螺旋桨扭角的设计依据是什么
螺旋桨基础理论分解

作用在桨叶上的力及力矩
三、螺旋桨的作用力 由上面的分析可知,在给定螺旋桨的进速VA和转速n时. 如能求得诱导速度ua及ut,则可根据机翼理论求出任意半 径处叶元体上的作用力,进而求出整个螺旋桨的作用力。 取半径r处dr 段的叶元体进行讨论,其速度多角形如图3 一10 所示。当水流以合速度VR、攻角α K流向此叶元体时 ,便产生了升力dL和阻力dD。将升力dL分解为沿螺旋桨轴 向的分力dLa和旋转方向的分力dLt,阻力dD 相应地分解 为dDa和dDt 。因此该叶元体所产生的推力dT及遭受的旋 转阻力dF是:
对于有限翼展机翼,由于机翼上下表面的压差作用, 下表面高压区的流体会绕过翼梢流向上表面的低压区.翼 梢的横向绕流与来流的共同作用,使机翼后缘形成旋涡层 。这些旋涡称为自由涡。它们在后方不远处卷成两股大旋 涡而随流速V 延伸至无限远处,如图3 一8 所示。
2-7
作用在桨叶上的力及力矩
由于自由涡的存在,在空间产生一个诱导速度场。在机翼 后缘处,诱导速度垂直于运动方向,故也称下洗速度。由 于产生下洗速度,使机翼周围的流动图形有所改变,相当 于无限远处来流速度V 发生偏转,真正的攻角发生变化, 如图3 一9 所示。由于机翼处下洗速度un/2 ,使得原来 流速V 改变为VR,真正的攻角由α ’k改变为α k, α ’k为 三元的名义弦线攻角,α k 称为有效几何攻角。 △α =α ’k-α k称为下洗角, 一般约为2º ~3º,因此可近 似地2认- 8为
3 一3 作用在桨叶上的力及力矩
一、速度多角形 在讨论螺旋桨周围的流动情况时,除考虑螺旋桨本身的前 进速度及旋转速度外,还需要考虑轴向诱导速度和周向诱 导速度。在绝对运动系统中、轴向诱导速度的方向与螺旋 桨的前进方向相反,而周向诱导速度的方向与螺旋桨的转 向相同。以半径为r 的共轴 圆柱面与桨叶相交并展成平 面,则叶元体的倾斜角θ 即 为螺距角,且可据下式决定:
螺旋桨推力计算模型根据船舶原理知通过资料

螺旋桨推力计算模型根据船舶原理知通过资料螺旋桨是船舶的主要推进器件,它的淌水特性对船舶的推力性能具有重要影响。
螺旋桨推力计算模型可以根据船舶原理和相关资料提供有效的推力计算方法。
本文将从螺旋桨的基本原理、淌水特性以及推力计算模型等方面进行详细介绍。
一、螺旋桨的基本原理螺旋桨是船舶的主要推进器件,它由一系列螺旋线形成。
当螺旋桨旋转时,水流会被螺旋桨叶片推动并产生一定的反作用力,从而推进船舶前进。
螺旋桨的推力主要来自两个方面:剪切推力和反作用推力。
剪切推力是由于螺旋桨叶片在水中剪切水流所产生的,它与螺旋桨叶片弯曲及鼓波等因素有关;反作用推力是由于螺旋桨旋转所产生的反作用力,它与螺旋桨推进转速、直径和旋转方向等因素有关。
二、螺旋桨的淌水特性1.淌水流场螺旋桨在淌水过程中,会形成一定的淌水流场。
这个流场受到螺旋桨叶片形状、转速和船舶运动速度等因素的影响,它对螺旋桨推力的大小和方向有重要影响。
2.淌水损失由于螺旋桨叶片与水之间存在一定的摩擦和阻力,螺旋桨在淌水过程中会产生一定的淌水损失。
淌水损失会降低螺旋桨的效率,因此需要通过推力计算模型来准确估计淌水损失。
3.淌水性能参数为了描述螺旋桨的推力性能,可以引入一些淌水性能参数,如推力系数、功率系数和效率等。
这些参数可以通过实验和理论模型来确定,从而有效评估螺旋桨的推力性能。
三、螺旋桨推力计算模型为了准确计算螺旋桨的推力,研究者们提出了不同的推力计算模型。
这些模型主要基于流体动力学原理和大量实验资料,可以较为准确地估计螺旋桨的淌水特性和推力性能。
推力计算模型可以通过以下几个步骤进行:1.确定船舶参数首先,需要确定船舶的一些参数,如船舶的船体形状、质量、速度和运动状态等。
这些参数将用于计算螺旋桨的推力。
2.建立淌水流场模型根据螺旋桨叶片形状和转速等参数,可以建立螺旋桨的淌水流场模型。
这个模型可以通过数值计算方法或实验测试来确定。
3.计算推力系数和淌水损失根据淌水流场模型,可以计算螺旋桨的推力系数和淌水损失。
关于螺旋桨的一些知识

关于螺旋桨的一些知识螺旋桨是船舶和飞机等交通工具的重要部件,具有推动物体前进的功能。
在本文中,我们将介绍螺旋桨的工作原理、结构构造、选材等相关知识。
一、螺旋桨的工作原理螺旋桨依靠空气或水流动的原理产生推力,从而推动船舶或飞机前进。
其工作原理可简单归纳为以下几个方面:1. 流体动力学理论:根据流体动力学理论,螺旋桨叶片受到流体的作用会形成载荷,通过迎角改变和旋转速度调节,将动力转化为推进力。
2. 套氏定理:套氏定理指出,在涉及固定的螺旋桨时,液体或气体在进入螺旋桨以前,质量流率保持不变,但速度和压力会发生变化。
