24.1.3 弧、弦、圆心角-广东省肇庆市高要区金利镇朝阳实验学校人教版九年级数学上册课件(共18张PPT)
人教版 数学九年级上册24.1.3弧、弦、圆心角教案

五、教学方法自主学习,合作探究六、教学准备1、教师使用多媒体教学课件。
2、直尺,圆规。
七、教学过程教学内容教师活动学生活动1、复习引入2、探索新知活动1:圆具有旋转不变性活动2:探究圆心角的概念。
圆是中心对称图形吗?它的对称中心在哪里?活动1:圆具有旋转不变性问:圆还有其它旋转性质吗?观察多媒体,圆的旋转过程,你有什么收获?活动2:探究圆心角的概念。
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.巩固练习:判别下列各图中的角是不是圆心角?观察思考作答;带着问题进入学习。
观察圆的旋转并思考作答。
(圆具有旋转不变性。
)教师引导,学生自学圆心角,学生完成巩固练习活动3:探究圆心角、弧、弦之间的关系1()2()3()4()活动3:探究圆心角、弧、弦之间的关系操作:将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置。
B'BAA'O问题1:在旋转过程中你能发现哪些等量关系?为什么?问题2:如图,⊙O与⊙O1是等圆,∠AOB =∠A1OB1=600,请问上述结论还成立吗?为什么?问题3:由上面的现象你能猜想出什么结论?综上所述,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.问题4:分析定理:去掉“在同圆或等圆中”这个条件,行吗?问题5:定理拓展:○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗?○2在同圆或等圆中,如果两条弦相等,那么它们所学生观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行几何证明.学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.教师引导学生类比定理独立用类似的方法进行探究,得到推论3、应用新知4、例题探究5、应用提高对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.应用新知1、判断下列说法是否正确:(1)相等的圆心角所对的弧相等。
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿

人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。
本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。
教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。
教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。
但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。
三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。
2.教学难点:圆心角、弧、弦之间的数量关系。
五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。
六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。
3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。
4.课堂练习:布置针对性的练习题,巩固所学知识。
人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计

人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》是本册教材的重要内容之一。
它主要介绍了弧、弦、圆心角的定义及其相互关系。
这部分内容对于学生来说,有助于深化对圆的理解,为后续学习圆的性质和应用打下基础。
教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的规律,培养学生的观察能力、思考能力和动手能力。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
他们对圆的概念和性质有一定的认识,但弧、弦、圆心角的概念和关系可能还比较模糊。
因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,帮助学生理解和掌握弧、弦、圆心角的定义和相互关系。
三. 教学目标1.理解弧、弦、圆心角的定义,掌握它们的相互关系。
2.能够运用弧、弦、圆心角的性质解决实际问题。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.弧、弦、圆心角的定义及其相互关系。
2.运用弧、弦、圆心角的性质解决实际问题。
