阐述岩土材料的塑性变形
岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。
即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。
第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。
固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。
岩土塑性力学简介(3)

•σ1、σ2、σ3为三个塑性势函数:
6
岩土塑性力学简介
3 塑性位势理论(续)
d ijp d1 1 2 d2 d3 q 3 ij ij ij
d1 d1p , d2 d 2p , d3 d 3p
di求法:等向强化模型的三个主应变屈服面
v ij p v q ij p q
1
2
ij
p
3
p v p q p
v
ij
q
ij
ij
p v p q p
v
ij
q
ij
ij
不完全等向硬化
等向硬化
硬化模量为:A=1
8
岩土塑性力学简介
3 塑性位势理论(续) •屈服面与塑性势面的关系:
(1)塑性势面确定塑性应变增量的方向,屈服面确定 塑性应变增量的大小; (2)屈服面必须与塑性势面相应,如塑性势面为q, 则相应的塑性应变与硬化参量为qp ,屈服面为q方向 上的剪切屈服面fq(ij ,qp),即qp的等值线; (3)三个分量屈服面各自独立,体积屈服面只与塑性 体变有关,而与塑性剪变无关; (4)由dq、d引起的体变是真正的剪胀 ; (5)屈服面与塑性势面相同,是相应的一种特殊情况。
2
12
Q d qp d q
1 Q d p d q
d与只有在势面为圆形时相等
1
岩土塑性力学简介
3 塑性位势理论(续) •举例:米赛斯,屈瑞斯卡,统一剪切破坏条件 3.3 传统塑性位势理论剖析
•岩土界的四点共识:
(1)不遵守关联流动法则; (2)不具有塑性应变增量方向与应力唯一性假设; (3)岩土材料应考虑应力主轴旋转; (4)莫尔-库仑类剪切模型产生过大剪胀;剑桥模 型不能很好反映剪胀与剪切变形;
[工学]第1章 岩土弹塑性力学
![[工学]第1章 岩土弹塑性力学](https://img.taocdn.com/s3/m/e84c57aedd88d0d233d46ae4.png)
(9)传统塑性理论中,材料的弹性系数与塑性变形无关,称为弹塑 性不耦合。而岩土塑性理论中,有时要考虑弹塑性耦合,即弹性 系数随塑性变形发展而减少
岩土塑性力学的基本内容
(1)岩土类材料的塑性本构关系理论与模型 (2)岩土类材料的极限分析理论 (3)它们在岩土工程设计和施工中的应用
弹性本构关系的基本特征
岩石力学性质
弹性 塑性 粘性
体力和面 力Fi,Ti
位移ui
平衡
本构关系
相容性 (几何)
应力ij
应变ij
固体力学问题解法中各种变量的相互关系
§1-2 应力状态
1 应力张量
•应力状态——一点所有截面应力矢量的集合。
x xy xz 11 12 13
ij yx y yz 21 22 23
塑性阶段:研究材料在塑性阶段内的受力与变形,这阶 段内的应力应变关系要受到加载状态、应力水平、应力 历史与应力路径的影响。 差别:在应力与应变之间的物理关系不同,即本构关系 不同。 本质差别:在于材料是否存在不可逆的塑性变形
弹性阶段:应力与应变之间的关系是一一对应的,这种应力和 应变之间能建上一一对应关系的称全量关系
第一章 岩土弹塑性力学
岩土塑性力学原理—广义塑性力学(郑颖人)

2 zx
I
3
x
y
z
2
xy
yz zx
x
2 yz
2
y zx
2
z xy
II121(12
3 2
2
3
3
1
)
I31 2 3
应力张量第一 不变量 I1 ,是平均应力p的三倍。
26
应力张量分解及其不变量
应力张量
岩土材料的稳定性、应变软化、损伤、应变局部化
(应力集中)与剪切带等问题
11
岩土材料的试验结果
土的单向或三向固结压缩试验:土有塑性体变
初始加载:
卸载与再加载:
e e0 ln p
e ek k ln p
12
岩土材料的试验结果
土的三轴剪切试验结果:
(1)常规三轴
土有剪胀(缩)性; 土有应变软化现象;
3
第1章 概 论
岩土塑性力学的提出 岩土塑性力学及其本构模型发展方向 岩土材料的试验结果 岩土材料的基本力学特点 岩土塑性力学与传统塑性力学不同点 岩土本构模型的建立
4
岩土塑性力学的提出
