铜合金中金相组织特征参数的测量

合集下载

金相实验过程

金相实验过程

金相实验过程金相实验是金属材料分析中常用的一种方法,用于观察和分析金属材料的组织结构。

通过金相实验,可以揭示金属材料的晶粒大小、晶体结构、组织均匀性以及存在的缺陷等信息。

金相实验通常分为样品制备、腐蚀处理、组织观察和分析几个步骤。

下面将详细介绍金相实验的过程。

1. 样品制备需要从金属材料中切取代表性的样品。

样品应选择尺寸适中、表面平整的部分。

对于大型的金属工件,可以使用切割机或钻孔机进行切割。

对于小型的金属样品,可以使用金相切割机进行切割,保证切口平整。

切割完成后,需要将样品进行封装,以防止氧化和污染。

2. 腐蚀处理经过切割得到的金属样品表面通常有氧化层或其他污染物。

为了能够清晰地观察金属的组织结构,需要对样品进行腐蚀处理。

腐蚀处理的方法有很多种,常用的包括酸蚀和电解腐蚀。

酸蚀是将样品放入适当的酸液中,通过化学反应去除氧化层或其他污染物。

而电解腐蚀是将样品作为阳极,通过电流作用在电解液中进行腐蚀,可以更加精确地控制腐蚀速度和效果。

3. 组织观察经过腐蚀处理后,样品的组织结构就能够清晰地展现出来。

在金相实验中,组织观察通常采用金相显微镜。

金相显微镜是一种专门用于观察金属材料组织结构的光学显微镜,它能够放大样品并产生清晰的图像。

通过金相显微镜,可以观察到金属样品中的晶粒、晶界、孪晶等微观结构。

为了更好地观察,可以使用不同的显微镜放大倍数和不同的光源。

4. 分析与评价观察到金属样品的组织结构后,需要进行进一步的分析与评价。

这里涉及到对金属材料的晶粒大小、晶体结构、组织均匀性等特征进行定性和定量的分析。

可以使用计算机辅助的图像处理软件进行图像分析,例如测量晶粒大小、计算相体积分布等。

还可以结合金属材料的力学性能和使用条件,对组织结构进行定性评价,判断其是否满足要求。

5. 总结及观点金相实验是进行金属材料分析不可或缺的方法之一。

通过金相实验,可以了解金属材料的微观组织结构,并从中获取有关材料性能和加工性能的信息。

调质后金相组织的评定标准

调质后金相组织的评定标准

调质后金相组织的评定标准使用金相显微镜来观察和评定材料的金相组织是材料科学研究和工程应用中常见的方法之一。

金相显微镜是一种特殊的光学显微镜,能够通过对材料进行磨削、腐蚀、观察等处理,从而获取关于材料内部组织和成分特征的信息。

在评定调质后金相组织时,我们需要考虑几个关键因素,包括颗粒尺寸、晶粒形状和分布、非金属夹杂物的含量和尺寸等。

本文将介绍调质后金相组织的评定标准。

一、颗粒尺寸在调质处理后,材料的微观结构会发生显著变化,颗粒的尺寸是评定材料金相组织的重要参数之一。

一般来说,颗粒尺寸越小,材料的强度和硬度往往越高。

通过金相显微镜的观察,可以测量和评定金相组织中颗粒的平均尺寸,并与预期的理想尺寸进行比较。

二、晶粒形状和分布在调质后,材料的晶粒会发生重新长大和重新排列的过程。

晶粒的形状和分布对材料的力学性能和耐腐蚀性能有着重要影响。

观察材料金相组织时,需要关注晶粒的形状是否规则,分布是否均匀。

可以通过计算晶粒的平均晶粒尺寸和晶粒的尺寸分布来评定材料金相组织。

三、非金属夹杂物的含量和尺寸非金属夹杂物是指材料中的一些杂质,如气泡、氧化物、硫化物等。

这些夹杂物会对材料的力学性能和腐蚀性能产生负面影响。

通过金相显微镜,可以观察和评定非金属夹杂物的含量和尺寸。

通常情况下,夹杂物的含量越低,夹杂物的尺寸越小,材料的性能越好。

以上是调质后金相组织的主要评定标准。

通过金相显微镜的观察和评定,我们可以获取关于调质后材料金相组织的详细信息,从而了解材料的性能和品质。

这些信息对于材料科学研究和工程应用都具有重要意义,能够指导工程师和科研人员进行材料的选择、设计和优化。