五. 教学方法1.直观演示法:通过实物演示和动画展示,让学生直观地理解弧、弦、圆心角的定义和相互关系。
2.引导发现法:教师引导学生观察、思考和探索,发现弧、弦、圆心角之间的规律。
3.练习法:通过丰富的练习题,巩固学生对弧、弦、圆心角的理解和应用。
六. 教学准备1.准备相关的实物教具,如圆板、量角器等。
2.制作课件,包括弧、弦、圆心角的定义和相互关系的动画演示。
3.准备练习题,涵盖各种类型的题目,以便进行巩固和拓展。
七. 教学过程1.导入(5分钟)教师通过实物演示,如拿一个圆板,让学生观察和描述圆板上的弧、弦和圆心角。
引导学生回顾圆的基本概念,为新课的学习做好铺垫。
2.呈现(15分钟)教师利用课件,生动地展示弧、弦、圆心角的定义和相互关系。
通过动画演示,让学生直观地理解弧、弦、圆心角之间的关系。
人教版九年级数学上册教学设计:24.1.3弧、弦、圆心角

总字数:1012字。
二、学情分析
在九年级的学生中,大部分学生已经具备了一定的几何知识基础,对圆的基本概念和性质有了初步的了解。在此基础上,他们对弧、弦、圆心角等概念的学习将更加深入。然而,由于几何知识抽象性较强,学生在理解上可能会存在一定困难。因此,在教学过程中,教师需要关注以下几个方面:
-适当引入竞赛题目,激发学生的学习兴趣,提高他们的挑战性。
6.反思与评价,促进自我成长:
-鼓励学生在课后进行反思,总结自己在学习过程中的优点和不足,形成个性化的学习策略;
-教师对学生的学习过程和成果进行评价,给予积极的反馈,帮助学生建立自信心。
四、教学内容与过程
(一)导入新课
1.利用生活实例:在课堂上展示一个圆形的时钟,引导学生观察时钟上的时针和分针。提问:“你们注意到时钟上的时针和分针在运动过程中形成了什么形状吗?”通过这个问题,让学生发现弧和圆心角的存在。
3.学生在合作学习中的参与度。在教学过程中,教师应鼓励学生积极参与小组讨论和合作学习,培养学生的团队协作能力。同时,关注学生在合作学习中的角色扮演,引导他们学会倾听、表达和沟通,提高学习效果。
4.学生在解决实际问题中的运用能力。将所学知识应用于解决实际问题,是检验学生掌握程度的重要方式。教师应设计贴近生活的实例,引导学生运用所学知识解决问题,提高学生的知识运用能力。
(五)总结归纳
1.教师引导学生总结本节课所学的内容,包括弧、弦、圆心角的概念、性质和关系。
2.学生分享自己的学习心得,交流在解决问题过程中遇到的困难和解决办法。
3.教师总结:强调本节课的重点知识,指出学生在学习过程中容易出现的问题,提醒学生注意。
人教版九年级数学上册《24.1.3 弧、弦、圆心角》教案

第二十四章圆24.1 圆的有关性质24.1.3 弧、弦、圆心角一、教学目标1.掌握圆的旋转不变性,理解圆心角的概念.2.理解和掌握弧、弦、圆心角之间的关系.二、教学重点及难点重点:弧、弦、圆心角之间的关系及其应用.难点:探索弧、弦、圆心角之间的关系.三、教学用具多媒体课件,三角板、直尺、圆规。
四、相关资源五、教学过程【合作探究,形成知识】1.剪一个圆形纸片,把它绕圆心旋转180°,所得的图形与原图形重合吗?由此你能得到什么结论?把圆绕圆心旋转任意一个角度呢?师生活动:学生拿课前准备好的圆形纸片操作,小组交流、讨论;教师用多媒体课件演示,引导学生得到(1)圆是中心对称图形,圆心就是它的对称中心,圆具有旋转不变性.(2)圆心角:顶点在圆心的角叫做圆心角.2.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O 和⊙O ′,沿圆周分别将两圆剪下;(2)在⊙O 和⊙O ′上分别作相等的圆心角∠AOB 和∠A ′O ′B ′,如图所示,圆心固定; 注意:在画∠AOB 与∠A ′O ′B ′时,要使OB 相对于OA 的方向与O ′B ′相对于O ′A ′的方向一致,否则当OA 与O ′A ′重合时,OB 与O ′B ′不能重合.(3)将其中的一个圆旋转一个角度.使得OA 与O ′A ′重合.问题1 通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.师生活动:教师叙述步骤,同学们一起动手操作、探究,在学生操作完毕后,教师指出在上述“做一做”过程中的发现:固定圆心,将其中一个圆旋转一个角度,使半径OA 与OA ′重合时,由于∠AOB =∠A ′O ′B ′.这样便可得到半径OB 与OB ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以AB 与''A B 重合,弦AB 与弦AB ′重合,即''AB A B ,AB =AB ′.问题2 由此你们能探究出弧、弦、圆心角之间的关系吗?师生活动:由一名学生回答,教师根据学生的回答板书,并用符号语言表示出来. 弧、弦、圆心角之间的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.根据对上述关系的理解,下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动:学生观察思考、分组讨论,交流各自的意见.教师巡查,指导有困难的学生.由两名小组代表汇报,教师根据学生讨论的结果总结结论.