材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
19世纪40年代末,提出Drucker塑性公论,经典塑性 力学完善;
1773年Coulomb提出的土质破坏条件,其后推广为 莫尔—库仑准则;
1957年Drucker提出考虑岩土体积屈服的帽子屈服面;
1958年Roscoe等人提出临界状态土力学,1963年提出 剑桥模型。岩土塑性力学建立。
材料的塑性变形机理和性能控制

材料的塑性变形机理和性能控制材料是人类社会发展的重要基石,是各种工业产品的基础。
在大多数制造过程中,材料的塑性变形是不可避免的。
而塑性变形机理和性能控制是材料科学与工程中一个重要的研究领域。
一、塑性变形机理塑性变形是指材料在一定条件下受到外力作用形成塑性变形并保持下去的能力。
材料的塑性变形是由其内部结构的变化而引起的。
塑性变形的主要机理就是晶体内部滑移与游移。
晶体内部的晶格缺陷对塑性变形过程中的原子滑移和游移起着关键作用。
对于晶体而言,其内部结构具有规则的排列方式,称为晶格。
而晶格缺陷包括点缺陷、线缺陷和面缺陷。
在材料中,当受到外力作用时,原子在晶格内的移动会带来晶体内部结构的变化。
这种移动就是原子的滑移和游移。
滑移是指在相邻原子之间形成一些小的位错(错位点),使得晶体原子发生运动。
游移是指在晶体内部的缺陷上发生原子位移。
这两种运动形式是材料塑性变形的主要机理。
除了晶格缺陷,另一个重要的因素是晶界。
晶界是晶体中不同晶粒之间的界面,其存在会影响材料的特性,例如强度和延展能力等。
总之,塑性变形的机理是一个相对复杂的过程,需要深入研究晶格结构和其缺陷的变化情况。
二、性能控制为了实现工业产品的高效、高质量生产,对材料的性能进行有效控制十分关键。
从塑性变形的角度来看,这包括两个方面:强度和延展能力。
强度是材料阻抗外部应力的能力,在材料的塑性变形方面具有重要作用。
材料的强度受多种因素影响,包括晶粒尺寸、晶格结构和组织等等:例如,晶粒尺寸越小,其阻力就越大,从而提高材料强度。
延展能力是材料在承受应变时的变形程度。
合适的延展能力可以使材料更加可塑,适应更多种形状和用途。
在强度和延展能力之间,需要一个权衡。
例如,当强度越高时,延展性可能越差。
此外,还有一些因素可以通过材料加工和热处理进行控制,例如冷变形、淬火和退火等。
冷变形(例如轧制、拉伸和锻造等)可以增加材料的强度和硬度,从而提高其抵抗变形的能力。
淬火可以使材料更加坚硬,其中的快速冷却过程有助于将晶体结构固态化并提高材料机械性能。
岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程中的弹塑性理论与分析技术是研究岩土材料在受力作用下的弹性和塑性变形特性的理论和方法。
这些理论和技术在岩土工程设计、施工和监测中具有重要的应用价值。
本文将从弹塑性理论的基本概念、应用范围以及分析技术的具体方法等方面进行阐述。
弹塑性理论是研究岩土材料在受力作用下的弹性和塑性变形特性的理论。
弹性是指岩土材料在受力作用下能够恢复原状的能力,而塑性是指岩土材料在受力作用下会发生不可逆的变形。
弹塑性理论的基本假设是岩土材料在受力作用下是具有弹塑性的,并且可以通过一定的数学模型来描述其力学行为。
岩土工程中的弹塑性理论主要包括弹性理论、弹塑性理论和塑性理论。
弹性理论是最基本的弹塑性理论,它假设岩土材料在受力作用下只发生弹性变形,而不发生塑性变形。
弹塑性理论则是在弹性理论的基础上引入了塑性变形的概念,它假设岩土材料在受力作用下既可以发生弹性变形,也可以发生塑性变形。
塑性理论则是假设岩土材料在受力作用下只发生塑性变形,而不发生弹性变形。
在岩土工程中,弹塑性理论的应用范围非常广泛。
首先,弹塑性理论可以用于岩土工程设计中的荷载和变形计算。
通过建立合适的弹塑性模型,可以对岩土体在受力作用下的变形和破坏进行合理预测,从而指导工程设计和施工。
其次,弹塑性理论可以用于岩土体力学性质的试验研究。
通过对岩土体在不同应力状态下的弹塑性行为进行试验研究,可以获取岩土材料的力学参数,为岩土工程的设计和施工提供可靠的依据。
此外,弹塑性理论还可以用于岩土体的动力响应分析、岩土体的稳定性分析等方面。
在岩土工程中,弹塑性分析技术是基于弹塑性理论的具体计算方法。
弹塑性分析技术主要包括弹塑性有限元分析、弹塑性强度折减法、弹塑性反分析等方法。
