拉氏变换基本性质

合集下载

7.2拉氏变换的性质

7.2拉氏变换的性质
河北工业职业技术学院
高等数学
主讲人 宋从芝
7.2 拉氏变换的性质
本讲概要
➢拉氏变换的性质 ➢例题
一.拉氏变换的性质
性质1(线性性质) 若a1 , a2是常数,并设L[f1(t)]=F1(p) , L[f2(t)]=F2(p) ,则
L[a1f1(t)+ a2f2(t)] =a1L [f1(t) ] + a2L[f2(t)] = a1F1(p) + a2F2(p)
可以先求各函数的象函数再进行计算。
性质2(平移性质) 若L[ f (t)]=F(p) ,则 L[eat f (t)] = F(p-a)
此性质说明,像原函数乘以 eat 等于其像函数做位移a。
例2 求
性质3(延滞性质) 若L[ f (t)]=F(p) ,则 L[f (t-a)] = e-at F(p)
常用函数的拉氏变换
例1 求函数 解
的拉氏变换 .
一.拉氏变换的性质
性质1(线性性质) 若a1 , a2是常数,并设L[f1(t)]=F1(p) , L[f2(t)]=F2(p) ,则
L[a1f1(t)+ a2f2(t)] = a1F1(p) + a2F2(p)
根据拉氏变换的线性性质,求函数乘以常数的 象函数以及求几个函数相加减的结果的象函数时,
L f (n) (t) pn F( p) pn1 f (0) pn2 f (0) L f (n1) (0)
零初始条件下:f (0) f (0) L f (n1) (0) 0
L f (n) (t) pn F( p)
性质5(积分性质) 若L[ f (t)]=F(p)(p≠0) , 且f (t)连续,则
t0 t
L

拉氏变换详细解读

拉氏变换详细解读
2
s+a
(二)、拉氏变换的主要定理 )、拉氏变换的主要定理 1.线性定理
L[ f1(t ) + f2 (t )] = L[ f1(t )] + L[ f2 (t )] = F1(s) + F2 (s)
L[kf (t )] = kL[ f (t )] = kF(s)
2.微分定理
df (t ) L = sF(s) − f (0+ ) dt
n −at
s 2 2 s +ω n! sn+1 n!
( s + a)
1
n+1
( s + a) ( s + b)
1 s ( s + a) ( s + b)
( s + a) ( s + b)
s
序号
−at
f(t)
F(s)
13
e sinωt e cosωt
− at
( s + a ) + ω2
2
ω
14
s + a ) + ω2 (
) 式中 f (−1) (0+ ) 为 ∫ f (t dt 在t时间坐标轴的右端 趋于零时的f 的值,相当于初始条件。 趋于零时的f(t)的值,相当于初始条件。
f (t )(dt )2 = 1 F(s) + 1 f (−1) (0+ ) + 1 f (−2) (0+ ) L ∫∫ s2 s2 s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式 控制工程中,
B(s) bm sm + bm−1sm−1 + bm−2 sm−2 +⋅⋅⋅⋅⋅⋅ +b1s + b0 F(s) = = A(s) an sn + an−1sn−1 + an−2 sn−2 +⋅⋅⋅⋅⋅⋅ +a1s + a0

拉氏变换

拉氏变换

控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。

一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。

f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。

2)当时,,M,a为实常数。

2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。

—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。

二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表 序号 F(s) f(t) 序号 F(s) f(t)11 1121(t) 123t13414511+Ts Tte T-1 156)(1a s s +ate --1167)1(1+Ts sTt e--117)1sin(122ϕξωξωξω----t e n t nn8189191020三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。

2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。

积分变换第6讲拉氏变换的性质

积分变换第6讲拉氏变换的性质

s

d
t

0
f (t) e-std t t
L
f (t) t

L

f
(t) t


F(s)d s
s
一般地,有L

f (t) t n


d 1s

sd s
s

s
F(s)d s
n次
12
例4 求函数
积分变换
第6讲
1
拉氏变换的性质
本讲介绍拉氏变换的几个性质, 它们在拉氏变换 的实际应用中都是很有用的. 为方便起见, 假定在 这些性质中, 凡是要求拉氏变换的函数都满足拉 氏变换存在定理中的条件, 并且把这些函数的增 长指数都统一地取为c. 在证明性质时不再重述这 些条件
2
1. 线性性质
若a,b是常数
f1(t)
f(t)
E
E
OT
T
t
2
O
Tt
f2(t) E
2
O
TT
t
2
24
由前图可知, f(t)=f1(t)+f2(t), 所以
L [ f (t)] L [ f1 (t )] L [ f2 (t)]

