【物理】动能定理的综合应用练习及解析

合集下载

高考物理动能定理的综合应用专项训练100(附答案)及解析

高考物理动能定理的综合应用专项训练100(附答案)及解析

高考物理动能定理的综合应用专项训练100(附答案)及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,一条带有竖直圆轨道的长轨道水平固定,底端分别与两侧的直轨道相切,半径R =0.5m 。

物块A 以v 0=10m/s 的速度滑入圆轨道,滑过最高点N ,再沿圆轨道滑出,P 点左侧轨道光滑,右侧轨道与物块间的动摩擦因数都为μ=0.4,A 的质量为m =1kg (A 可视为质点) ,求:(1)物块经过N 点时的速度大小; (2)物块经过N 点时对竖直轨道的作用力; (3)物块最终停止的位置。

【答案】(1)5m/s v =;(2)150N ,作用力方向竖直向上;(3)12.5m x = 【解析】 【分析】 【详解】(1)物块A 从出发至N 点过程,机械能守恒,有22011222mv mg R mv =⋅+ 得20445m /s v v gR =-=(2)假设物块在N 点受到的弹力方向竖直向下为F N ,由牛顿第二定律有2N v mg F m R+=得物块A 受到的弹力为2N 150N v F m mg R=-=由牛顿第三定律可得,物块对轨道的作用力为N N 150N F F '==作用力方向竖直向上(3)物块A 经竖直圆轨道后滑上水平轨道,在粗糙路段有摩擦力做负功,动能损失,由动能定理,有20102mgx mv μ-=-得12.5m x =2.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45°联立解得:h=0.2 m【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.3.如图所示,AC为光滑的水平桌面,轻弹簧的一端固定在A端的竖直墙壁上.质量1m kg=的小物块将弹簧的另一端压缩到B点,之后由静止释放,离开弹簧后从C点水平飞出,恰好从D点以10/Dv m s=的速度沿切线方向进入竖直面内的光滑圆弧轨道(DEF小物体与轨道间无碰撞).O为圆弧轨道的圆心,E为圆弧轨道的最低点,圆弧轨道的半径1R m=,60DOE∠=o,37.EOF∠=o小物块运动到F点后,冲上足够长的斜面FG,斜面FG与圆轨道相切于F点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o,cos370.8=o,取210/.g m s=不计空气阻力.求:(1)弹簧最初具有的弹性势能;(2)小物块第一次到达圆弧轨道的E点时对圆弧轨道的压力大小;(3)判断小物块沿斜面FG第一次返回圆弧轨道后能否回到圆弧轨道的D点?若能,求解小物块回到D点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小.【答案】()11?.25J;()2 30N;()3 2/m s.【解析】【分析】【详解】(1)设小物块在C点的速度为Cv,则在D点有:C Dv v cos60o=设弹簧最初具有的弹性势能为pE,则:2P C1E mv2=代入数据联立解得:pE 1.25J=;()2设小物块在E点的速度为E v,则从D到E的过程中有:()22E D11mgR1cos60mv mv22-=-o设在E点,圆轨道对小物块的支持力为N,则有:2EvN mgR-=代入数据解得:E v /s =,N 30N =由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ;()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:()()2E 1mgR 1cos37mgsin37μmgcos37x 0mv 2o o o ---+=-小物体第一次沿斜面上滑并返回F 的过程克服摩擦力做的功为f W ,则f W 2x μmgcos37=o小物体在D 点的动能为KD E ,则:2KD D 1E mv 2=代入数据解得:x 0.8m =,f W 6.4J =,KD E 5J = 因为KD f E W <,故小物体不能返回D 点.小物体最终将在F 点与关于过圆轨道圆心的竖直线对称的点之间做往复运动,小物体的机械能守恒,设最终在最低点的速度为Em v ,则有:()2Em 1mgR 1cos37mv 2-=o 代入数据解得:Em v 2m /s =答:()1弹簧最初具有的弹性势能为1.25J ;()2小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小是30 N ;()3小物块沿斜面FG 第一次返回圆弧轨道后不能回到圆弧轨道的D 点.经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小为2 m /s . 【点睛】(1)物块离开C 点后做平抛运动,由D 点沿圆轨道切线方向进入圆轨道,知道了到达D 点的速度方向,将D 点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C 点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;()2物块从D 到E ,运用机械能守恒定律求出通过E 点的速度,在E 点,由牛顿定律和向心力知识结合求物块对轨道的压力;()3假设物块能回到D 点,对物块从A 到返回D 点的整个过程,运用动能定理求出D 点的速度,再作出判断,最后由机械能守恒定律求出最低点的速度.4.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。