需要注意的是,在评定调质后金相组织时,我们应该遵循一定的实验规范和操作流程,以确保观察结果的准确性和可重复性。

比如,我们需要选择合适的磨削和抛光工艺,以提高样品的表面质量;还需要选择适当的显微镜放大倍数,以保证观察到所关注的细节。

除了金相显微镜之外,还有一些其他常用的表征方法可以结合使用,对调质后金相组织进行全面评定。

金相报告doc

金相报告doc

引言:金相报告是对金属材料的显微结构和成分进行分析和描述的一种常见方法。

通过金相报告,可以得到关于样品的多个关键信息,包括晶粒大小、晶体结构、相组成及其分布情况等。

本文旨在对一个金相报告进行详细的解读和分析,为读者提供全面的了解。

概述:在本文中,我们将重点讨论金相报告中涉及的五个主要方面,包括样品的理化性质、显微硬度、组织结构、晶粒大小和相成分。

通过对每个方面的详细分析和解读,我们将为读者展示该报告中所揭示的样品特征和性能。

正文内容:一、样品的理化性质1.样品的化学成分:分析报告中通常会列出样品的化学成分,包括主要元素及其含量。

通过对元素含量的了解,可以初步了解样品的成分和性质。

2.样品的热处理情况:报告中还会提及样品是否经过热处理,以及热处理的条件和效果。

这对于理解样品的组织结构和性能变化至关重要。

二、显微硬度1.测试方法和结果:报告中通常会描述显微硬度测试的方法和结果。

显微硬度是一种对材料表面硬度进行测试的方法,可以反映出材料的力学性能。

2.硬度分布情况:报告中会展示不同区域的显微硬度数值,从而揭示出样品硬度的分布情况。

这对于评估样品的均匀性和一致性非常重要。

三、组织结构1.显微镜下的观察:报告中通常会包含显微照片,显示样品在显微镜下的组织结构。

这可以揭示出样品的晶体结构、晶界分布等特征。

2.组织类型与特征:通过观察显微照片,可以判断出样品的组织类型,如晶粒、相等。

还可以观察到不同组织的结构特征,如晶粒形状、相分布等。

四、晶粒大小1.测量方法和结果:报告中会介绍测量晶粒大小的方法和结果。

通常采用的方法有显微镜观察、SEM、TEM等。

晶粒大小的测量可以提供样品的晶粒尺寸分布信息。

2.晶粒分布情况:在报告中,晶粒大小通常以一定的统计参数进行描述,如平均晶粒尺寸、最大晶粒尺寸等。

同时会显示晶粒尺寸的分布情况,反映出样品的晶粒生长和形成过程。

五、相成分1.化学成分分析:报告中通常会给出样品不同相的化学成分。

铜合金金相实验方法及实验结果

铜合金金相实验方法及实验结果

铜合金金相实验方法及实验结果
实验目的:
研究铜合金的金相组织和相对应的力学性能,掌握金相实验的方法和步骤。

实验器材:
金相显微镜、切割机、砂纸、抛光液、试样夹具、显微镜刻度表、实验用铜合金试样。

实验步骤:
1.试样制备:将铜合金试样放入切割机上,切割成符合尺寸要求的试样。

2.试样粗磨:用砂纸将试样的切割面磨平,然后用 400# 砂纸对试样进行粗磨。

3.试样精磨:将试样放在抛光机上,使用相应的抛光液进行抛光,直到试样表面非常光滑。

4.试样腐蚀:将抛光后的试样放入酸性液体中进行腐蚀处理,直到试样组织清晰明显。

5.试样清洗:在腐蚀后,使用清洗液洗净试样表面,并用酒精将其擦干。

6.试样测量:使用金相显微镜对试样进行观察和测量,记录试样的相组成及成分。

实验结果:
通过以上步骤得到的铜合金试样薄片,在金相显微镜下观察其组织结构:
- 观察到试样为均匀的细晶铜合金。

- 试样组织细致、晶粒度均匀,且无任何气孔、夹杂等缺陷。

- 试样硬度较高,符合金属铜合金的物理性能。

综上所述,该实验方法可用于铜合金及其它金属材料金相组织观察及分析。

在实验中要注意操作规范,确保实验结果的准确性和可靠性。

材料理化性能检验中的金相检验方法及应用

材料理化性能检验中的金相检验方法及应用

