 71.4课题的提出及主要任务..................................... 81.4.1课题的提出.......................................... 81.4.2课题的主要任务...................................... 9第二章机械手的设计方案................................. 102.1机械手的坐标型式与自由度............................... 102.2 机械手的手部结构方案设计.............................. 112.3 机械手的手腕结构方案设计.............................. 112.4 机械手的手臂结构方案设计.............................. 112.5 机械手的驱动方案设计.................................. 112.6 机械手的控制方案设计.................................. 122.7 机械手的主要参数...................................... 12第三章气动系统设计...................................... 133.1 气压传动系统工作原理图............................... 13第四章机械手的PLC控制设计.............................. 144.1可编程序控器的简介..................................... 144.2 PLC的结构,种类和分类................................. 154.3 FX2n系列三菱PLC特点.................................. 16 4.4 X/Y接口简介 .......................................... 174.5电路的总体设计......................................... 194.5.1 回路的设计....................................... 194.5.2 系统输入/输出分布表.............................. 204.5.3机械手的程序设计.................................. 204.5.4 各模块的程序设计................................. 21第五章结论........................................... 22结束语...................................... 错误!未定义书签。

气动机械手毕业设计

气动机械手毕业设计

摘要本文设计了一种气压传动的机械手。

着重对机械手的力学特征和运动轨迹等进行了设计和计算,对主要零部件进行了强度校核。

(未完,待修改)第一章工业机器人简介1机械手发展史机械手是在机械化,自动化生产过程中发展起来的一种新型装置。

它是机器人的一个重要分支。

它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。

在现代生产过程中,机械手被广泛的运用于自动生产线中,机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。

机械手首先是从美国开始研制的。

1958年美国联合控制公司研制出第一台机械手。

它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教形的。

1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。

商名为Unimate(即万能自动)。

运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。

不少球坐标通用机械手就是在这个基础上发展起来的。

同年,美国机械制造公司也实验成功一种叫Vewrsatran机械手。

该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。

这两种出现在六十年代初的机械手,是后来国外工业机械手发展的基础。

1978年美国Unimate公司和斯坦福大学,麻省理工学院联合研制一种Unimate-Vicarm 型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。