物理动能定理的综合应用题20套(带答案)及解析

物理动能定理的综合应用题20套(带答案)及解析

【解析】
【分析】
对 m 受力分析,由共点力平衡条件可以求出动摩擦因数;以 m 为研究对象,求出最大加
速度,以系统为研究对象,由牛顿第二定律求出最大推力;对系统由动能定理求出最大速
度,然后由平抛运动规律求出最大水平位移.
【详解】
(1)对 m 由平衡条件得:mgsinθ-μ2mgcosθ=0 解得:μ2=tanθ (2)对 m 设其最大加速度为 am,由牛顿第二定律得 水平方向:Nsinθ+μ2Ncosθ=mam 竖直方向:Ncosθ-μ2Nsinθ-mg=0
解得:N=12.5N
(3)从
D

E,由动能定理知:
mg
Hale Waihona Puke 2R1 2mvE 2
1 2
mvD2
解得: vD 5m / s

B

D,由动能定理知
mgL
1 2
mvD2
1 2
mvB2
解得: vB 7m / s
对物块 L vB vD t 2
解得:t=1s;
s相对 L vt 6 2 1m 8m
由能量守恒定律知: Q mgL s相对
L ),
解得,
Q= 1 2
m(
0
2gh)2 ;
考点:动能定理
【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过
程,熟练应用动能定理即可正确解题.
6.如图所示,光滑斜面 AB 的倾角 θ=53°,BC 为水平面,BC 的长度 lBC=1.10 m,CD 为光滑
的 1 圆弧,半径 R=0.60 m.一个质量 m=2.0 kg 的物体,从斜面上 A 点由静止开始下滑,物 4
解得:Q=16J

高中物理动能定理的综合应用题20套(带答案)及解析

高中物理动能定理的综合应用题20套(带答案)及解析

(1)滑块到达底端 B 时的速度大小 vB;
(2)滑块与传送带间的动摩擦因数 μ;
(3)此过程中,由于克服摩擦力做功而产生的热量 Q.
【答案】(1)
2gh (2) v02 2gh (3) m v0
2
2gh
2gl
2
【解析】
试题分析:(1)滑块在由
A

B
的过程中,由动能定理得:
mgh= 1 2
(1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大? 【答案】(1)144 N (2)12.5 m 【解析】
试题分析:(1)运动员在 AB 上做初速度为零的匀加速运动,设 AB 的长度为 x,斜面的倾 角为 α,则有 vB2=2ax
mvB2
0

解得:

B
2gh ;
(2)滑块在由 B 到 C 的过程中,由动能定理得:μmgL= 1 mv02− 1 mvB2,
2
2
解得, =v02 2gh ; 2gL
(3)产生的热量:Q=μmgL
L 相对, 相对
0 B 2
2 g
= ( 0
2gh)2 2 g
(或
(0 v02
2 gh )2 2gh
(3)传送带的速度大于或等于 v1,则滑块回到水平轨道时的速度大小仍为 v1
mgs
0
1 2
mv12
得 s=0.9m,即滑块在水平轨道上滑行的路程为 0.9m,则最后停在离 B 点 0.2m 处。
若传送带的速度 7 m/s <v<3m/s,则滑块将回到 B 点,滑上圆弧轨道后又滑到水平轨道,

