机器学习_第一讲-引言-2014概述.

合集下载

机器学习基础课件

机器学习基础课件
结果作为新的特征,再训练一个元模型进行最 终预测。
模型诊断与改进策略
残差分析(Residual Analys…
通过检查模型的残差图,识别模型是否存在异方差性、非线性等问题。
特征重要性分析(Feature Impo…
通过分析模型中各个特征对预测结果的贡献程度,识别关键特征和冗 余特征。
案例五:使用神经网络进行手写数字识别
使用卷积神经网络等算法提取图像特 征,以便输入到神经网络模型中。
使用准确率、混淆矩阵等指标对模型 进行评估,调整模型参数以优化识别 性能。
数据准备
特征提取
模型训练
模型评估
收集手写数字图像数据集,包括训练 集和测试集,对数据进行预处理和增 强。
构建神经网络模型,对提取的特征进 行训练和学习,得到手写数字识别模 型。
遗传算法(Genetic Algorit…
模拟自然选择和遗传机制,在指定的超参数空间内进行搜索。
模型集成方法
装袋(Bagging)
通过自助采样法得到多个训练集,分别训练基模型,然后将基模型 的预测结果进行平均或投票得到最终预测结果。
提升(Boosting)
通过迭代地训练基模型,每次迭代时调整样本权重,使得之前被错 误分类的样本得到更多的关注。
决策树、神经网络、支持向量机等。
近年来,随着大数据和深度学习技术的快速发展,机 器学习在图像识别、语音识别、自然语言处理等领域
取得了突破性进展。
机器学习的应用领域
计算机视觉
通过训练图像识别模型,实现对图像中物体、 场景、文字等信息的自动识别和理解。
自然语言处理
利用机器学习技术,实现对文本数据的自动分析、 理解和生成,如情感分析、机器翻译等。
模型复杂度分析(Model Comple…

机器学习课件ppt

机器学习课件ppt
详细描写
逻辑回归通过将输入变量映射到概率 值来工作,然后使用阈值将概率值转 换为二进制类别。它通常用于二元分 类问题,如点击率猜测或敲诈检测。
决策树
总结词
决策树是一种监督学习算法,它通过树形结构进行决策和分 类。
详细描写
决策树通过递归地将数据集划分为更小的子集来工作,直到 到达终止条件。每个内部节点表示一个特征的测试,每个分 支表示测试的一个结果,每个叶节点表示一个类标签。
深度学习的应用场景包括图像 辨认、语音辨认、自然语言处 理和推举系统等。
强化学习
01
强化学习是机器学习的一个分支 ,通过让智能体与环境交互来学 习最优的行为策略。
02
强化学习的特点是基于环境的反 馈来不断优化行为,以到达最终
的目标。
常见的强化学习算法包括Qlearning、SARSA和Deep Qnetwork等。
计算机视觉
机器学习在计算机视觉领域的应用包 括图像分类、目标检测、人脸辨认等 。
推举系统
机器学习在推举系统中的应用是通过 分析用户行为和偏好来推举相关的内 容或产品。
语音助手
机器学习在语音助手中的应用是通过 语音辨认和自然语言处理技术来理解 用户意图并作出相应回应。
02
机器学习基础
线性回归
总结词
线性回归是一种通过拟合数据点来猜测连续值的算法。
详细描写
线性回归通过找到最佳拟合直线来猜测因变量的值,该直线基于自变量和因变 量之间的关系。它使用最小二乘法来拟合数据,并输出一个线性方程,可以用 来进行猜测。
逻辑回归
总结词
逻辑回归是一种用于分类问题的算法 ,它将连续的输入变量转换为二进制 的输出变量。
数据清洗
去除特殊值、缺失值和重复数据,确保数据质量。