联邦德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。

目前,机械手大部分还属于第一代,主要依靠人工进行控制;改进的方向主要是降低成本和提高精度。

第二代机械手正在加紧研制。

它设有微型电子计算控制系统,具有视觉、触觉能力,甚至听、想的能力。

气动机械手的设计毕业设计论文

气动机械手的设计毕业设计论文

气动机械手的设计毕业设计论文
首先,根据气动机械手的工作原理和结构要求,我们选择了推杆气缸
作为驱动元件。

推杆气缸具有行程长、推力大的优势,适用于机械手的多
个关节。

在设计中,我们根据机械手所需的运动范围和推力要求选择了适
当的推杆气缸型号,并进行了合理的布置和装配。

其次,对于气动机械手的结构设计,我们选择了材料强度高、重量轻
的铝合金材料,并进行了强度计算和结构分析。

在设计过程中,我们考虑
了机械手在工作过程中的受力情况,确定了各个关节的尺寸和连接方式,
以保证机械手的稳定性和可靠性。

再次,对于气动机械手的控制系统设计,我们选择了先进的气动控制
阀及传感器,以实现机械手的精确控制。

在设计中,我们考虑了机械手的
运动范围、速度和承载能力等因素,确定了合适的控制策略,并进行了模
拟和仿真分析,以验证控制系统的性能。

最后,在气动机械手的实验验证与优化方面,我们通过搭建实验平台,对设计的机械手进行了性能测试和优化实验。

在实验中,我们利用传感器
和测量仪器对机械手的运动轨迹、力矩和功耗等进行了实时监测和分析,
以评价机械手的性能和效能,并对其进行了相应的优化设计。

综上所述,本文设计了一种气动机械手,并进行了详细的分析与优化。

通过设计和实验验证,证明了机械手的可行性和优越性。

未来可以进一步
改进和扩展该设计,以满足不同领域的自动化需求,并提高气动机械手的
性能和稳定性。

(完整版)基于气动人工肌肉驱动的多关节机械手指动_力学仿真毕业论文

(完整版)基于气动人工肌肉驱动的多关节机械手指动_力学仿真毕业论文

南京工程学院毕业设计说明书(论文)系部:机械工程学院专业:机械电子工程题目:基于气动人工肌肉驱动的多关节机械手指动力学仿真指导者:闫华副教授评阅者:2015 年 5 月南京毕业设计说明书(论文)中文摘要由于气动人工肌肉比重小、结构紧凑,占用空间小等优点,本文提出一种曲柄滑块机构来驱动手指弯曲,让气动人工肌肉驱动滑块运动,首先设计气动肌肉手指关节结构,并用SolidWorks绘制手指的三维图,利用ADAMS和MATLAB 进行动力学联合仿真,在手指端设置一定的负载,输入手指三个关节的直线驱动,观察手指末端的角速度变化和三个驱动力的变化,最后根据气动肌肉的驱动原理进行了气动肌肉灵巧手关节运动的控制研究,利用比例压力阀对气动肌肉压力进行控制,使气动肌肉横向收缩带动滑动移动,从而实现对手指关节弯曲角度的控制。

关键词:仿人灵巧手;关节设计;气动肌肉;动力学仿真毕业设计说明书(论文)外文摘要Title Dynamic simulation of multi joint robotic fingers based on pneumatic muscle driven muscle AbstractBecause of the small proportion of pneumatic muscle, compact structure and small space occupancy, etc. In this paper, a slider crank mechanism drive the finger bending. The slider crank mechanism is driven by artificial muscles, Firstly, designing pneumatic muscle finger joint structure, And with the SolidWorks drawing fingers entity graph, using ADAMS and MATLAB co-simulation of the dynamics, the fingertip set certain load, input linear drive of the three joints of the fingers, to observe the change of the angular velocity of the finger tip and three driving force of change, finally according to the driving principle of the pneumatic muscle was analyzed by gas dynamic muscle dexterous hand joint movement control research, using the proportional pressure valve of pneumatic muscle pressure control, pneumatic muscle transverse shrinkage to drive the sliding movement, in order to realize the control of the flexion angles of finger joints. Keywords: Dexterous hand; Structural design; Pneumatic muscles; Dynamic simulation目录前言 (1)第一章绪论 (2)1.1课题项目的背景 (2)1.2气动人工肌肉多关节手指的国内外发展现状 (2)1.3气动技术的介绍以及发展前景 (4)1.4论文研究的内容和方法 (6)第二章多关节手指的结构设计及建模 (7)2.1 气动肌肉的介绍 (7)2.1.1 气动肌肉的内部结构 (7)2.2 气动机械手指的基本结构 (8)2.2.1 绘图软件SoildWorks介绍 (8)2.2.2 整体设计方案的设计 (8)2.2.3 手指的关节设计 (9)2.2.4手指关节的建模 (11)2.3 灵巧手指的装配和三维模型的导出 (11)第三章多关节手指的动力学仿真分析 (12)3.1仿真软件ADAMS和MATLAB简介 (12)3.2 动力学仿真过程介绍 (13)3.2.1 ADAMS参数设置过程 (13)3.2.2 建立MATLAB控制模型 (16)3.3 动力学仿真结果分析以及结论 (17)第四章气动肌肉灵巧手指的控制系统设计 (18)4.1气动肌肉回路原理和设计 (18)4.1.1气动回路器件的选择 (19)4.2灵巧手指的关节控制系统 (20)4.2.1控制系统的原理 (20)4.2.2控制系统的硬件选择 (21)4.3 D/A控制界面的设计和程序的编写 (22)|第五章结论及总结 (25)参考文献 (26)致谢 (27)前言随着机器人技术的日益成熟,工业机器人极有可能最终取代机床,成为新一代工业生产的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气动机械手关节结构设计及运动学仿真分析毕业论文第1章绪论1.1研究气动机械手的意义近20年来,气动技术的应用领域迅速拓宽,尤其是在各种自动化生产线上得到广泛应用。