高考物理动能定理的综合应用解题技巧及练习题(含答案)含解析

高考物理动能定理的综合应用解题技巧及练习题(含答案)含解析

高考物理动能定理的综合应用解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.小明同学根据上海迪士尼乐园游戏项目“创极速光轮”设计了如图所示的轨道。

一条带有竖直圆轨道的长轨道固定在水平面上,底端分别与两侧的直轨道相切,其中轨道AQ 段粗糙、长为L 0=6.0m ,QNP 部分视为光滑,圆轨道半径R =0.2m ,P 点右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.5m 。

一玩具电动小车,通电以后以P =4W 的恒定功率工作,小车通电加速运动一段时间后滑入圆轨道,滑过最高点N ,再沿圆轨道滑出。

小车的质量m =0.4kg ,小车在各粗糙段轨道上所受的阻力恒为f =0.5N 。

(重力加速度g =10m/s 2;小车视为质点,不计空气阻力)。

(1)若小车恰能通过N 点完成实验,求进入Q 点时速度大小; (2)若小车通电时间t =1.4s ,求滑过N 点时小车对轨道的压力; (3)若小车通电时间t≤2.0s ,求小车可能停在P 点右侧哪几段轨道上。

【答案】(1)22m/s ;(2)6N ,方向竖直向上;(3)第7段和第20段之间 【解析】 【分析】 【详解】(1)小车恰能过N 点,则0N v =,Q →N 过程根据动能定理2211222N mg R mv mv -⋅=- 代入解得22m/s v =(2)A →N 过程2011202Pt fL mg R mv --⋅=- 代入解得15m/s v =在N 点时21N mv mg F R+= 代入解得N 6N F =根据牛顿第三定律可得小汽车对轨道压力大小6N ,方向竖直向上。

(3)设小汽车恰能过最高点,则0020Pt fL mg R --⋅=代入解得0 1.15s 2s t =<此时小汽车将停在12mg R n fL ⋅=代入解得1 6.4n =因此小车将停在第7段; 当通电时间 2.0s t =时020Pt fL n fL --=代入解得220n =因此小车将停在第20段;综上所述,当t ≤2.0s 时,小汽车将停在第7段和第20段之间。