总结:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等; 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.设计意图:讨论的目的是让学生在交流过程中取长补短,有易于学生积极构建自己的认知.证明过程中学生容易借助全等三角形对应边、对应高相等证明,但这里解决不了证明弧相等,采用多媒体演示进行旋转,使学生认识到要证明弧相等,可根据定义证明弧重合.问题:这个定理中不能忘记哪个前提?如果没有这个前提会怎样?师生活动:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如,可以请同学们画一个只有圆心角相等这一个条件的图.如图所示,虽然∠AOB =∠A ′OB ′,但AB ≠A ′B ′,弧AB ≠弧A ′B ′.教师进一步引导学生用同样的思路考虑命题“(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等”中的条件“在同圆或等圆中”是否能够去掉.设计意图:使学生加深印象,明白这个定理只有在同圆或等圆中才能成立,为解决实际问题打好基础.【例题分析,深化提升】例 如图,在⊙O 中,AB AC =,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC . OAB C师生活动:让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.教师引导:由AB AC =,得到AB AC =,△ABC 是等腰三角形.由∠ACB =60°,得到△ABC 是等边三角形,AB =AC =BC .所以∠AOB =∠AOC =∠BOC .证明:∵AB AC =,∴ AB =AC ,△ABC 是等腰三角形.又∠ACB =60°,∴△ABC 是等边三角形,AB =BC =CA .∴∠AOB =∠BOC =∠AOC .设计意图:培养学生正确应用所学知识的能力,增强应用意识.【练习巩固,综合应用】1.下列图形中表示的角是圆心角的是( ).2.在同圆中,圆心角∠AOB =2∠COD ,则两条弧AB 与CD的关系是( ).A .AB =2CD B .AB >2CDC .AB <2CD D .不能确定3.如图,AB 是⊙O 的直径,BC =CD =DE ,∠COD =40°,则∠AOE 的度数为 .4.已知:如图,AB ,CD 是⊙O 的两条弦,OE ,OF 分别为AB ,CD 的弦心距,根据本节定理及推论填空:(1)如果AB =CD ,那么_____________,____________;(2)如果AB CD ,那么__________,_______________;(3)如果∠AOB =∠COD ,那么___________,____________;(4)如果AB =CD ,OE ⊥AB ,OF ⊥CD ,那么OE 与OF 相等吗?为什么?师生活动:第(1)(2)(3)问由三名学生思考后回答,第(4)问由一名学生上黑板板演,全班订正,教师补充不足的地方.设计意图:本练习是本节结论的综合应用,由于在圆中解决有关弦的问题时,常需要作“垂直于弦的直径”,且后面正多边形和圆等内容都涉及构造直角三角形,为给后面学习作铺垫,可以让学生归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量也都分别相等.通过本练习一方面巩固了新知,另一方面也进行了拓展.5.如图,AB ,AC 都是⊙O 的弦,且∠CAB =∠CBA .求证:∠COB =∠COA .O F E DC B O师生活动:教师鼓励学生独立思考,让学生表述自己的方法.6.如图,AB ,CD 是⊙O 的两条直径,BE =BD .求证:BE AC =.设计意图:让学生准确掌握圆心角的概念及圆心角、弧、弦之间的关系.参考答案1.A 2.A 3.60°5.证明:∵∠CAB =∠CBA (已知),∴AC =BC (等角对等边).∴∠COA =∠COB (在同一个圆中,如果两条弦相等,那么这两条弦所对的圆心角也相等).6.证明:∵AB ,CD 是⊙O 的两条直径,∴∠AOC =∠BOD .∴AC BD =.又BE =BD ,∴BE BD =.∴BE AC =.设计意图:加深对圆心角、弧、弦之间的关系的理解和掌握. 六、课堂小结圆是中心对称图形,圆心就是它的对称中心.圆心角的定义:顶点在圆心的角叫做圆心角.圆心角、弧、弦关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等.此知识卡片反映圆心角、弦、弧的关系设计意图:总结回顾,培养学生的知识整理能力与语言表达能力,帮助学生自我评价学习效果.在PPT上呈现主要内容,更进一步加深学生对所学知识的印象.七、板书设计24.1 圆的有关性质——24.1.3 弧、弦、圆心角1.圆是中心对称图形,圆心是它的对称中心2.圆心角的定义3.圆心角、弧、弦关系的定理。
人教版数学九年级上册《24.1.3弧、弦、圆心角》说课稿1

人教版数学九年级上册《24.1.3弧、弦、圆心角》说课稿1一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》这一节主要介绍了圆的基本概念,包括弧、弦、圆心角的关系。