材料理化性能检验中的金相检验方法及应用摘要:金相检验是一种重要的材料理化性能检验方法,通过对材料的组织结构和相态变化进行观察和分析,评估材料的结构、组织和性能。

它在材料科学和工程领域具有广泛的应用价值,对于材料研究、品质控制和产品开发等方面起着重要的作用。

关键词:材料;理化性能检验;金相检验方法;应用引言金相检验是材料科学和工程领域中常用的一种材料理化性能检验方法。

金相检验通过观察材料的组织结构和相态变化,以及对材料的显微特征进行分析,来评估材料的结构、组织和性能。

它在材料研究、品质控制和产品开发等方面具有重要的应用价值。

1材料理化性能检验的特点材料理化性能检验是评估材料性能和质量的重要手段,它具有一些独特的特点。

这些特点不仅影响着检验方法的选择和执行,还对结果的准确性和可靠性产生重要影响。

本文将详细介绍材料理化性能检验的特点。

1.1材料理化性能检验具有多元化的测试项目材料的性能涵盖了许多方面,包括力学性能、物理性能、化学性质、热学性质等。

因此,材料的理化性能检验需要依据具体的测试目的和要求,选择相应的测试项目进行检测。

例如,力学性能可以通过拉伸、压缩、弯曲等试验进行评估;物理性能可以通过密度、磁性、电导率等指标进行测定;化学性质可以使用化学分析方法检测元素含量和组成等。

1.2材料理化性能检验需要针对不同材料和应用环境选择合适的测试方法不同材料具有不同的特性和应用需求,因此在检验过程中需要根据具体情况选择和开发适当的测试方法。

例如,对于金属材料,常用的试验方法包括拉伸试验、冲击试验、硬度试验等;对于聚合物材料,可以进行热分析、拉伸弯曲测试等;对于陶瓷材料,可以进行脆性断裂强度测试等。

此外,还需要考虑测试环境的因素,如温度、湿度、压力等。

1.3材料理化性能检验需要严格控制和遵守标准规范在进行检验时,必须参照相应的国家或行业标准,确保测试过程的准确性和可重复性。

标准规范提供了详细的测试步骤和要求,帮助测试人员正确执行测试,并通过比较和解释结果进行评估。

铸造铜合金检验标准

铸造铜合金检验标准

铸造铜合金检验标准 The manuscript was revised on the evening of 2021铜合金铸件 GB/T 13819-92铜合金铸件 GB/T 13819-921 主题内容与适用范围本标准规定了铜合金铸件的分类、技术要求、试验方法与检验规则等。

本标准适用于铜合金砂型铸造、金属型铸造、连续铸造、离心铸造的铸件。

2 引用标准(略)3铸件分类3.1根据工作条件和用途将铸件分为三类,见表1。

表 1类别工作条件和用途检验项目I承受重载荷,工作条件复杂,用于关键部位或有尺寸、表面质量、化学成分、力学性能及特殊要求特殊要求的重要铸件尺寸、表面质量、化学成分、力学性能及补充要求Ⅱ承受中等载荷、要求有较高的抗腐蚀性,耐磨性或用于重要部位的铸件Ⅲ承受轻载荷、用于一般部位的铸件尺寸、表面质量、化学成分或力学性能及补充要求3.2铸件类别由需方在图样或技术文件中规定,对于未注明类别的铸件均视为Ⅲ类铸3.3铸件图样标记如下所示:标记示例:ZCu Sn 5Pb5 Zn 5-S / Ⅱ-GB/T13819-924 技术要求4.1合金的化学成分应符合GB 1176的规定。

4.2铸件的力学性能应符合GB 1176的规定。

4.3铸件尺寸和重量4.3.1铸件的几何形状及尺寸应符合图样要求,尺寸公差应符合GB 6414的规定。

有特殊要求时,应在图样中注明。

铸件尺寸公差不包括由起模斜度而引起的尺寸增减,如有特殊要求,由供需双方商定。

4.3.2铸件的机械加工余量可参照GB/T 11350的规定。

4.3.3铸件的重量公差可参照GB/T 11351的规定。

4.4铸件的表面质量4.4.1铸件表面粗糙度应符合图样要求4.4.2铸件的浇冒口、毛刺、飞边等,在非加工表面上应清理到与铸件表面平齐,在待加工表面上允许的残留高度应符合表2的规定。