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析

高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。

【解析】 【分析】 【详解】(1)小球离开台面到达A 点的过程做平抛运动,故有02 3m/s tan y v ghv θ=== 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为201 4.5J 2p E mv ==; (2)小球在A 处的速度为5m/s cos A v v θ== 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得221111sin cos 22C A mgL mgL mv mv θμθ-=- 解得()212sin cos 10m/s C A v v gL θμθ=+-=;(3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径;那么对小球能通过最高点时,在最高点应用牛顿第二定律可得21v mg m R≤;对小球从C 到最高点应用机械能守恒可得2211152222C mv mgR mv mgR =+≥ 解得202m 5Cv R g<≤=;对小球能在圆轨道上到达的最大高度小于半径的情况应用机械能守恒可得212C mv mgh mgR =≤ 解得2=5m 2C v R g≥;故小球进入圆轨道后,要使小球不脱离轨道,则竖直圆弧轨道的半径R ≥5m 或0<R ≤2m ;2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=Hx由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.某电视娱乐节目装置可简化为如图所示模型.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6m,始终以v0=6m/s的速度顺时针运动.将一个质量m=1kg 的物块由距斜面底端高度h1=5.4m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面距地面的高度H=5m,g取10m/s2,sin37°=0.6,cos37°=0.8.⑴求物块由A点运动到C点的时间;⑵若把物块从距斜面底端高度h2=2.4m处静止释放,求物块落地点到C点的水平距离;⑶求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D.【答案】⑴4s;⑵6m;⑶1.8m≤h≤9.0m【解析】试题分析:(1)A到B过程:根据牛顿第二定律mgsinθ﹣μ1mgcosθ=ma1,代入数据解得,t 1=3s.所以滑到B点的速度:v B=a1t1=2×3m/s=6m/s,物块在传送带上匀速运动到C,所以物块由A到C的时间:t=t1+t2=3s+1s=4s(2)斜面上由根据动能定理.解得v=4m/s<6m/s,设物块在传送带先做匀加速运动达v0,运动位移为x,则:,,x=5m<6m所以物体先做匀加速直线运动后和皮带一起匀速运动,离开C点做平抛运动s=v 0t0,H=解得 s=6m.(3)因物块每次均抛到同一点D,由平抛知识知:物块到达C点时速度必须有v C=v0①当离传送带高度为h3时物块进入传送带后一直匀加速运动,则:,解得h 3=1.8m②当离传送带高度为h 4时物块进入传送带后一直匀减速运动,h 4=9.0m所以当离传送带高度在1.8m ~9.0m 的范围内均能满足要求 即1.8m≤h≤9.0m5.如图所示,质量m =2.0×10-4 kg 、电荷量q =1.0×10-6 C 的带正电微粒静止在空间范围足够大的电场强度为E1的匀强电场中.取g =10 m/s 2. (1)求匀强电场的电场强度 E1的大小和方向;(2)在t =0时刻,匀强电场强度大小突然变为E2=4.0×103N/C ,且方向不变.求在t =0.20 s 时间内电场力做的功;(3)在t =0.20 s 时刻突然撤掉第(2)问中的电场,求带电微粒回到出发点时的动能.【答案】(1)2.0×103N/C ,方向向上 (2)8.0×10-4J (3)8.0×10-4J【解析】 【详解】(1)设电场强度为E ,则:Eq mg =,代入数据解得:4362.01010/ 2.010/1010mg E N C N C q --⨯⨯===⨯⨯,方向向上 (2)在0t =时刻,电场强度突然变化为:32 4.010/E N C =⨯,设微粒的加速度为a ,在0.20t s =时间内上升高度为h ,电场力做功为W ,则:21qE mg ma -=解得:2110/a m s =根据:2112h a t =,解得:0.20=h m 电场力做功:428.010J W qE h -==⨯(3)设在0.20t s =时刻突然撤掉电场时粒子的速度大小为v ,回到出发点时的动能为k E ,则:v at =,212k E mgh mv =+解得:48.010J k E -=⨯6.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

动能定理的应用练习题及答案解析

动能定理的应用练习题及答案解析
由电动机带动,传送带与轮子间无相对滑动,不计轮轴处
的摩擦。求电动机的平均输出功率P。
D
A
BC
L
L
P
Nm T
N 2 L2 T2
gh
• 解:电动机做功的过程,电能除了转化为小货箱 的机械能,还有一部分由于小货箱和传送带间的
滑动摩擦而转化成内能。摩擦生热可以由Q=fd求 得,其中f是相对滑动的两个物体间的摩擦力大小, d是这两个物体间相对滑动的路程。本题中设传送 带速度一直是v,则相对滑动过程中传送带的平均 速度就是小货箱的2倍,相对滑动路程d和小货箱 的实际位移s大小相同,故摩擦生热和小货箱的末 动能大小相同Q=mv2/2。因此有W=mv2+mgh。又由 已知,在一段相当长的时间T内,共运送小货箱的 数目为N,所以有,vT=NL,代入后得到:
一、知识梳理:
• 1.动能定理的表述: • 合外力做的功等于物体动能的变化。(这里的合外
力指物体受到的所有外力的合力,包括重力)。表 达式为W=ΔEK • 动能定理也可以表述为:外力对物体做的总功等于 物体动能的变化。实际应用时,后一种表述比较好 操作。不必求合力,特别是在全过程的各个阶段受 力有变化的情况下,只要把各个力在各个阶段所做 的功都按照代数累加起来,就可以得到总功。
m
h θ
μ=h/(hcotθ+S)
=tanα(其中a为物 体初末两位置连线 m 与水平面夹角糙程度相同的曲面由静止下 滑到最后静止,动摩擦因数总等于初末两位置连线与水平面夹角 的正切值。
• 3、动能定理与运动学、动量等知识 的综合问题:
• 例2:如图所示,a、b、c三个相同 的小球,a从光滑斜面顶端由静止开 始自由下滑,同时b、c从同一高度
v