这部分内容是整个圆的知识体系的基础,对于学生理解和掌握圆的相关知识具有重要意义。
教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的关系,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有一定的基础。
但是,对于圆的相关概念和性质,学生可能还比较陌生。
因此,在教学过程中,我将会注重引导学生从实际问题中抽象出圆的性质,并通过实例让学生感受和理解弧、弦、圆心角之间的关系。
三. 说教学目标1.知识与技能目标:使学生理解和掌握弧、弦、圆心角的概念,能够运用这些概念解决实际问题。
2.过程与方法目标:通过观察、思考、归纳等过程,培养学生发现和探索几何规律的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的意志。
四. 说教学重难点1.重点:弧、弦、圆心角的概念及其关系。
2.难点:如何引导学生从实际问题中抽象出圆的性质,并运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生从实际问题中出发,通过观察、思考、归纳等过程,发现和掌握弧、弦、圆心角之间的关系。
2.教学手段:利用多媒体课件,展示实例和几何图形的动态变化,帮助学生更好地理解和掌握弧、弦、圆心角的概念。
六. 说教学过程1.导入:通过展示一个实际问题,引导学生思考和探索圆的相关性质。
2.新课导入:介绍弧、弦、圆心角的概念,并通过实例让学生感受和理解它们之间的关系。
3.知识讲解:通过多媒体课件,展示弧、弦、圆心角的动态变化,引导学生观察和思考,从而发现和归纳出它们之间的关系。
4.练习与讨论:设计一些练习题,让学生运用所学的知识解决实际问题,同时引导学生进行分组讨论,分享解题方法和经验。
人教版数学九年级上册24.1.3 弧、弦、圆心角 教案

24.1.3弧、弦、圆心角●情景导入(1)观察图片,我们会发现圆绕着圆心旋转任意一个角度,所得的图形与原图形重合.(2)如图①,∠AOB的顶点在圆心上,我们把顶点在圆心的角叫做圆心角.(3)如图②,连接AB,圆心角∠AOB所对的弦为弦AB,所对的弧为AB,那么圆心角与它所对的弧、弦这三个量之间有什么关系呢?【教学与建议】教学:通过实验操作,探索圆的旋转不变性与“如果两个圆心角相等,那么它们所对的弧、弦是不是相等”,激发学生的学习兴趣.建议:尽量让学生自己动手操作,引导学生得出等量关系.●归纳导入(1)圆是中心对称图形吗?它的对称中心在哪里?【归纳】圆是中心对称图形,对称中心是O点.(2)如图,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,我们发现∠AOB__=__∠A′OB′,弦AB__=__A′B′,AB__=__A′B′.【教学与建议】教学:通过归纳中心对称图形的定义,引入圆这个中心对称图形和圆的旋转性质,得出圆心角、弧、弦之间的关系.建议:让学生操作试验,得出圆心角、弧、弦的等量关系.命题角度1利用弧、弦、圆心角之间的关系进行计算在同圆或等圆中,两个相等圆心角,它们所对的弧、弦、弦心距对应相等.【例1】(1)如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(D)A.CE=DE B.BC=BDC.∠BAC=∠BAD D.AC>AD[第(1)题图][第(2)题图](2)如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P.连接OP.下列四个说法中:①AB=CD;②OM=ON;③PB=PD;④∠BPO=∠DPO,其中正确的是__①②③④__.(填序号)命题角度2利用弧、弦、圆心角之间的关系进行证明在同圆或等圆中,利用弧、弦、圆心角之间的关系定理证明圆心角、弧、弦相等.【例2】(1)如图,AB为⊙O的直径,C,D是⊙O上的两点,且BD∥OC.求证:AC=CD.证明:∵OB=OD,∴∠D=∠B.∵BD∥OC,∴∠D=∠COD,∠AOC=∠B,∴∠AOC=∠COD,∴AC=CD.(2)如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.证明:如图,连接OC.∵OD∥BC,∴∠1=∠B,∠2=∠3.又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.高效课堂教学设计1.能识别圆心角.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.▲重点探索圆心角、弧、弦之间的关系定理并利用其解决相关问题.▲难点圆心角、弧、弦之间关系定理中的“在同圆或等圆中”条件的理解及定理的证明.◆活动1新课导入1.你能举出生活中的圆形商标的实例吗?(至少三个)宝马车商标:星巴克标志:曼秀雷敦标志:2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?答:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.◆活动2探究新知1.材料P83探究.提出问题:(1)把圆绕圆心旋转180°,所得图形与原图形重合吗?由此你得到什么结论?