4.4.3铸件表面不允许有裂纹、冷隔及穿透性缺陷。

4.4.4铸件上的铸字、标志应清晰,字体与位置应符合图样要求。

6锌白铜合金材料的金相组织分析

6锌白铜合金材料的金相组织分析

6锌白铜合金材料的金相组织分析摘要:本文对铸态和热挤压态锌白铜的金相组织进行分析,结果表明:铸态锌白铜合金材料的显微组织由α相和β相组成,存在明显的枝晶。

热挤压态锌白铜材料的显微组织中的α相呈长条状,并具有一定的方向性,这与热挤压过程中外力的作用有关。

关键词:锌白铜合金;铸造; 热挤压;金相组织锌白铜合金材料具有良好的耐腐蚀性能和冷热加工性能。

广泛应用于结构件、紧固件、连接件、眼镜架、精密仪器和装饰品等行业[1,2]。

本文通过对锌白铜的铸态、热挤压态的金相组织进行分析,为实际应用打下良好的基础。

1.实验方法熔铸设备采用工频感应炉,用卧式油压挤压机对锌白铜合金进行热挤压。

沿横截面截取金相实样,经过磨抛,FeCl3水溶液腐蚀,清洗吹干后,利用金相显微镜对进行金相组织分析。

2.实验结果与讨论2.1铸态锌白铜合金的工艺和金相组织实验所采用的设备是90KW的工频感应炉,将来原料Cu-Ni合金和Zn加入到工频感应炉中熔化,电磁搅拌后,清除液面浮渣,浇入水冷结晶器中凝固,通过拉晶机向下引拉制成圆柱形锌白铜铸锭。

在试验过程中,对铸造温度和冷却水压等工艺参数进行了调整,确定锌白铜合金的铸造工艺参数为:铸造温度1100℃,冷却水压1.2公斤/厘米2。

其半连续铸造机是由结晶器、平板升降底盘、电动机和减速装置等几部分组成。

为防止高温带来合金成分的损耗,采用快速熔化技术,并对熔体进行覆盖。

从锌白铜铸锭取样制备成金相试样进行分析,其金相分析结果如图1所示, 从图中可以看出, 铸态锌白铜合金的金相组织由α相和β相组成, 其组织较为粗大,出现明显的枝晶,没有微观组织缺陷,显微组织质量良好。

2.2锌白铜热挤压工艺和显微组织热挤压工艺是将加热到一定温度的锌白铜圆铸锭在三向压力作用下,从热挤压模的模口挤出,从而获得热挤压圆杆的一种压力加工方法,由于材料是三向压应力作用下的变形,所以热挤压加工方法不但能节约金属和和机械加工余量,而且还能进一步改善合金材料的力学性能。