高一物理动能定理的综合应用试题

高一物理动能定理的综合应用试题

高一物理动能定理的综合应用试题1.如图所示,在地面上以速度抛出质量为m的物体,抛出后物体落在比地面低h的海平面上,若以地面为零势能参考面,且不计空气阻力。

则:A.物体在海平面的重力势能为mghB.重力对物体做的功为mghC.物体在海平面上的动能为D.物体在海平面上的机械能为【答案】BC【解析】以地面为零势能面,海平面低于地面h,所以物体在海平面上时的重力势能为,选项A错误;重力做功与路径无关,至于始末位置的高度差有关,抛出点与海平面的高度差为h,并且重力做正功,所以整个过程重力对物体做功为mgh,选项B正确;由动能定理,有,选项C正确;整个过程机械能守恒,即初末状态的机械能相等,以地面为零势能面,抛出时的机械能为,所以物体在海平面时的机械能也为,选项D错误。

【考点】考查了动能定理,机械能守恒2.在国际泳联大奖赛罗斯托克站中,中国选手彭健烽在男子3米板预赛中总成绩排名第一,晋级半决赛。

若彭健烽的质量为m,他入水后做减速运动,加速度大小为a,设水对他的作用力大小恒为f,当地重力加速度为g,他在水中重心下降高度h的过程中()A.重力势能增加了 mgh B.机械能减少了fhC.机械能减少了 mah D.动能减少了m(g+a)h【答案】B【解析】运动员在水中重心下降高度h的过程中,重力势能减少了 mgh,选项A 错误;机械能减少量等于除重力以外的其它力做功,即克服阻力做功fh,选项B正确,C错误;根据动能定理,动能减少量等于合外力做功,即mah,选项D 错误。

【考点】动能定理;能量转化规律。

=22m/s的初速度竖直向上抛出一质量m=0.5kg的物3.(12分)在距沙坑表面高h=8m处,以v体,物体落到沙坑并陷入沙坑d=0.3m深处停下。

若物体在空中运动时的平均阻力是重力的0.1倍(g=10m/s2)。

求:(1)物体上升到最高点时离开沙坑表面的高度H;(2)物体在沙坑中受到的平均阻力F是多少?【答案】(1)H=30m (2)F=455N【解析】(1)物体上升到最高点时离抛出点h,由动能定理得2/2 ①-(mg+f)h=0-mvf=0.1mg ②由①②并代入数据得h=22m离开沙坑的高度H=8+h=30m(2)物体在沙坑中受到的平均阻力为F,从最高点到最低点的全过程中:mg(H+d)—fH—Fd=0代入数据得F=455N【考点】本题考查动能定理的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【物理】动能定理的综合应用练习及解析一、高中物理精讲专题测试动能定理的综合应用1.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道(DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道的半径1R m =,60DOE ∠=o ,37.EOF ∠=o小物块运动到F 点后,冲上足够长的斜面FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o ,cos370.8=o ,取210/.g m s =不计空气阻力.求:(1)弹簧最初具有的弹性势能;(2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小;(3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小.【答案】()11?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】(1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o=设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2= 代入数据联立解得:p E 1.25J =;()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有:()22E D 11mgR 1cos60mv mv 22-=-o 设在E 点,圆轨道对小物块的支持力为N ,则有:2E v N mg R-=代入数据解得:E v 25m /s =,N 30N =由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ;()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:()()2E 1mgR 1cos37mgsin37μmgcos37x 0mv 2o o o ---+=-小物体第一次沿斜面上滑并返回F 的过程克服摩擦力做的功为f W ,则f W 2x μmgcos37=o小物体在D 点的动能为KD E ,则:2KD D 1E mv 2=代入数据解得:x 0.8m =,f W 6.4J =,KD E 5J = 因为KD f E W <,故小物体不能返回D 点.小物体最终将在F 点与关于过圆轨道圆心的竖直线对称的点之间做往复运动,小物体的机械能守恒,设最终在最低点的速度为Em v ,则有:()2Em 1mgR 1cos37mv 2-=o 代入数据解得:Em v 2m /s =答:()1弹簧最初具有的弹性势能为1.25J ;()2小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小是30 N ;()3小物块沿斜面FG 第一次返回圆弧轨道后不能回到圆弧轨道的D 点.经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小为2 m /s . 【点睛】(1)物块离开C 点后做平抛运动,由D 点沿圆轨道切线方向进入圆轨道,知道了到达D 点的速度方向,将D 点的速度分解为水平方向和竖直方向,根据角度关系求出水平分速度,即离开C 点时的速度,再研究弹簧释放的过程,由机械能守恒定律求弹簧最初具有的弹性势能;()2物块从D 到E ,运用机械能守恒定律求出通过E 点的速度,在E 点,由牛顿定律和向心力知识结合求物块对轨道的压力;()3假设物块能回到D 点,对物块从A 到返回D 点的整个过程,运用动能定理求出D 点的速度,再作出判断,最后由机械能守恒定律求出最低点的速度.2.如图所示,光滑圆弧的半径为80cm ,一质量为1.0kg 的物体由A 处从静止开始下滑到B 点,然后又沿水平面前进3m ,到达C 点停止。