(2)圆是中心对称图形吗?对称中心是什么?(3)把圆绕圆心旋转任意一个角度,所得图形与原图形重合吗?学生完成并交流展示.2.教材P84思考.提出问题:(1)我们把∠AOB连同AB绕圆心O旋转,使OA与OA′重合,旋转前后你能发现哪些等量关系?(2)若∠AOB和∠A′OB′分别在两个相等的圆中,上述等量关系还存在吗?(3)总结你所发现的规律;(4)反过来,在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角、所对的弦有什么关系?如果两条弦相等,那么它们所对的圆心角、所对的弧有什么关系?◆活动3知识归纳1.顶点在__圆心__的角叫做圆心角,能够重合的圆叫做__等圆__;能够__重合__的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的的图形重合,这就是圆的__旋转不变__性.2.在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.3.在同圆或等圆中,两个__圆心角__,两条__弦__,两条__弧__中有一组量相等,它们所对应的其余各组量也相等.◆活动4例题与练习例1教材P84例3.例2下列说法正确吗?为什么?(1)如图,因为∠AOB=∠A′OB′,所以AB=A′B′;(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么AB=A′B′.解:(1)(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.例3如图,AD=BC.求证:AB=CD.证明:∵AD=BC,∴AD=BC.∵AC=AC,∴AC+AD=AC+BC.∴DC=AB.∴AB=CD.练习1.教材P85练习第1,2题.2.如图,在⊙O中,已知弦AB=DE,OC⊥AB,OF⊥DE,垂足分别为C,F,则下列说法中正确的有(D)①∠DOE=∠AOB;②AB=DE;③OF=OC;④AC=EF.A.1个B.2个C.3个D.4个3.如图,AB是⊙O的直径,AC=CD,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.解:(1)△AOC是等边三角形.理由如下:∵AC=CD,∴∠AOC=∠COD=60°.又∵OA=OC,∴△AOC是等边三角形;(2)∵AC=CD,∴OC⊥AD.∵∠AOC=∠COD=60°,∴∠BOD=180°-(∠AOC+∠COD)=60°.∵OD=OB,∴△ODB为等边三角形.∴∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD.◆活动5课堂小结弧、弦、圆心角之间的关系是证明圆中等弧、等弦、等圆心角的常用方法.1.作业布置(1)教材P89习题24.1第2,3题;(2)对应课时练习.2.教学反思。
九年级数学人教版(上册)24.1.3 弧、弦、圆心角

易错点 对弧、弦、圆心角的关系理解有误致错 9.如图,在⊙O 中,A︵C=2A︵B,试判断 AC 与 2AB 的大小关系, 并说明理由. 解:∵在同圆或等圆中,同弧或等弧所对的弦相等, ∴当A︵C=2A︵B时,AC=2AB.
以上解答是否正确?若不正确,请改正.
解:不正确,2AB>AC.
理由:连接 BC, ∵A︵C=2A︵B, ∴A︵B=B︵C. ∴AB=BC. ∵在△ABC 中,AB+BC>AC,
∴△OAD 是等边三角形. ∴OA=AD. 同理可证△OBD 是等边三角形. ∴OB=BD. ∴AD=BD=OA=OB. ∴四边形 OADB 是菱形.
13.如图,MN 是⊙O 的直径,点 A 是半圆上一个三等分点, 点 B 是A︵N的中点,点 B′是点 B 关于 MN 的对称点,⊙O 的半径为 1, 则 AB′的长为 2 .
第二十四章 圆
24.1 圆的有关性质 24.1.3 弧、弦、圆心角
知识点 1 圆心角的概念及其计算 1.下图中∠ACB 是圆心角的是( B )
2.如图,已知 AB 为⊙O 的直径,点 D 为半圆周上的一点,且 A︵D所对圆心角的度数是B︵D所对圆心角度数的 2 倍,则圆心角∠BOD = 60° .
33
E,OD⊥AC,垂足为 F,AC=BD,则弦 BD 的长为 2 .
12.如图,在⊙O 中,A︵B=A︵C,∠ACB=60°.
(1)求证:∠AOB=∠BOC=∠AOC. 证明:∵A︵B=A︵C, ∴AB=AC. 又∵∠ACB=60°, ∴△ABC 是等边三角形. ∴AB=BC=AC. ∴∠AOB=∠AOC=∠BOC.
(2)若 D 是A︵B的中点,求证:四边形 OADB 是菱形. 证明:∵∠AOB+∠AOC+∠BOC=360°, ∴∠AOB=∠AOC=∠BOC=120°. 连接 OD,交 AB 于点 M. ∵D 是A︵B的中点, ∴A︵D=B︵D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂径定理:垂直与弦的直径平分这条弦,并 且平 分这条弦所对的两条弧。 推论:平分弦(不是直径)的直径垂直于这条弦, 并且平分这条弦所对的两条弧 。
二、新课引入
3、如图.AB是⊙O的直径,弦CD⊥AB,垂 足为M,若CD=8cm,CM=__4_c_m____.