铜及铜合金金相检验标准

铜及铜合金金相检验标准

铜及铜合金金相检验标准全文共四篇示例,供读者参考第一篇示例:铜及铜合金是常见的金属材料,广泛应用于工业生产、建筑装饰等领域。

金相检验是一种对金属材料进行组织结构分析的方法,通过观察金相组织来评估材料的性能和质量。

对铜及铜合金进行金相检验,需要遵循一定的检验标准,以确保检验结果的准确性和可靠性。

本文将介绍关于铜及铜合金金相检验标准的相关内容。

1. 金相检验的意义金相检验是对金属材料进行组织结构分析的重要手段,可以了解材料的内部组织、相态结构和晶粒形貌等信息。

通过金相检验,可以评估材料的性能和质量,为材料的生产、加工和应用提供重要参考。

在铜及铜合金的生产和应用过程中,金相检验可以帮助生产厂家监控材料的质量,确保产品符合标准要求,提高产品的竞争力和市场信誉。

2. 铜及铜合金金相检验的对象铜及铜合金的金相检验主要针对材料的组织结构进行分析。

铜及铜合金的组织结构包括晶粒尺寸、晶粒形态、晶粒取向、相态组成,以及各相间的界面、晶界等特征。

通过金相检验可以观察材料的表面组织和内部组织,了解材料的微观结构和性能特征。

铜及铜合金的金相检验可以采用金相显微镜、扫描电镜等设备进行观察和分析。

金相显微镜是一种常用的金相检验设备,可以放大材料的组织结构,并通过金相显微镜观察材料的晶粒、相界、晶粒形貌等特征。

扫描电镜可以进一步放大材料的微观结构,观察材料的表面形貌和晶粒尺寸等细节。

铜及铜合金金相检验的标准是根据国家标准和行业标准制定的,主要包括检验方法、检验要求、检验结果的评定标准等内容。

在金相检验中,必须遵循相应的标准要求,通过标准化的实验操作和数据分析,确保检验结果的准确性和可靠性,提高检验的科学性和规范性。

下面介绍几种常用的铜及铜合金金相检验标准:(1) GB/T 13316-1991《铜及铝及铝基合金金相检查方法》该标准适用于对铜及铜合金进行金相检查的方法。

主要包括样品的制备、腐蚀、打磨、观察等操作步骤,详细规定了金相检查的要求和评定标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜合金中金相组织特征参数的测量
wbf_512(2010-09-27 11:49:29)
帅歌旺,张萌
(南昌大学材料科学与工程学院,江西南昌330047)
摘要:根据体视学和定量金相分析的基本原理,利用Image-ProPlus(IPP)图像分析软件测定了铜合金金相组织的相体积分数、晶粒度大小、粒子间距等特征参数,并提出了一种测量粒子间距的近似算法。

关键词:定量金相分析;铜合金;特征参数
铜及铜合金由于具有优异的性能,一直是现代工业中用途广泛的重要的有色金属材料。

通过金相检验可以了解材料的组织结构,认识显微组织对材料物理、化学、机械等性能的影响。

因此,金相分析是一种控制产品质量的重要措施。

但迄今有关铜合金的定量金相分析工作远远落后于钢铁材料,既无大量的数据积累,也没有针对性的分析方法。

为此,本文利用IPP(Image-ProPlus图象分析软件)强大的图像处理功能,初步研究开发了针对铜合金组织中诸如相体积分数、晶粒度大小、粒子间距等特征参数的分析测试方法,效果良好。

1体视学基本符号和公式
为叙述方便,下面给出本文涉及到的常用体视学符号和基本公式:
符号:AA--面积分数,单位面积测量体上被测对象的面积
PV--被测对象的点数/测量体的总体积
Vv--体积分数,单位测量体上被测对象的体积
Ww--重量分数,单位重量测量体上被测对象的重量
ρα--被测量相(组织)的比重
ρT--整个合金的比重
基本公式:VV=AA=LL=PP(1)
Ww=Vvρα/ρT(2)
2测量方法
定量金相分析工作包括金相试样制备、图像摄取、图像处理、定量分析等几个步骤。

整个系统如图1所示:
图1定量金相分析系统
计算机通过控制数码相机摄取图像数据,经处理后结果在打印机上输出。

2.1图像摄取
磨制好的金相试样在MeF3型金相显微镜下进行观察,选定待测视场后,通过SVMICROTM型全自动数码相机将图像传送到计算机,金相观察可在计算机监视屏和显微镜上同步动态显示。

选取欲分析区域后进行拍摄,图像直接输入计算机进行处理,整个过程方便、快捷。

2.2图像处理
定量金相分析需要图像轮廓清晰,不同特征物间“,灰度”相差大,即反差大。

而相同物间“,灰度”又应尽量接近,如此测试的结果才准确、可靠。

因此原始图像必须经过预处理,IPP软件提供了亮度、对比度及多达几十种滤镜工具,可以得到利于计算的理想图像。

1.3定量金相分析
IPP软件提供了Count、Measurement等基本计算工具,同时还提供了强大的宏编辑器,软件有了再开发的空间。

本文观察了一系列铜合金的金相组织,利用IPP软件提出了相体积分数、粒子间距、晶粒尺寸等基本特征参数的测量方法。

3特征参数测量
铜合金组织较为复杂,不同合金系其组织特征大为不同。

合金组织中相的存在形式可以是粗大连续的组成相,也可以细小、弥散分布的第二相形式析出,甚至仅以单相固溶体构成。

为使测量具有代表性,选取了三种典型的二元铜合金分别进行了合金组织体积分数、第二相粒子间距及晶粒度的测量。

3.1相(组织)体积分数和重量分数的测定
相(组织)体积分数可以通过测量视场中各金相组织的面积求得。

因为不同的组织对光的反射本领不同,在黑白金相图像上就表现为灰阶级别的差异,通过手工或自动设定灰阶界限,将不同的相(组织)区分开来,并算出每一相(组织)的面积,将之与图像总面积相除,即可得到AA,根据体视学基本公式:Vv=AA,得到相的体积分数。