机器学习-01引言

机器学习-01引言

21
最终设计
实验生成器 新问题 假设
执行系统 解答路线 鉴定器
泛化器 训练样例
22
西洋跳棋学习的更多讨论
图1-2 第13章理论上的保证 更复杂的目标函数 其他学习算法
这种学习技术是否确保发现一个非常接近的近似。
最近邻算法,存储训练样例,寻找保存的最接近的情 形来匹配新的情况 遗传算法,产生大量候选的西洋跳棋程序,让它们相 互比赛,保留最成功的程序并进一步用模拟进化的方 式来培育或变异它们 基于解释的学习,分析每次成败的原因
11
选择目标函数(2)
ChooseMove的评价
另一个目标函数V
学习问题很直观地转化成这个函数 这个函数的学习很困难,因为提供给系统的是间接训 练经验 一个评估函数,V: BR,它为任何给定棋局赋予一个 数值评分,给好的棋局赋予较高的评分 优点,学习简单 V的应用
选择目标函数(3)
V的设计,对于集合B中的任意棋局b,V(b)定义如下
如果b是一最终的胜局,那么V(b)=100 如果b是一最终的负局,那么V(b)=-100 如果b是一最终的和局,那么V(b)=0 如果b不是最终棋局,那么V(b)=V(b’),其中b’是从b开 始双方都采取最优对弈后可达到的终局
8
选择训练经验
第一个关键属性,训练经验能否为系统的决策提供 直接或间接的反馈 第二个重要属性,学习器在多大程度上控制样例序 列 第三个重要属性,训练样例的分布能多好地表示实 例分布,通过样例来衡量最终系统的性能
9
选择训练经验(续)
西洋跳棋学习问题
任务T,下西洋跳棋 性能标准P,击败对手的百分比 训练经验E,和自己进行训练对弈

机器学习(完整版课件)

机器学习(完整版课件)

• 聚类模型评估指标:轮廓系数、CalinskiHarabasz指数等。
模型评估与选择
交叉验证
通过多次划分训练集和验证集来评估模型的性 能。
网格搜索
对不同的超参数组合进行穷举搜索,以找到最 优的模型参数。
随机搜索
在指定的超参数范围内进行随机采样,以找到较好的模型参数。
03
监督学习
线性回归与逻辑回归
励。
马尔可夫决策过程
强化学习任务通常建模为马尔可夫 决策过程(MDP),包括状态、 动作、转移概率和奖励等要素。
值函数与策略函数
强化学习通过估计值函数(状态值 函数或动作值函数)来评估不同行 为的好坏,并根据策略函数来选择 动作。
Q-learning与Sarsa算法
01
Q-learning算法
Q-learning是一种基于值迭代的强化学习算法,通过不断更新Q值表来
线性回归
一种通过最小化预测值与真实值之间的均方误差来拟合数据 的统计方法。它假设因变量和自变量之间存在线性关系,并 通过梯度下降等优化算法求解模型参数。
逻辑回归
一种用于解决二分类问题的广义线性模型。它使用sigmoid 函数将线性回归的输出映射到[0,1]区间,表示样本属于正类 的概率。逻辑回归通过最大似然估计求解模型参数,并使用 交叉熵作为损失函数。
• 嵌入法:在模型训练过程中进行特征选择。
特征选择与特征提取
根据领域知识提取有效特 征。
自定义特征提取
卷积神经网络等。
图像特征提取
词袋模型、TF-IDF等。
文本特征提取
模型评估与选择
分类模型评估指标
准确率、精确率、召回率、F1分数等 。
回归模型评估指标
均方误差、均方根误差、平均绝对误 差等。