三、研学教材
第36课时 弧、弦、圆心角
一、学习目标
1、理解圆的旋转不变性,掌握圆心角的 概念以及弧、弦、圆心角之间的等量关 系;
2、能运用弧、弦、圆心角之间的相等 关系解决有关的证明、计算问题.
二、新课引入
1、圆既是__轴___对称图形,又是_中__心_____ 对称图形,任何一条 经过圆心 所在的直 线都是它的对称轴,对称中心是__圆__心___.
OE、OF分别是底边AB、CD上的高。
OE=OF
三、研学教材
知识点四 弧、弦、圆心角的关系的应用
例3、如图,在⊙O中,»AB = »AC 、∠ACB=60°。
求证:∠AOB=∠BOC=∠AOC.
证明:∵ »AB = »AC ,
∴AB=AC ∴△ABC是等腰三角形. ∵∠ACB=60°,
∴△ABC是 等边三角形 ∴ AB=BC=AC. ∴ ∠AOB=∠BOC=∠AOC..
答:»AB = ¼ AB
AB= A¹B¹
三、研学教材
知识点三 弧、弦、圆心角的关系
理由: ∵∠AOB=∠A′OB′ ∴射线OB和 OB'重合 又∵OA= OA' ,OB= OB' . ∴点A与 A' 重合,点B与 B' 重合 即:»AB 和 ¼ AB 重合,AB与A¹B¹重合 ∴ »AB = ¼ AB、AB=A¹B¹.
③如果∠AOB=∠COD,那么__A_B__=_C_D_, _»A_B__=___¼A_B__.
三、研学教材
知识点三 弧、弦、圆心角的关系
④如果AB=CD,OE⊥AB于点E,OF⊥CD于点 F,OE与OF相等吗?为什么? 答:相等
Q AB CD,OA OB OC OD AOB COD
又 AOB 与 COD 是等腰三角形,
三、研学教材 知识点三 弧、弦、圆心角的关系
归纳: 1、在同圆或等圆中,相等的圆心角所对 的弧 相等 ,所对的弦也相等.
2、在同圆或等圆中,如果两条弧相等, 那么它们所对 圆心角 的相等,所对的弦 也 相等 .
三、研学教材
知识点三 弧、弦、圆心角的关系
3、在同圆或等圆中,如果两条弦相等, 那么它们所对的圆心角 相等 ,所对的
弧 也相等 温馨提示:同圆或等圆中,两个圆心角、 两条弧、两条弦中有一组量相等,它们所 对应的其余各组量也 相等.
三、研学教材
知识点三 弧、弦、圆心角的关系
练一练: 1、如下图,AB、CD是⊙O的两条弦. ①如果AB=CD,那么∠AOB=∠COD ,
»AB = ¼AB .
②如果»AB = ¼ AB、那么 ∠AOB=∠COD , AB=CD .
三、研学教材
知识点四 弧、弦、圆心角的关系的应用
练一练
如图,AB是⊙O的直径,B»C C»D D»E,
∠COD=35 °,求∠AOE的度数.
B»C C»D D»E
BOC COD DOE
Q COD 35o
BOC DOE 35。
又 AB是⊙O的直径
AOE 180o BOC COD DOE 75o
四、归纳小结
1、_顶__点__在__圆_心__的__角__________叫圆心角.
2、弧、弦、圆心角的关系: 在同圆或等圆 中,两个圆心角、 两条弧 、 两条弦 中有一组量相等,它们所对应的其余各组 量也 相等 .
知识点一 圆具有旋转不变性
圆具有旋转不变的特性,即一个圆绕着 它的 圆心 旋转任意一个角度,都能与 原来的图形 重合 .
三、研学教材
知识点一 圆具有旋转不变性
练一练 下列图形中,哪一个图形无论绕中心
旋转多少度,都能与自身重合?( ④ )
①
②
③
④
三、研学教材 知识点二 圆心角的定义
如图1所示,∠AOB的顶点在圆心,像这 样顶点在圆心的角叫做 圆心角 .
B A
O
图1
三、研学教材 知识点二 圆心角的定义 练一练
1、如图2,BC是⊙O的直径,则图 中所有的圆心角分别为 AOB、AOC (填小于180°的角)
图2
三、研学教材 知识点二 圆心角的定义 练一练 2、判别下列各图中的角是不是圆心角.
√√ x x
OB连同 »AB 绕圆心 O旋转,使OA与OA'重合. 2、当圆心角∠AOB=∠A'OB'时,它们所对 的 »A和B ¼A、B 所对的弦AB和A¹B¹相等吗? 为什么?