如果需要知道相的重量百分比,可通过公式(2)Ww=Vvρα/ρT求得,其中ρα为被测量相(组织)的比重,ρT为整个合金的比重。

我们采用真空熔铸制备了Cu-10%La和Cu-10%Y两种中间合金。

中间合金是制备后续各种不同成分合金的关键配料,为此,要求能保证稳定正确的工艺,准确的成分。

下面以Cu-La合金为例,讨论本实验中所采用的测算方法。

根据Cu-La合金相图(图2),由杠杆定理,可计算出含(0-35)wt%Cu的Cu-La合金常温下初晶α和共晶组织的体积分数:
(VV)α=WαρT/ρα(3)
(VV)eut=WeutρT/ρeut(4)
(VV)α/(VV)eut=Wαρeut/Weutρα(5)
其中ρeut=ρCu20/35+ρCu4La15/35(6)
Cu4La比重未知,我们按其化学组成近似求得,即
ρCu4La=ρCu×65%+ρLa×35%(7)
由(VV)α+(VV)eut=1,结合式(5),可得(VV)α,(VV)eut。

若已知初晶α和共晶组织的体积分数(VV)α、(VV)eut,则可反过来计算合金中各元素的质量百分比,仍以Cu-La合金为例,计算其中Cu组元的质量百分比,过程如下:
由相图可知,含(0-35)wt%Cu的Cu-La合金组织均由初生α铜和(Cu+Cu4La)共晶体组成,则
WCu=WCu(α)+WCu(eut)=Wα+WeutWCu/eut=(VV)αρα/ρT+(VV)eutρeutWCu/eut/ρT(8)
ρT=(VV)αρα+(VV)eutρeut(9)
式中WCu(eut)——共晶体中Cu占整个合金质量分数
Weut——共晶体占整个合金质量分数
WCu/eut——共晶体中Cu所占质量分数
由相图可知,WCu/eut=85%,ρeut由式(6)求得,代入式(9)即可算出WCu。

图2Cu-La相图富Cu部分
图3Cu-10%La合金金相图图4Cu-10%Y合金金相图
图3为Cu-10%La中间合金金相组织,由白色初生α粗枝状晶、灰色Cu和CuRE金属间化合物共晶组织组成。

由于两种组织具有不同的灰度级别,通过手工设定不同灰度级别范围进行辨别。

采用上述方法计算了该合金中的相体积分数、Cu组元质量分数,如表1所示,对Cu-10%Y合金的金相组织照片(见图4)也进行了同样的处理和计算,结果示于表1:
从表1可以看出,理论值与实测值吻合很好,可见,此方法可作为了解Cu合金组织和成分构成的一个便捷手段。

另外,从表1中的测量结果,我们还可定性了解这两种合金在熔铸时的凝固条件。

3.2粒子间距的测量
第二相平均粒子间距用σ表示,它指的是从粒子中心到另一邻近粒子中心的平均距离。

由IPP软件中并不能直接得到σ。

在粒子数较多且分布比较均匀的情况下,我们用这些粒子在X、Y轴等间距刚好排满时粒子在轴向的相邻距离来近似代替(图5)。

在这种假设下,,LX、LY代表图片长和宽,N为粒子个数,其中LX、LY、N都可以通过IPP直接得到。

如图6所示Cu-Cr合金的金相组织,Cu基体上分布着白色的Cr颗粒。

采用上述方法计算得到Cr颗粒的平均间距σ=15.8μm,与用手工方法直接在图上多次测量求平均值得到的值13.5μm接近,粒子所占面积比AA=2.5%,圆整度Roundness=1.07,因为Cr在Cu中的溶解度极小,因此可以认为Cr相在Cu基体中的体积分数Vv=2.5%,由公式(2)可算得Cr 的质量百分比。

图5算法示意图图6Cu-Cr合金
3.3晶粒大小的测定[6-7]
我们还测定了图7所示Cu2%Be合金的晶粒度大小。

为使测试结果准确,原始图必须进行Contrast、Lowpass、Median等处理,以消除杂质点的影响,利用Pruning工具提取晶界和二值化处理后的图像如图8所示。

可以看出,图7与图8的轮廓基本相符。

由图7的计算结果可知,Cu-2%Be合金的晶粒平均直径为14.8μm。

图7Cu2%Be合金相图图8Cu2A%Be合金晶界图
4结论
本文对IPP图像处理软件的应用进行了再度开发,成功地应用于测量Cu合金金相组织的有关特征参数,并提出了一种测量粒子间距的近似算法。

免责声明:
1、本文系本网编辑转载,转载目的在于传递更多信息和学习,并不代表本网赞同其观点和对其真实性负责。

相关文档
最新文档