机器学习的基础知识

机器学习的基础知识

机器学习的基础知识机器学习的基础知识随着人工智能技术的迅速发展,机器学习逐渐成为了一个热门话题。

机器学习是一种利用数据和算法来帮助计算机自动地进行学习和预测的技术。

在机器学习中,计算机可以通过数据分析和模式识别来发现规律和趋势,并根据这些规律自动地进行决策和预测。

在本文中,我们将介绍机器学习的基础知识,包括机器学习的定义、机器学习的分类、机器学习的流程、机器学习的应用等。

一、机器学习的定义机器学习是一种利用数据和算法来帮助计算机自动地进行学习和预测的技术。

它是人工智能技术的重要分支之一,也是数据科学和大数据时代的重要应用之一。

在机器学习中,计算机可以通过数据分析和模式识别来发现规律和趋势,并根据这些规律自动地进行决策和预测。

机器学习可以应用于各种领域,包括金融、医疗、企业、政府等,可以帮助人们更好地利用数据和信息来进行决策和管理。

二、机器学习的分类机器学习可以根据其学习方式和目标问题的类型进行分类。

根据学习方式,机器学习可以分为监督学习、无监督学习和强化学习。

根据目标问题的类型,机器学习可以分为分类、回归、聚类、降维等。

1.监督学习监督学习是指学习过程中,数据集已经有标记,也就是已知数据和对应的输出结果。

在监督学习中,计算机通过训练数据集来学习输入和输出之间的映射关系,然后应用学习的映射关系来对未知数据进行预测或分类。

常见的监督学习算法包括决策树、随机森林、神经网络等。

2.无监督学习无监督学习是指学习过程中,数据集没有标记,也就是未知数据和输出结果。

在无监督学习中,计算机通过对数据进行聚类、降维等操作来发现数据中的内在结构和规律。

无监督学习常见的算法包括K-means聚类、朴素贝叶斯等。

3.强化学习强化学习是指在智能体与环境互动的框架下,通过尝试和错误的方式来学习最优策略的机器学习方法。

在强化学习中,智能体通过对环境的反馈来学习哪些动作是正确的,哪些动作是错误的。

强化学习常见的算法包括Q-learning、SARSA等。

机器学习入门课件

机器学习入门课件
均方误差、均方根误差
针对回归问题,解释这些指标的含义和计算方法,以及它 们在评估模型性能时的作用。
超参数调优策略分享
网格搜索
01
介绍网格搜索的原理和实现方法,以及如何使用网格
搜索进行超参数调优。
随机搜索
02 详细解释随机搜索的原理和实现过程,以及它在超参
数调优中的应用场景。
贝叶斯优化
03
分享贝叶斯优化的基本思想和实现方法,以及它在寻
要点三
应用场景
适用于分类和回归问题,如客户分群 、股票价格预测等。
03
无监督学习算法
K-means聚类分析
算法原理
通过迭代的方式将数据划分为K个簇,使得每个簇内部的数据点尽 可能相似,而不同簇之间的数据点尽可能不同。
应用场景
图像分割、文档聚类、客户分群等。
优缺点
简单易懂,收敛速度快,但需要预先指定K值,对初始质心敏感, 容易陷入局部最优解。
算法原理
通过训练一个神经网络来学习数据的 有效表示,使得输出尽可能接近输入
,从而得到数据的压缩表示。
应用场景
数据降维、异常检测、生成模型等。
优缺点
可以学习到数据的非线性表示,具有 较强的泛化能力,但需要大量的数据
进行训练,且容易过拟合。
04
强化学习与深度学习简介
强化学习原理及应用场景
强化学习原理
决策树与随机森林
要点一
定义
决策树是一种基于树形结构的监督学 习算法,通过对特征进行选择和划分 来构建决策树,从而实现对目标变量 的预测和分类。随机森林是一种集成 学习方法,通过构建多个决策树的集 成模型来提高预测的准确性和稳定性 。
要点二
原理
决策树通过选择最优特征进行划分, 使得每个叶子节点对应的目标变量具 有相似的取值。随机森林通过引入随 机性和集成学习的思想,降低了单个 决策树的过拟合风险,提高了预测的 准确性和稳定性。