EL
si n
2
T
t u(t )
EL
2
sin
T

t
-
T 2


2s2 (s2 k 2 )2
-
s2
1
k
2

2s2 - s2 - k 2 (s2 k 2 )2

s2 - k2 (s2 k 2 )2

第4章-4.3拉普拉斯变换的性质

第4章-4.3拉普拉斯变换的性质
lim x(t ) x() lim sX ( s )
t s 0
举例
x1 (t ) * x2 (t )
卷积定理
X 1 ( s) X 2 ( s)
1 X 1 ( s) * X 2 ( s) 2j
x1 (t ) x2 (t )
第4章 4.3 拉普拉斯变换的性质
单边拉氏变换中要求a>0
dX (s) tx(t ) ds
dX ( s ) d ds ds


x(t )e
0
st
dt dt

0
d st x(t ) e dt ds

0
[tx (t )]e
st
L[tx (t )]
重复运用上述结果,还可得
(t ) x(t )
n
d X (s) ds
L[
d n x(t ) dt n
第4章 4.3 拉普拉斯变换的性质 例4-14 应用微分性质求 x(t ) (t ) 的变换。 解
d (t ) L[ (t )] L[ ] s L[ (t )] (0 ) s dt
应用微分性质求x(t ) cos(0t )的单边拉氏变换。
第一周期的拉氏变换 第n周期的拉氏变换
x1 (t nT ) e
snT
X 1 (s)
X1 ( s ) X (s) e sT 1
2 1 e e sT ) s (1 s
利用时移特性 利用无穷技术求和
第4章 4.3 拉普拉斯变换的性质 例 求周期信号的拉氏变换 x(t )
2 ( s a) 3
2
类似得
t e
2 at
t e

拉氏变换表

拉氏变换表

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质__________________________________________________2.表A-2 常用函数的拉氏变换和z变换表____________________________________________________________________________________________________3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+__________________________________________________=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。

电路原理11.1.1拉普拉斯变换及其基本性质 - 拉普拉斯变换、反变换及动态电路复频域模型

电路原理11.1.1拉普拉斯变换及其基本性质 - 拉普拉斯变换、反变换及动态电路复频域模型
U(s)
动态电路的复频域分析
五、耦合电感 的运算形式
i1 M i2
+
u1 L1
_
+
L2 u2
_
u1
L1
di1 dt
M
di2 dt
u2
L2
di2 dt
M
di1 dt
U1(s) sL1I1(s) L1i1(0 ) sMI 2(s) Mi 2(0 ) U2(s) sL2I2(s) L2i2(0 ) sMI 1(s) Mi1(0 )
U1(s)
1/sC
运算阻抗
U(s) I(s)Z(s) I(s) U(s)Y (s)
Z(s) R sL 1 sC
Y (s) 1 运算形式 Z (s) 欧姆定理
动态电路的复频域分析
七、运算电路
i1 R
i2
I1(s) R
I2(s)
+
RL
+
i
_ A (t)
L
C
uC
A/s _
RL sL
1/sC
拉氏变换法是一种数学变化,可将高阶微分方程变换 为代数方程以便求解。
例1:对数变换
A B AB
乘法运算简化 为加法运算
lgA lgB lgAB
例2:相量法
正弦量 i1 i2 i 相量 I&1 I&2 I&
正弦运算简化 为复数运算
动态电路的复频域分析
拉氏变换:将时域函数f(t)(原函数:original function)
3)求各部分分式的系数;
4)对每个部分分式和多项式逐项求拉氏反变换。
2. 拉氏变换法分析电路 u(t ) i(t )
正变换 反变换