这种速度和压力的变化使得螺旋桨产生了推力。
二、螺旋桨的结构构造螺旋桨的结构构造通常由叶片、轴、轴套等组成。
1. 叶片:螺旋桨叶片是螺旋桨的最重要部分,其形状和数量会直接影响推力的大小和效率的高低。
通常,螺旋桨叶片会根据具体设计要求进行定制,以达到最佳的推进效果。
2. 轴和轴套:螺旋桨的轴起到支撑和固定作用,通常由高强度合金钢或碳纤维材料制成,以确保其在高速旋转时的安全可靠性。
轴套则用于固定轴与螺旋桨叶片的连接。
三、螺旋桨的选材螺旋桨的选材对于其使用寿命和推进效果有着重要影响。
常见的螺旋桨选材有以下几种:1. 铝合金:铝合金螺旋桨具有重量轻、制造成本低的优点,适用于速度较低的船舶和小型飞机。
2. 不锈钢:不锈钢螺旋桨在耐蚀性、强度和硬度方面表现出众,适用于海洋环境和高速航行的船舶和飞机。
3. 青铜:青铜螺旋桨具有较好的耐腐蚀性和抗磨损性能,适用于大型船舶和高负荷工况下的飞机。
四、螺旋桨的维护保养为了确保螺旋桨的正常运行和延长其使用寿命,维护保养工作至关重要。
以下是一些建议:1. 定期清洗:螺旋桨表面容易附着赘物,定期清洗可以减少其阻力,提高推进效率。
2. 检查叶片状态:定期检查螺旋桨叶片的变形、裂纹和磨损情况,及时修复或更换叶片,以确保其正常工作。
3. 螺母紧固:定期检查螺旋桨的连接螺母是否紧固,防止因螺母松动而导致螺旋桨脱落或异常运转。
船用螺旋桨的几何特征

船用螺旋桨的几何特征螺旋桨的面螺距螺旋桨桨叶的叶面是螺旋面的一部分,故任何与螺旋桨共轴的圆柱面与叶面的交线为螺旋线的一段,B0C0段。
若将螺旋线段B0C0引长环绕轴线一周,则其两端之轴向距离等于此螺旋线的螺距P。
若螺旋桨的叶面为等螺距螺旋面之一部分,则P即称为螺旋桨的面螺距。
面螺距P与直径D之比P/D称为螺距比。
将圆柱面展成平面后即得螺距三角形。
设上述圆柱面的半径为r,则展开后螺距三角形的底边长为2πr,节线与底线之间的夹角θ为半径r处的螺距角,并可据下式来确定:tgθ=P/2πr螺旋桨某半径r处螺距角θ的大小,表示桨叶叶面在该处的倾斜程度。
不同半径处的螺距角是不等的,r愈小则螺距角θ愈大。
若螺旋桨叶面各半径处的面螺距不等,则称为变螺距螺旋桨。
对此类螺旋桨常取半径为0.7R或0.75R(R为螺旋桨梢半径)处的面螺距代表螺旋桨的螺距,为注明其计量方法,在简写时可记作P0.7R或P0.75R。
桨叶切面与螺旋桨共轴的圆柱面和桨叶相截所得的截面称为桨叶的切面,简称叶切面或叶剖面。
将圆柱面展为平面后则得叶切面形状,其形状与机翼切面相仿。
所以表征机翼切面几何特性的方法,可以用于桨叶切面。
桨叶切面的形状通常为圆背式切面(弓形切面)或机翼形切面,特殊的也有梭形切面和月牙形切面。
一般说来,机翼形切面的叶型效率较高,但空泡性能较差,弓形切面则相反。
普通之弓形切面展开后叶面为一直线,叶背为一曲线,中部最厚两端颇尖。
机翼形切面在展开后无一定形状,叶面大致为一直线或曲线,叶背为曲线,导边钝而随边较尖,其最大厚度则近于导边,约在离导边25%~40%弦长处。
切面的弦长一般有内弦和外弦之分。
连接切面导边与随边的直线AB称内弦,线段BC称为外弦。
对于系列图谱螺旋桨来说,通常称外弦为弦线,而对于理论设计的螺旋桨来说,则常以内弦(鼻尾线)为弦线,弦长及螺距也根据所取弦线来定义。
弦长b 为系列螺旋桨之表示方法。
切面厚度以垂直于所取弦线方向与切面上、下面交点间的距离来表示。
螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1 和r2(r1 <r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD 和升力ΔL ,见图1—1—19 ,合成后总空气动力为ΔR。
ΔR 沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P) 和效率(η)可用下列公式计算:T=Ct ρn2D4P=Cp ρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct 和Cp 取决于螺旋桨的几何参数,对每个螺旋桨其值随J 变化。
图1—1—21 称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
第三章螺旋桨基础理论及水动力特性船舶阻力与推进

第三章螺旋桨基础理论及水动力特性关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。
在长期的实践过程中,螺旋桨的形状不断改善。