物体经过B 点时无机械能损失,g 取10m/s 2,求:(1)物体到达B 点时的速度以及在B 点时对轨道的压力; (2)物体在BC 段上的动摩擦因数; (3)整个过程中因摩擦而产生的热量。

【答案】(1)4m/s ,30N ;(2)415;(3)8J 。

【解析】 【分析】 【详解】(1)根据机械能守恒有212mgh mv =代入数据解得4m/s v =在B 点处,对小球受力分析,根据牛顿第二定律可得2N mv F mg R-= 代入数据解得30N N F =由牛顿第三定律可得,小球对轨道的压力为30N NN F F '== 方向竖直向下(2)物体在BC 段上,根据动能定理有2102mgx mv μ-=-代入数据解得415μ=(3)小球在整个运动过程中只有摩擦力做负功,重力做正功,由能量守恒可得8J Q mgh ==3.质量为m =2kg 的小玩具汽车,在t =0时刻速度为v 0=2m/s ,随后以额定功率P =8W 沿平直公路继续前进,经t =4s 达到最大速度。

该小汽车所受恒定阻力是其重力的0.1倍,重力加速度g =10m/s 2。

求: (1)小汽车的最大速度v m ; (2)汽车在4s 内运动的路程s 。

【答案】(1)4 m/s ,(2)10m 。

【解析】 【详解】(1)当达到最大速度时,阻力等于牵引力:m m P Fv fv == 0.1f mg =解得:m 4m/s v =;(2)从开始到t 时刻根据动能定理得:22m 01122Pt fs mv mv -=- 解得:10m s =。

4.如图所示,一质量为m 的小球从半径为R 的竖直四分之一圆弧轨道的顶端无初速释放,圆弧轨道的底端水平,离地面高度为R 。

小球离开圆弧轨道的底端又通过水平距离R 落到地面上,不计空气阻力,重力加速度为g 。

求: (1)小球刚到圆弧轨道底端时对轨道的压力; (2)小球在圆弧轨道上受到的阻力所做的功。

【答案】(1)32Nmg F '=,方向竖直向下(2)34f W mgR =-【解析】 【详解】(1)设小球在圆弧轨道的最低点时的速度为v ,小球离开圆弧轨道后做平抛运动,有:R vt =212R gt =联立解得:2gR v =而在圆弧轨道的最低点,由牛顿第二定律可知:2N v F mg m R-=由牛顿第三定律,N NF F '= 联立求得球队轨道的压力为:32Nmg F '= 方向竖直向下。