电气可编程控制技术与气动技术相结合,使整个系统自动化程度更高,控制方式更灵活,性能更加可靠;气动机械手、柔性自动生产线的迅速发展,对气动技术提出了更多更高的要求;微电子技术的引入,促进了电气比例伺服技术的发展。

现代控制理论的发展,使气动技术从开关控制进入闭环比例伺服控制,控制精度不断提高;由于气动脉宽调制技术具有结构简单、抗污染能力强和成本低廉等特点,国内外都在大力开发研究[1]。

从各国的行业统计资料来看,近30多年来,气动行业发展很快。

20世纪70年代,液压与气动元件的产值比约为9:1,而30多年后的今天,在工业技术发达的欧美、日本国家,该比例已达到6:4,甚至接近5:5。

我国的气动行业起步较晚,但发展较快。

从20世纪80年代中期开始,气动元件产值的年递增率达20%以上,高于中国机械工业产值平均年递增率。

随着微电子技术、PLC技术、计算机技术、传感技术和现代控制技术的发展与应用,气动技术已成为实现现代传动与控制的关键技术之一。

传统的机器人关节多由电机或液(气)压缸等来驱动。

以这种方式来驱动关节,位置精度可以达到很高,但其刚度往往很大,实现关节的柔顺运动较困难。

而柔顺性差的机器人在和人接触的场合使用时,容易造成人身和环境的伤害。

因此,在许多服务机器人或康复机器人研究中,确保机器人的关节具有一定的柔顺性提高到了一个很重要的地位。

人类关节具有目前机器人所不具备的优良特性,既可以实现较准确的位置控制又具有很好的柔顺性。

这种特性主要是由关节所采用的对抗性肌肉驱动方式所决定的。

目前模仿生物关节的驱动方式在仿生机器人中得到越来越多的应用。

在这种应用中为得到类似生物关节的良好特性,一般都采用具有类似生物肌肉特性的人工肌肉。

气动肌肉是人工肌肉中出现较早、应用较广泛的一种驱动器,具有重量轻、结构简单及控制容易等优点,在类人机器人、爬行机器人及康复辅助器械中得到了应用。

其基本应用形式大都采用一对气动肌肉组成关节的方式。

气动肌肉最简单和最常见的使用方式是利用一对气动肌肉以生物体中拮抗肌的形式驱动关节,这种方式克服了气动肌肉变化长度较小的缺点,能够实现大的转动位移。

而且由于其类似生物体驱动关节的方式,因此具有刚度和位置能独立控制等仿生关节具有的优点。

气动机械手是集机械、电气、气动和控制于一体的典型机电一体化产品。

近年来,机械手在自动化领域中,特别是在有毒、放射、易燃、易爆等恶劣环境内,与电动和液压驱动的机械手相比,显示出独特的优越性,得到了越来越广泛的应用。

1.2气动机械手在国内外的发展现状及应用由于机器人或机械手都需要能快速、准确的抓取工件,因而对机器人或机械手提出了更高的要求,即他们必须具有高定位精度、能快速反应、有一定的承载能力、足够的空间和灵活的自由度以及在任意位置都能自动定位。

传统观点认为,由于气体具有压缩性,因此,在气动伺服系统中要实现高精度定位比较困难(尤其在高速情况下,似乎更难想象)。

此外,气源工作压力较低,抓举力较小。

气动技术作为机器人中的驱动功能已经被工业界广泛接受,对于气动机器人伺服控制体系的研究起步较晚,但已取得了重要成果,它在工业自动化领域应用正在受到越来越多的广泛关注。