自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。
其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。
另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。
它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。
其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。
从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。
尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。
虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。
至于对环流理论的进一步探讨,将在第十二章中再行介绍。
§3-1 理想推进器理论一、理想推进器的概念和力学模型推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。
显然推进器的作用力与其所形成的水流情况密切有关。
因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。
为了使问题简单起见,假定:(1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。
(2)水流速度和压力在盘面上均匀分布。
螺旋桨扭矩计算公式

螺旋桨扭矩计算公式螺旋桨扭矩计算公式是船舶设计和航海领域中经常遇到的一个重要问题。
扭矩是指施加在螺旋桨上的力矩,它是螺旋桨推进力的来源。
通过计算螺旋桨的扭矩,可以评估船舶的推进性能和动力系统的工作状态。
螺旋桨扭矩计算公式主要包括以下几个因素:螺旋桨的直径、螺旋桨的螺距、螺旋桨的转速、水流的密度以及船舶的速度。
这些因素共同影响着螺旋桨的扭矩大小。
螺旋桨的直径是计算扭矩的重要因素之一。
螺旋桨的直径越大,其扭矩也就越大。
这是因为较大直径的螺旋桨可以更高效地转换动能为推进力。
螺旋桨的螺距也对扭矩产生影响。
螺距是指螺旋桨在一圈中所推进的距离。
螺距越大,螺旋桨的推进力也就越大,扭矩也相应增大。
螺旋桨的转速也是计算扭矩的重要因素之一。
转速是指螺旋桨每分钟旋转的圈数。
转速越高,螺旋桨的扭矩也就越大。
水流的密度是影响螺旋桨扭矩的另一个因素。
水流的密度越大,螺旋桨所受到的阻力也就越大,扭矩也相应增大。
船舶的速度也对螺旋桨的扭矩产生影响。
船舶的速度越快,螺旋桨所需的扭矩也就越大。
根据上述因素,螺旋桨扭矩的计算公式可以表示为:扭矩= 0.5 * π * (螺旋桨直径/2)^2 * 螺旋桨螺距 * 水流密度* (转速/60)^2 * 船舶速度其中,π为圆周率,螺旋桨直径为螺旋桨的直径,螺旋桨螺距为螺旋桨的螺距,水流密度为水流的密度,转速为螺旋桨的转速,船舶速度为船舶的速度。
通过使用螺旋桨扭矩计算公式,可以方便地评估船舶的推进性能。
在实际应用中,设计师和船舶操作人员可以根据船舶的工作条件和要求,选择适当的螺旋桨参数,以达到最佳的推进效果。
需要注意的是,螺旋桨扭矩计算公式只是一个理论模型,实际应用中还需要考虑其他因素的影响,比如船舶的阻力、船舶的形状等。
因此,在具体的船舶设计和运营中,还需要结合实际情况进行综合考虑和调整。
螺旋桨扭矩计算公式是船舶设计和航海领域中的重要工具,通过计算螺旋桨的扭矩,可以评估船舶的推进性能和动力系统的工作状态。
基于面元法理论的船用螺旋桨设计方法

02
基于面元法理论的船用 螺旋桨设计方法
面元法理论概述
面元法理论背景
面元法是一种用于分析复杂曲面和流 场特性的一种数值计算方法。该理论 起源于20世纪80年代,在船舶、航 空航天、能源等领域得到了广泛应用 。
面元法基本原理
面元法将复杂曲面或流场离散化为由 简单面元构成的集合,通过对面元的 参数化,建立面元之间的数学关系, 从而进行数值计算和分析。
总结词
高速、轻量化、抗空化
详细描述
该型高速船用螺旋桨设计重点考虑了高速航行时的性能表现和抗空化能力。通过采用轻量化的材料和 精简的设计结构,实现了螺旋桨的轻量化。同时,面元法理论在设计中得到了充分应用,提高了螺旋 桨的水动力性能和抗空化性能。该型螺旋桨适用于高速客船、快艇等船舶。
设计实例三:某型军用螺旋桨的设计
增加市场份额
随着面元法理论的不断发展和完善,螺旋桨的设计质量和性能不断提高,可以进 一步扩大市场份额,提高竞争力。
06