拉氏变换的基本性质

拉氏变换的基本性质
频移性质的意义
频移性质表明信号在时域中乘以指数函数对应于频域中的平移。
微分性质
微分定理
若$f(t)$的拉氏变换为$F(s)$,则$f'(t)$的拉氏变换为$sF(s)-f(0^-)$。
微分性质的意义
微分性质建立了信号时域微分与频域之间的关系,便于通过拉氏变换求解微分方 程的初值问题。
积分性质
积分定理
拉氏变换的基本性质
目录
• 引言 • 拉氏变换的基本性质 • 拉氏变换的收敛域 • 拉氏反变换 • 拉氏变换在电路分析中的应用 • 拉氏变换在信号处理中的应用
01 引言
拉氏变换的定义
拉氏变换是一种线性积分 变换
它将一个有实数变量t(t≥0)的函数转换为 一个复数变量s的函数。
转换公式
对于实数变量t的函数f(t),其拉氏变换F(s)定 义为F(s)=∫[0,∞)f(t)e^(-st)dt,其中s为复数
电路分析
在电路分析中,拉氏反变换常用 于将电路的频率响应转换回时域 响应,以便分析电路的动态行为。
控制系统
在控制系统中,拉氏反变换可用于 将控制系统的传递函数转换回时域, 以便分析系统的稳定性和性能。
信号处理
在信号处理中,拉氏反变换可用于 将信号的频谱转换回时域信号,以 便进行信号的重构和分析。
05 拉氏变换在电路分析中的 应用
确定收敛域。
收敛域与函数性质的关系
函数增长性与收敛域
函数增长越快,其拉氏变换的收敛域越小;反之,函数增长越慢, 其收敛域越大。
函数奇偶性与收敛域
对于偶函数,其拉氏变换的收敛域关于实轴对称;对于奇函数,其 收敛域关于原点对称。
函数周期性与收敛域
周期性函数的拉氏变换在相应的周期内收敛,而在其他区域可能发 散。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dt
dt
设:f1(t) eat u(t)
f1) eat ...t 0
f2 (t)
df1 dt
(t)
aeatu(t ) L[ df1 dt
]
1
s
a
a
sF1(s)
df2 2 (t) aeatu(t)
dt
L[df2 dt
]
2
s
a a
s
s
a
1
sF2 (s)
s 0 dt
s 0 dt
lim
[f
(0 )
f
(0 )](t)est dt
0
f
(0 )
f
(0 )
s 0
即 lim sF (s) f (0 ) f (0 ) f (0 ) s f (0 ) lim sF (s) s
*几点说明
a.要注意初值f(t) 为t=0 时刻的值,而不是
f(t)在t= 0 时刻的值,无论拉氏变换F(s)是
s
s
3(3s 2 3s (s 1)3
1)
9
a3
3 2
f (t) 3 t 2 3 t 3 22
点评 :
1.利用初值定理时 ,需要判断象函数 F(s)是否为真分式。
为真分式式时,可直接利用初值定理求初值f (0 );若为
2.时域积分特性 若 f (t) F(s) 则
0
t
拉 :
f ( )d F(s)且 t
f ( )d
F(s)
f ( )d
0
s
s
s
付: f (t) F( j),则 t f ( )d 1 F( j)
j
求:
df
t
3 f (t) 2
f ( )d
u(t)
dt
t
f (0 ) 2, f ( )d 0
傅立叶变换的时移性质
若: f (t) F( j) 则: f (t t0) F( j)e jt0
这个性质表明信号在时域中的延时和频域中 的移相是相对应的.
2.四个不同的函数
a. f (t)u(t) b. f (t t0)u(t) c. f (t)u(t t0) d. f (t t0)u(t t0)
2j F1(s) * F2 (s)
P189.表4.2 拉氏变换的性质
4.时域平移 2.对t微分
f (t) f (t t0 )
3.对t积分 7.初值
重点讨论
8.终值
0
(一).时域平移特性和应用
t0
t
1.时移性
设 f (t) F(s)
则 f (t to )u(t to) est0 F (s) to o
1 (1 e s ) 2 1
s
1 e2s
单对称方波
u(t) 2u(t 1) u(t 2)
1 (1 2es e2s ) s
抽样信号的拉氏变换
抽样序列
T (t) (t nT ) n0
抽样序列的拉氏变换
T (s)
e SnT
n0
1
1 e ST
时域抽样信号
f s (t) f (t) T (t)
f (t)
1
0 TT
2
f0 (t)
1
t
0T
2
(1
e
T 2
)
1
S2 2
S T
t
1 e 2
sin t[u(t) u(t T )]
T
2
LT
信号加窗 第一周期
2
T
(1
e
T 2
)
S2 2
求图示信号的拉氏变换.
f (t) 包络函数 et
12
乘衰减指数 周期对称方波
1 1 es s 1 es