90年代初,有布鲁塞尔皇家军事学院Y.Bando教授领导的综合技术部开发研制的电子气动机器人——“阿基里斯”六脚勘测员,也被称为FESTO的“六足动物”。

Y.Bando教授采用了世界上著名的德国FESTO生产的气动元件、可编程控制器和传感器等,创造了一个在荷马史诗中最健壮最勇敢的希腊英雄——阿基里斯。

它能在人不易进入的危险区域、污染或放射性的环境中进行地形侦察。

六脚电子气动机器人的上方安装了一个照相机来探视障碍物,能安全的绕过它,并在行走过程中记录和收集数据。

六脚电子气动机器人行走的所有程序由FPC101-B 可编程控制器控制,FPC101-B能在六个不同方向控制机器人的运动,最大行走速度0.1m/s。

通常如果有三个脚与地面接触,机器人便能以一种平稳的姿态行走,六脚中的每一个脚都有三个自由度,一个直线气缸把脚提起、放下,一个摆动马达控制脚伸展、退回,另一个摆动马达则负责围绕脚的轴心作旋转运动。

每个气缸都装备了调节速度用的单向节流阀,使机械驱动部件在运动时保持平稳,即在无级调速状态下工作。

控制气缸的阀内置在机器人体内,由FPC101-B可编程控制器控制。

当接通电源时,气动阀被切换到工作状态位置,当关闭电源时,他们便回到初始位置。

此外,操作者能在任何一点上停止机器人的运动,如果机器人的传感器在它的有效范围内检测到障碍物,机器人也会自动停止。

由汉诺威大学材料科学研究院设计的气动攀墙机器人,它能在两个相互垂直的表面上行走(包括从地面到墙面或者从墙面到天花板上)。

该机器人轴心的圆周边上装备着等距离(根据步距设置)的吸盘和气缸,一组吸盘吸力与另一组吸盘吸力的交替交换,类似脚踏似的运动方式,使机器人产生旋转步进运动。

这种攀墙式机器人可被用于工具搬运或执行多种操作,如在核能发电站、高层建筑物气动机械手位置伺服控制系统的研究或船舶上进行清扫、检验和安装工作。

机器人用遥控方式进行半自动操作,操作者只需输入运行的目标距离,然后计算机便能自动计算出必要的单步运行。

操作者可对机器人进行监控。

从上述实例可见,气动机器人己经取得了实质性的进展。

就它在三维空间内的任意定位、任意姿态抓取物体或握手而言,“阿基里斯”六脚勘测员、攀墙机器人都显示出它们具有足够的自由度来适应工作空间区域。

气动技术发展至今,用直线气缸、旋转马达来解决气动机器人中一般的关节活动和空间自由度己经不成问题了,气缸低速运动平稳性这一点也不成问题了,很多场合使用低速气缸,其速度在5mm/s的情况下也能平稳运行。

因此从根本上改变了传统上的观点——“由压缩性的空气作为介质的气缸运动速度有冲击颤动或低速运行不平稳的缺陷”。

气缸的运行从低速5mm/s到高速5~10m/s,表明了它有一个十分丰富、宽广的速度区域,以适应各种层次的速度等级需要[5]。

气动技术经历了一个漫长的发展过程,随着气动伺服技术走出实验室,气动技术及气动机械手迎来了崭新的春天。

目前在世界上形成了以日本、美国和欧盟气动技术、气动机械手三足鼎立的局面。

我国对气动技术和气动机械手的研究与应用都比较晚,但随着投入力度和研发力度的加大,我国自主研制的许多气动机械手已经在汽车等行业为国家的发展进步发挥着重要作用。

随着微电子技术的迅速发展和机械加工工艺水平的提高及现代控制理论的应用,为研究高性能的气动机械手奠定了坚实的物质技术基础。

由于气动机械手有结构简单、易实现无级调速、易实现过载保护、易实现复杂的动作等诸多独特的优点。

由于气压传动系统使用安全、可靠,可以在高温、震动、易燃、易爆、多尘埃、强磁、辐射等恶劣环境下工作[6]。

而气动机械手作为机械手的一种,它具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境、容易实现无级调速、易实现过载保护、易实现复杂的动作等优点[7,8-9]。