基于面元法理论的船用 螺旋桨设计总结与建议
设计总结
螺旋桨设计是一个复杂且需要精细平 衡的过程,需要考虑诸多因素,如水 动力性能、材料强度、噪音和振动等 。
在设计中,应注重优化桨叶形状、尺 寸和角度,以实现最佳的水动力性能 和最小的振动。
优化设计参数的关键技术
优化目标函数
明确优化目标函数,如最大推力 、最小振动噪声等。
优化算法选择
介绍常见的优化算法,如梯度下 降法、遗传算法、粒子群算法等
,并比较其优劣。
优化过程控制
对面元法在优化过程控制方面的 应用进行详细描述,包括优化过 程的稳定性、收敛性和计算效率
等。
04
基于面元法理论的船用 螺旋桨设计实例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺旋桨扭角的设计依据是什么
螺旋桨
一、工作原理
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。
流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。
在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。
V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。
显而易见β=α+φ。
空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。
ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。
将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。
从以上两图还可以看到。
必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。
螺旋桨工作时。
轴向速度不随半径变化,而切线速度随半径变化。
因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。
而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。
螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。
所以说螺旋桨是一个扭转了的机翼更为确切。
从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。
对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。
迎角变化,拉力和阻力矩也随之变化。
用进矩比“J”反映桨尖处气流角,J=V/nD。
式中D—螺旋桨直径。
理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:
T=Ctρn2D4
P=Cpρn3D5
η=J·Ct/Cp
式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。
其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。
图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。
特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。
是设计选择螺旋桨和计算飞机性能的主要依据之一。
从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。
对飞行速度较低而发动机转速较高的轻型飞机极为不利。
例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。
因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。
二、几何参数
直径(D):影响螺旋桨性能重要参数之一。
一般情况下,直径增大拉力随之增大,效率随之提高。
所以在结构允许的情况下尽量选直径较大的螺旋桨。
此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。
桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。
超轻型飞机一般采用结构简单的双叶桨。
只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。