(2)对圆弧上运动的过程由动能定理:2102f mgR W mv +=-联立可得:34fW mgR=-5.如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A点由静止开始滑下,滑到斜坡底端B点后,沿水平的滑道再滑行一段距离到C点停下来.如果人和滑板的总质量m=60kg,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g取10m/s2.求:(1)人从斜坡上滑下的加速度为多大?(2)若由于场地的限制,水平滑道的最大距离BC为L=20.0m,则人在斜坡上滑下的距离AB应不超过多少?【答案】(1)2.0 m/s2;(2)50m【解析】【分析】(1)根据牛顿第二定律求出人从斜坡上下滑的加速度.(2)根据牛顿第二定律求出在水平面上运动的加速度,结合水平轨道的最大距离求出B 点的速度,结合速度位移公式求出AB的最大长度.【详解】(1)根据牛顿第二定律得,人从斜坡上滑下的加速度为:a1=3737mgsin mgcosmμ︒-︒=gsin37°-μgcos37°=6-0.5×8m/s2=2m/s2.(2)在水平面上做匀减速运动的加速度大小为:a2=μg=5m/s2,根据速度位移公式得,B点的速度为:222520/102/Bv a L m s m s⨯⨯===.根据速度位移公式得:212005024BABvL m ma===.【点睛】本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,本题也可以结合动能定理进行求解.6.如图的竖直平面内,一小物块(视为质点)从H=10m高处,由静止开始沿光滑弯曲轨道AB进入半径R=4m的光滑竖直圆环内侧,弯曲轨道AB在B点与圆环轨道平滑相接。

之后物块沿CB圆弧滑下,在B点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。

已知物块的质量m=2kg,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D点与B点距离L=15m,求:(g=10m/s2)(1)物块从A滑到B时的速度大小;(2)物块到达圆环顶点C时对轨道的压力;(3)若弹簧最短时的弹性势能,求此时弹簧的压缩量。

【答案】(1)m/s;(2)0N;(3)10m。

【解析】【分析】【详解】(1)对小物块从A点到B点的过程中由动能定理解得:;(2)小物块从B点到C由动能定理:在C点,对小物块受力分析:代入数据解得C点时对轨道压力大小为0N;(3)当弹簧压缩到最短时设此时弹簧的压缩量为x,对小物块从B点到压缩到最短的过程中由动能定理:由上式联立解得:x=10m【点睛】动能定理的优点在于适用任何运动包括曲线运动,了解研究对象的运动过程是解决问题的前提,根据题目已知条件和求解的物理量选择物理规律解决问题。

动能定理的应用范围很广,可以求速度、力、功等物理量,特别是可以去求变力功。

7.如图所示,摩托车做特技表演时,以v 0=10m /s 的速度从地面冲上高台,t =5s 后以同样大小的速度从高台水平飞出.人和车的总质量m =1.8×102kg ,台高h =5.0m .摩托车冲上高台过程中功率恒定为P =2kW ,不计空气阻力,取g =10m /s 2.求:(1) 人和摩托车从高台飞出时的动能E k ; (2) 摩托车落地点到高台的水平距离s ; (3) 摩托车冲上高台过程中克服阻力所做的功W f . 【答案】(1)9×103J (2)10m (3)1×103J 【解析】 【分析】 【详解】试题分析:根据动能表达式列式求解即可;人和摩托车从高台飞出做平抛运动,根据平抛的运动规律即可求出平抛的水平距离;根据动能定理即可求解克服阻力所做的功. (1)由题知,抛出时动能:230019102k E mv J ==⨯ (2)根据平抛运动规律,在竖直方向有:212h gt = 解得:t=1s则水平距离010s v t m ==(3)摩托车冲上高台过程中,由动能定理得:0f Pt mgh W --= 解得:3110f W J =⨯ 【点睛】本题考查了动能定理和平抛运动的综合,知道平抛运动水平方向和竖直方向上的运动规律,以及能够熟练运用动能定理.8.如图所示,倾角 θ=30°的斜面足够长,上有间距 d =0.9 m 的 P 、Q 两点,Q 点以上斜面光滑,Q 点以下粗糙。

相关文档
最新文档