2024《机器学习》ppt课件完整版

2024《机器学习》ppt课件完整版

《机器学习》ppt课件完整版•引言•机器学习基础知识•监督学习算法目录•无监督学习算法•深度学习基础•强化学习与迁移学习•机器学习实践与应用引言机器学习的定义与目标定义目标机器学习的目标是让计算机系统能够自动地学习和改进,而无需进行明确的编程。

这包括识别模式、预测趋势以及做出决策等任务。

早期符号学习01统计学习阶段02深度学习崛起0301020304计算机视觉自然语言处理推荐系统金融风控机器学习基础知识包括结构化数据(如表格数据)和非结构化数据(如文本、图像、音频等)。

数据类型特征工程特征选择方法特征提取技术包括特征选择、特征提取和特征构造等,旨在从原始数据中提取出有意义的信息,提高模型的性能。

包括过滤式、包装式和嵌入式等,用于选择对模型训练最有帮助的特征。

如主成分分析(PCA )、线性判别分析(LDA )等,用于降低数据维度,减少计算复杂度。

数据类型与特征工程损失函数与优化算法损失函数优化算法梯度下降变种学习率调整策略模型评估与选择评估指标评估方法模型选择超参数调优过拟合模型在训练集上表现很好,但在测试集上表现较差,泛化能力不足。

欠拟合模型在训练集和测试集上表现都不佳,未能充分学习数据特征。

防止过拟合的方法包括增加数据量、使用正则化项、降低模型复杂度等。

解决欠拟合的方法包括增加特征数量、使用更复杂的模型、调整超参数等。

机器学习中的过拟合与欠拟合监督学习算法线性回归与逻辑回归线性回归逻辑回归正则化二分类问题核技巧软间隔与正则化030201支持向量机(SVM )决策树与随机森林剪枝决策树特征重要性随机森林一种集成学习方法,通过构建多棵决策树并结合它们的输出来提高模型的泛化性能。

Bagging通过自助采样法(bootstrap sampling)生成多个数据集,然后对每个数据集训练一个基学习器,最后将所有基学习器的输出结合起来。

Boosting一种迭代式的集成学习方法,每一轮训练都更加关注前一轮被错误分类的样本,通过加权调整样本权重来训练新的基学习器。

机器学习第一章ppt课件

机器学习第一章ppt课件

趣味时间
如何使用下列4个集合来组成一个歌曲推荐的学习问题?
S1 = [0,100] S2 = 所有可能的(用户,歌曲)数据对 S3 = 所有将用户因子&歌曲因子“相乘”的公式,
并通过这些因子所有可能的联系进行索引 S4 = 1,000,000个(用户,歌曲)数据对
(1)S1 = X,S2 = Y,S3 =H,S4 = D (2)S1 = Y,S2 = X,S3 =H,S4 = D (3)S1 = D,S2 = H,S3 =Y,S4 = X (4)S1 = X,S2 = D,S3 =Y,S4 = H
Seeing is Believing
药到病除,小于20步!! (注意:为了更好观察使 xi >> x0 = 1)
眼见为实
药到病除,小于20步!! (注意:为了更好观察使 xi >> x0 = 1)
眼见为实
药到病除,小于20步!! (注意:为了更好观察使 xi >> x0 = 1)
眼见为实
药到病除,小于20步!! (注意:为了更好观察使 xi >> x0 = 1)
回顾
讲义 1: 机器学习的问题 什么是机器学习? 机器学习的应用? 机器学习的组成? 机器学习与其它领域 讲义 2: 预测/分类的学习
什么是机器学习
•机器学习:通过数据进行经验计算来提高一些性能指标。 DATA ——> ML ——> 提高一些性能指标
机器学习的关键性质
1.存在一些“潜在模式”去学习
参考答案:2
正面加权关键字的出现增加了“垃圾邮件分数”,而这些关键字经常 出现在垃圾邮件中。
从 H 中选择 g
H = 一切可能的感知器,g = ?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档