弹塑性有限元分析是一种基于有限元法的弹塑性分析方法,通过建立合适的有限元模型和弹塑性本构关系,可以对岩土体在受力作用下的变形和破坏进行数值模拟。
弹塑性强度折减法是一种基于强度折减原理的弹塑性分析方法,通过将岩土体的强度参数按照一定的折减系数进行计算,可以对岩土体在受力作用下的变形和破坏进行估计。
岩土塑性力学读书报告

岩土塑性力学读书报告本学期我们学习了弹塑性力学这一课程,在刘老师的讲解和自学的过程中学习到了不少弹塑性力学的基础知识。
我们是岩土工程专业的学生,弹塑性力学知识相当重要,是后续课程的基础,由于专业的实用性,我们阅读了郑颖人、孔亮编著的《岩土塑性力学》一书。
这本书将不少弹塑性力学的基础知识运用到岩土工程中,从弹塑性力学的角度来理解岩土这种特殊介质的力学性质,阅读之后让我受益匪浅。
以下是我阅读本书后的一些总结。
一、岩土材料的特点岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
二、岩土塑性力学的基本假设由于塑性变形十分复杂,因此无论传统塑性力学还是岩土塑性力学都要做一些基本假设,只不过岩土塑性力学所做的假设条件比传统塑性力学少些,这是因为影响岩土材料塑性变形的因素较多,而且这些因素不能被忽视和简化。
下列两点假设不论是传统塑性力学还是广义塑性力学都必须服从:(1)忽略温度与实践影响及率相关影响的假设。
(2)连续性假设。
岩土塑性力学与传统塑性力学不同点:(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑平均应力和岩土材料的内摩擦。
(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅要考虑剪切屈服,还要考虑体积屈服。
(3)根据岩土的剪胀性,不仅静水压力可能引起塑性体积变化,而且偏应力也可能引起体积变化;反之,平均应力也可能引起塑性剪切变形。
(4)传统塑性力学中屈服面是对称的,而岩土材料的拉压不等,而使屈服面不对称,如岩土的三轴拉伸和三轴压缩不对称。
材料的塑性变形

材料的塑性变形材料的塑性变形是材料力学学科中的一个重要概念,指的是材料在受力作用下发生的可逆性变形过程。
塑性变形是材料的一种特性,表现为材料在一定温度和应力情况下,发生塑性变形后不会恢复到原状态。
本文将从塑性变形的定义、性质、影响因素和应用领域等方面展开探讨。
材料的塑性变形是指材料在外力的作用下,呈现出形状的变化,这种变化是可逆的。
与弹性变形不同的是,塑性变形是在超过材料的屈服点后发生的,且发生塑性变形后,材料不会完全恢复到原来的形状。
塑性变形是材料内部晶格结构发生改变的结果,通过滑移、重结晶等机制实现。
塑性变形是材料力学中一个重要的研究对象,它与材料的性能密切相关。
在工程实践中,我们常常需要考虑材料在受力状态下的塑性变形性能,以确保材料在服役过程中不会发生意外事故。
此外,塑性变形还与材料的加工性能、成形性能等密切相关,因此对塑性变形的研究具有重要的理论和实际意义。
塑性变形的性质主要包括以下几个方面:1. 可逆性:塑性变形是可逆的,并且不会引起材料的永久形变。
2. 体积不变性:塑性变形并不改变材料的体积。
3. 定向性:塑性变形是有方向性的,取决于材料的晶体结构和加载方向。
塑性变形的影响因素主要包括应力、温度和变形速率等。
在一定温度条件下,应力越大,材料的塑性变形越明显;温度越高,材料发生塑性变形的能力越强;变形速率对于塑性变形的影响也非常显著,通常情况下,变形速率越大,材料的塑性变形越明显。
材料的塑性变形在工程实践中有着广泛的应用。
例如,金属材料的塑性变形性能直接影响着金属制品的成形性能;塑料制品的塑性变形特性决定了其在加工过程中的可塑性等。
因此,通过研究材料的塑性变形特性,可以指导工程实践中材料加工的选择和工艺优化,提高材料的利用率和产品质量。
总之,材料的塑性变形是材料力学中一个重要的研究领域,具有重要的理论和实际意义。
通过深入研究材料的塑性变形特性,可以有效地指导工程实践中材料的选择和制造过程,为优化材料性能和提高产品质量提供理论支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阐述岩土材料的塑性变形
摘要:岩土材料的塑性变形即岩土界所谓土的本构关系.众所周知,土体是一种具有压硬性和剪胀(缩)性的摩擦型固体颗粒材料,存在原生各向异性和应力诱发的各向异性,所以土的应力应变关系非常复杂.文章主要介绍土的塑性变形机理和本构关系.