1 (1 e(S 1) ) (s 1) (1 e(S 1) )
抽样信号的拉氏变换
Fs (s)
f (nT )eSnT
n0
*抽样信号的拉氏变换
T (t) (t nT )
n0
L[T (t)] 0 (t nt)eStdt n0
1
1 eST
fs (t) f (t)T (t)
f (nT ) (t nT ) f (nT ) (t nT )
四.拉氏变换的基本性质(1)
线性 微分 积分 时移
n
ki fi (t)
i1
df (t) dt
t
f ( )d
f (t t0 )u(t t0 )
n
ki.LT [ f (t)]
i 1
SF(s) f (0 )
F (s) f '(0 )
s
s
est0 F (s)
频移
f (t)eat
F(s a)
lim
t
f
(t)
lim
s0
s
(s 3) (s 1)2 (s 2)
0
已知 :
L[
f
(t )]
N (s) (s 1)3
(1)如果 N(s)=3 利用初值定理求f(t)的展开式
f (t) a0 a1t a2t 2 a3t 3 中前两项中
非零项.
解:由题义可知L[
f
(t)]
(s
3 1)3
号的突变高频分量.所以可以给出相应的初值
f (0 )
d.由上式也说明,根据象函数F(s)判断原函数 是否否包含冲激函数及其各阶导数存在
2.终值定理
若f(t)及其导数可以进行拉氏变换且
lim f (t) 存在,则 lim f (t) lim sF(s)
t
t
s0
证明见p188
终值定理表明信号在时域中 f ()值,可以
通过复频域中的F(s)乘以s取 s 0 的极
限得到而不必求F(s)的反变换 *两点说明:
a. lim f (t) 存在等价于限制F(s)的极点 t
在s左半平面内和原点仅有单阶极点.
b.物理解释:s 0 j 0 相当于直流状态
因而得到电路稳定的终值.
p251.4 5分别求下列逆变换的初值和终值.
都为零.那么
L[df ] sF (s) dt
L[
d
nf dt
(t)
n
]
s
n
F
(s)
但若f(t)在t=0有跃变,应嵌入一个冲激.
为什么微分得变换式里与f (0 )有关?
虽 然: L[ f (t)] L[ f (t)u(t)]
但L[ d [ f (t)u(t)]不 一 定 和L[ d f (t)]相 等 。
n0
n0
L[ fS (t)]
0
f (nT ) (t nT )eStdt
n0
f (nT )ensT
n0
抽样信号的拉氏变换可表示为S域级数
(二).时域微分积分特性
1.若f (t) F (s),则df sF (s) f (0 ) dt
Res 0
和 d n f sn F (s) sn1 f (0 ) sn2 f ' (0 ) f n1(0 ) dt n
拉氏变换的基本性质(2)
尺度变换 初值定理
f (at)
1 F s a a
lim f (t) f (0 ) lim SF(s)
t 0
s
终值 lim f (t) f () lim SF(s)
定理
t
s0
f1(t) * f2 (t)
卷积
定理
f1(t). f2 (t)
F1(s).F2 (s)
1
f
(0 )
a0
lim S
S
3 (s 1)3
0
L[f '(t)] 3s f (0 ) 3s
(s 1)3
(s 1)3
f
'(0 )
a1
lim
s
s 3s (s 1)3
0
L[ f '' (t)] 3s2 f '' (0 ) 3s2
(s 1)3
(s 1)3
lim f '' (0 ) 2a2
S
S
3S 2 (S 1)3
3
3 a2 2
L[
d
3f dt
(t
3
)
]
3S 3 (S 1)3
f
'' (0 )
3S 3
3(3S 2 3S 1)
(S 1)3 3
(S 1)3
L[
f
(3) (t)]
3s3 (s 1)3
f
'' (0)
3s3 (s 1)3
3
lim f (3) (0 ) 6a3
f
(0 )
这里还要说明一个基本问题,即不要把单边拉氏 变换理解为只能用于因果信号. 如在利用微分和 积分定理求非因果信号的单边拉氏变换时,这样 理解,可能会得出错误的结果,如
f 2(t) t0 1 结 果 就 错 了.
若 误 认 为f 2 (t) t0 0
c.为了不使t=0点的冲激丢失,在单边拉氏变 换中一般采用 0 系统.而且采用 0 系统, 对解决实际问题较为方便.
采用 0系统还是采用 0 系统,所求得的初值
总是 f (0 )
b.若F(s)是有理代数式,则F(s)必须是真分式 即F(s)分子的阶次应低于分母的阶次,若不是 真分式,则应用长除法,使F(s)中出现真分式,而 初值f (0) 等于真分式 F0(s) 逆变换 f 0(t). c.物理解释:s ( j ) 相当于接入信
(t)sest dt
limest f (t) f (o ) sF (s) t
相关文档
最新文档