所以,气动机械手被广泛应用于汽车制造业、半导体及家电行业、化肥和化工[10],食品和药品的包装[7,11-12]、精密仪器和军事上[13,14-15]。

现代汽车制造工厂的生产线,尤其是主要工艺是焊接的生产线,大多采用了气动机械手。

车身在每个工序的移动;车身外壳被真空吸盘吸起和放下,在指定工位的夹紧和定位;点焊机焊头的快速接近、减速软着陆后的变压控制点焊,都采用了各种特殊功能的气动机械手。

高频率的点焊、力控的准确性及完成整个工序过程的高度自动化,堪称是最有代表性的气动机械手应用之一[2]。

气动机械手用于对食品行业的粉状、粒状、块状物料的自动计量包装;用于烟草工业的自动卷烟和自动包装等许多工序。

如酒、油漆灌装气动机械手;自动加盖、安装和拧紧气动机械手,牛奶盒装箱气动机械手等[8,11]。

此外,气动系统、气动机械手被广泛应用于制药与医疗器械上。

如:气动自动调节病床[15],Robodoc机器人,daVinci外科手术机器人等[17]。

1.3 气动技术发展状况及优缺点气动技术是一门正在蓬勃发展的新技术,气动元件是气动技术中最重要的组成部分,用气动元件组成的传动和控制系统己广泛应用于国民经济各部门的成套设备和自动化生产线上。

气动技术是以压缩气体(例如压缩空气或惰性气体和热气体)为工作介质进行能量和信号的传递,从而实现生产过程自动化的一门技术,它包含气压传动和气动控制两方面的内容[18,19]。

气动技术的发展历程,是从单个元件到控制系统,从单纯机械系统到机电一体化的复杂高科技产品的历程。

人类对空气进行利用,以其为传递能量的介质可追溯到几千年以前。

但真正对起性质和基本原理进行系统的研究也是从本世纪开始,形成以气压传动系统动力学和气动控制理论为主要内容的一门学科——气动系统理论。

目前,气动和液压是两种较为普遍应用的传动和控制方式,两者有许多相同点,也有许多不同点,气动技术真正成为全世界各个工业部门所接受并广泛应用,是由于日益迫切的生产自动化和操作程序合理化的需要,也由于气动技术具有以下许多优点:(1)气动技术以空气为工作介质,空气随处可取,且粘性小,在管内流动阻力小,便于集中供气和远距离输送。

因而,大多数工厂有方便的压缩空气气源。

作为工作介质的压缩空气的物理性质,是气动技术在广泛的各种应用具有安全、方便和费用低的优点。

压缩空气没有生产火花的危险。

因此,它始于有易燃或爆炸潜在危险的工矿。

(2)气动元件机构简单,价格低廉,用过的空气可向大气排放,处理方便,不必使用回收管道。

(3)气动系统清洁,即使有泄漏,也不会像液压系统那样污染产品和环境,不受电磁干扰,电子系统则有之。

(4)气动系统维护不复杂,也不需要特殊的培训和实验设备。

(5)适应性强,现有的机器可方便的改为气动传动,气缸可以直接安装在要求出力的地方。

(6)便于进行能量储存,可以进行应急或系统需要用。

(7)气压传动本身有过载保护性能。

气动执行元件能长期在满负荷下工作,在过载时自动停止。

(8)气动元件运动速度高,普通气缸的运动速度一般为0.05~0.7m/s,有的高达1~3m/s,高速气缸可达15m/s。

调查资料表明,目前气动装置在工业自动化装备中占很重要的地位。

当然,气动技术也有其缺点:(1)压缩空气需要进行除尘、除水处理。

(2)空气的可压缩性使系统效率低,且使气动系统的稳定性差,给位置和速度的精确控制带来很大的影响。

(3)系统运行时排放空气的噪声较大。

(4)气动信号的传递速度远比电信号低,而且有较大的延迟和失真,因而气动控制技术不宜用于高速传递和处理信息的复杂系统,而且气动信号的传送距离也受到限制。

相关文档
最新文档