关键词:塑性变形本构关系各向异性
沈珠江院士指出[1]:现代土力学的核心部分是理论土力学,而理论土力学的核心部分是土的强度和本构关系的研究.人们把模拟土体应力-应变关系的数学表达式称为土体的本构模型.土的力学性质是建立土的本构关系的基础,进而土的本构关系的研究又促进了人们对土的力学特性的认识.土体是一种具有压硬性和剪胀(缩)性的摩擦型固体颗粒材料,存在原生各向异性和应力诱发的各向异性,所以土的应力应变关系非常复杂[2]。
本构模型发展已经有很多年的时间了,这些模型被用于有限元法和有限差分法等数值计算中.任何本构模型都以力学准则为基础得到了详细的阐述,它们中有些建立在试验的基础上,而另外有些建立在理论基础上.
2 经典本构模型的优缺点分析
复杂应力状态下的土体本构模型主要有:变弹性模型;非线性弹性模型;弹塑性模型;坐标直接变换法.
(1)变弹性模型基于广义胡克定律,数学方法相对简单,试验参数测定比较方便,容易为工程界所理解和掌握,因此具有广泛的实用性,其中较常用的是Duncan-张双曲线模型.其突出优点是能反映土体变形特性中最重要的应力应变非线性,主要缺点是不能反映土体的剪胀性和不考虑中主应力的影响,尤其不能反映应力应变关系的各向异性。
(2)线性弹性理论是根据张量对称原理或能量假设而建立的,如次弹性(Hypoela stic)理论,假设应力增量不但与应变全量有关还和应变增量有关,是更一般的形式.它可以表达非线性、剪胀性、应力路径的影响及应力引起的各向异性等,但参数较多,无直接和明确的物理意义,不易合理和唯一的确定,而且次弹性模型的弹性矩阵非对称性,不能保证解的唯一性和稳定性。
(3)弹塑性模型,Roscoe等人提出的剑桥模型简单明快地预测了包括压缩和剪切变形特性在内的土的力学性状,成为岩土材料的经典弹塑性模型,并在世界范围内被广泛应用于工程之中.其优点是考虑了岩土材料的静水压力屈服特性、压硬性、剪胀(缩)性;试验参数只有3个,
测定方法简单;但没有考虑中主应力对强度的影响;该模型的硬化定律采用等向硬化模型,不符合包辛格效应,所以不能很好的反映土体的各向异性。
3 结语
通过对土体各向异性本构模型及其相关研究分析表明,尽管诸多研究者都想努力建立能够良好反映和模拟各向异性的土体本构模型,但其中多数各向异性弹塑性本构模型的研究,能考虑的还主要是屈服函数的修正或修改.关于弹塑性本构模型中的其它准则,还不得不沿用各向同性假设或忽略各向异性特性.
许多不同的本构模型已被用于分析材料的应力-应变特性,它们都有一个共同的特点,在给定的边界条件、初始条件、以及荷载条件下尽可能准确的描述材料的实际特征.为了建立这样的一种机制,人们首先在预先规定的条件下观察材料的变形特征,如在试验实的试验中,针对这些特征,然后运用一种给定的理论(如弹塑性)建模,最后再按照提出的模型进行有效性验证和参数的确定.
参考文献
[1] 沈珠江.理论土力学[M].北京:中国水利水电出版社,2000(5).
[2] 徐志伟.土体各向异性变形特性真三轴试验研究[D].南京:河海大学,2003,11,20.
[3] 徐秉业,陈森灿.塑性理论简明教程[M].北京,清华大学出版社,1981(7).
[4] 郑颍人,沈珠江,龚晓南.岩土塑性力学原理[M].北京,中国建筑工业出版社,2002(11).
[5] 张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.
[6] 屈智炯.土的塑性力学[M].成都,成都科技大学出版社,1987(12).
[7] 蒋彭年.土的本构关系[M].北京,科学出版社,1982(11).
[8] 章根德.土的本构模型及其工程应用[M].北京,科学出版社,1995(8).。