实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。
它的影响与桨叶数目的影响相似。
随实度增加拉力系数和功率系数增大。
桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。
习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。
螺距:它是桨叶角的另一种表示方法。
图1—1—22是各种意义的螺矩与桨叶角的关系。
几何螺距(H):桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。
它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。
桨叶各剖面的几何螺矩可能是不相等的。
习惯上以70%直径处的几何螺矩做名称值。
国外可按照直径和螺距订购螺旋桨。
如64/34,表示该桨直径为60英寸,几何螺矩为34英寸。
实际螺距(Hg):桨叶旋转一周飞机所前进的距离。
可用Hg=v/n计算螺旋桨的实际螺矩值。
可按H=1.1~1.3Hg粗略估计该机所用螺旋桨几何螺矩的数值。
理论螺矩(HT):设计螺旋桨时必须考虑空气流过螺旋桨时速度增加,流过螺旋桨旋转平面的气流速度大于飞行速度。
因而螺旋桨相对空气而言所前进的距离一理论螺矩将大于实际螺矩。
三、螺旋桨拉力在飞行中的变化
1.桨叶迎角随转速的变化
在飞行速度不变的情况下,转速增加,则切向速度(U)增大,进距比减小桨叶迎角增大,螺旋桨拉力系数增大(图1—1—20所示)。
又由于拉力与转速平方成正比,所以增大油门时,可增大拉力。
2.桨叶迎角随飞行速度的变化:
在转速不变的情况下,飞行速度增大,进距比加大,桨叶迎角减小,螺旋桨拉力系数减小。
如图1—1—20所示,拉力随之降低。
当飞行速度等于零时,切向速度就是合速度,桨叶迎角等于桨叶角。
飞机在地面试车时,
飞行速度(V)等于零,桨叶迎角最大,一些剖面由于迎角过大超过失速迎角气动性能变坏,因而螺旋桨产生的拉力不一定最大。
3.螺旋桨拉力曲线:
根据螺旋桨拉力随飞行速度增大而减小的规律,可绘出螺旋桨可用拉力曲线。
4.螺旋桨拉力随转速、飞行速度变化的综合情况:
在飞行中,加大油门后固定。
螺旋桨的拉力随转速和飞行速度的变化过程如下:
由于发动机输出功率增大,使螺旋桨转速(切向速度)迅速增加到一定值,螺旋桨拉力增加。
飞行速度增加,由于飞行速度增大,致使桨叶迎角又开始逐渐减小,拉力也随之逐渐降低,飞机阻力逐渐增大,从而速度的增加趋势也逐渐减慢。
当拉力降低到一定程度(即拉力等于阻力)后,飞机的速度则不再增加。
此时,飞行速度、转速、桨叶迎角及螺旋桨拉力都不变,飞机即保持在一个新的速度上飞行。
四、螺旋桨的自转:
当发动机空中停车后,螺旋桨会象风车一样继续沿着原来的方向旋转,这种现象,叫螺旋桨自转。
螺旋桨自转,不是发动机带动的,而是被桨叶的迎面气流“推着”转的。
它不但不能产生拉力,反而增加了飞机的阻力。
从图1—1—24中看出,螺旋桨发生自转时,由于形成了较大的负迎角。
桨叶的总空气动力方向及作用发生了质的变化。
它的一个分力(Q)与切向速度(U)的方向相同,成为推动桨叶自动旋转的动力,迫使桨叶沿原来方向续继旋转:另一个分力(-P)与速度方向相反,对飞行起着阻力作用。
一些超轻型飞机的发动机空中停车后由于飞行速度较小,产生自旋力矩不能克服螺旋桨的阻旋力矩时螺旋桨不会出现自转。
此时,桨叶阻力较大,飞机的升阻比(或称滑翔比)将大大降低。
五、螺旋桨的有效功率:
1.定义:螺旋桨产生拉力,拉着飞机前进,对飞机作功。
螺旋桨单位时间所作功,即为螺旋桨的有效功率。
公式:N桨=PV
式中:N桨—螺旋桨的有效功率;P—螺旋桨的拉力;V—飞行速度
2.螺旋桨有效功率随飞行速度的变化:
(1)地面试车时,飞机没有前进速度(V=0),拉力没有对飞机作功,故螺旋桨的有效功率为“零”。
(2)飞行速度增大时,从实际测得的螺旋桨有效功率曲线:
在OA速度范围内,螺旋桨的效功率随飞行速度的增大而增大;在大于该速度范围后螺旋桨有效功率则随飞行速度的增大而减小。
在OA速度范围内,当飞行速度增大时,拉力减小较慢,随速度的增大,螺旋桨有效功率逐渐提高。
当飞行速度增大到A时,螺旋桨的有效功率最大。
当飞行速度再增大时,由于拉力迅速减小,因此随着飞行速度的增加而螺旋桨有效功率反会降低。
螺旋桨是发动机带动旋转的,螺旋桨的作用是把发动机的功率转变为拉着飞机前进的有效功率。
螺旋桨有效功率与发动机输出功率之比,叫螺旋桨效率。
η=N桨/N有效。