离散数学(集合论)课后总结
离散数学总结

离散数学总结离散数学学习总结一、课程内容介绍:1.集合论部分:集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。
只是对于以后的应用还不是很了解,感觉学好它很重要。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,如果两个集合的交集为,则称这两个集合是不相交的。
例如B和C 是不相交的。
两个集合的并和交运算可以推广成n个集合的并和交:A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An}A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}2.关系二元关系也可简称为关系。
对于二元关系R,如果∈R,可记作xRy;如果R,则记作x y。
例如R1={<1,2>,},R2={<1,2>,a,b}。
则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。
根据上面的记法可以写1R12,aR1b,aR1c等。
给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。
设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。
如果R不具有自反性,我们通过在R中添加一部分有序对来改得到新的关系R',使得R'具有自反性。
但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。
满足这些要求的R'就称为R的自反闭包。
通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。
3.代数系统代数结构也叫做抽象代数,主要研究抽象的代数系统。
抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。
离散知识点公式总结

离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。
公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
离散数学课程总结

离散数学课程总结离散数学课程总结1一、对课程的理解个人认为离散数学是一门综合性非常强的学科。
本书分为六个部分。
为数理逻辑、集合论、代数结构、组合数学、图论和初等数论。
其中由于课时紧凑我们忽略了部分学习内容。
感觉它是一门集理论思维与抽象思维于一身的学科。
开始学习大家可能会觉得很简单,学得很轻松,第一部分的数理逻辑在高中时也有所接触,只是现在在高中的基础上更深层次的加入一些元素。
第二部分集合论高中也学过一点基本的,多了二元关系之类。
据课本介绍,其中的偏序关系广泛用于实际问题中,调度问题就是典型的实例。
第三部分的代数结构是完全新的学习内容,开始带有抽象的色彩。
接下来就学习了图论,是个很有意思的部分,不像之前那么枯燥,可以有图形与关系之间的转换。
搜集有关资料得知《离散数学》的特点是:1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。
不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。
掌握、理解和运用这些概念和定理是学好这门课的关键。
要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
2、方法性强:离散数学的特点是抽象思维能力的要求较高。
通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。
《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。
但是《离散数学》证明题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。
因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法。
同时要善于总结。
通过以上特点介绍使我对离散数学有了不一样的认识。
我们是学计算机专业的学生,离散数学的学习给了我们很多的帮助,虽然这门每个部分的联系不是很紧密。
2024年学习《离散数学》心得体会模板(二篇)

2024年学习《离散数学》心得体会模板《离散数学》学习心得体会随着信息科学技术的不断发展,离散数学作为计算机科学与技术中的重要学科,越来越受到学生们的关注与重视。
作为一门理论性较强的课程,《离散数学》涉及到一系列的离散结构、数学推理和证明方法等内容,对于学生来说具有一定的挑战性。
在2024年的学习过程中,我对《离散数学》有着一些新的体会和收获。
首先,通过学习《离散数学》,我对离散结构有了更深入的了解。
离散结构是计算机科学与技术的基础,也是离散数学的重要内容。
在这门课程中,我学习了集合论、关系、函数、图论等各种离散结构的概念和性质。
通过对离散结构的学习,我逐渐认识到离散数学在计算机科学中的重要性,这为我以后的学习和研究奠定了坚实的基础。
其次,学习《离散数学》让我了解到数学推理的重要性。
离散数学是一门很有理论性的学科,需要进行严密的推理和证明。
在学习中,我逐渐熟悉了数学推理的方法和步骤,比如直接证明、归纳法、反证法等。
这些方法不仅在离散数学中有所应用,在其他学科中也有很大的作用。
通过锻炼数学推理的能力,我对问题的思考和解决能力也有了明显的提升。
此外,学习《离散数学》还让我明白了数学的抽象思维的重要性。
离散数学中的很多概念和性质都具有很高的抽象程度,需要我们用抽象的思维方式去理解和运用。
在学习过程中,我逐渐适应了这种抽象思维的方式,并通过解决问题和做题的过程中熟练掌握了抽象思维的技巧。
这对于我以后在计算机科学和其他领域的学习和研究有着重要的借鉴意义。
此外,通过学习《离散数学》,我也提高了自己的问题解决能力。
离散数学中的问题往往需要我们通过分析和推理找到解决的方法,这对于培养我们的问题解决能力非常重要。
通过实践和思考,我逐渐掌握了解决问题的一般步骤和方法,提高了自己的问题解决能力。
这对于我以后在工作和生活中遇到问题时会有极大的帮助。
综上所述,通过学习《离散数学》,我对离散结构有了更深入的了解,对数学推理和抽象思维有了更高的要求,并提高了自己的问题解决能力。
离散数学知识点总结及应用

离散数学知识点总结及应用
知识点1: 集合论
- 集合的定义和表示方法
- 集合的运算:并、交、差、补
- 集合的基本性质和定律
知识点2: 逻辑与命题
- 命题的定义和特性
- 命题的联结词:与、或、非
- 命题的真值表和逻辑运算
- 命题的充分条件和必要条件
知识点3: 关系与函数
- 关系的定义和性质
- 关系的类型:自反、对称、传递、等价
- 函数的定义和基本概念
- 函数的特性和图像
知识点4: 图论
- 图的基本概念和术语
- 图的存储结构:邻接矩阵、邻接表
- 图的遍历算法:深度优先搜索、广度优先搜索
- 最短路径算法:Dijkstra算法、Floyd-Warshall算法
知识点5: 组合数学
- 排列和组合的基本概念
- 排列和组合的计算方法
- 随机变量和概率分布
- 组合数学在密码学等领域的应用
知识点6: 布尔代数
- 布尔代数的基本运算:与、或、非
- 布尔函数的最小化方法
- 布尔代数的应用:逻辑电路设计、编码器等
知识点7: 计算理论
- 自动机的基本概念和分类
- 正则语言和正则表达式
- 文法的定义和性质
- 上下文无关文法和巴科斯范式
知识点8: 数论
- 整数的性质和基本运算
- 质数和分解定理
- 同余关系和同余方程
- 数论在加密算法中的应用
以上是离散数学中的一些主要知识点和应用场景的简要总结,希望对你的研究有所帮助。
离散数学期末总结

离散数学期末总结一.知识点第一章.集合论集合论或集论是讨论集合〔由一堆抽象物件构成的整体〕的数学理论,包含集合、元素和成员关系等最基本数学概念。
在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。
本章主要介绍集合的基本概念、运算及幂集合和笛卡尔乘积。
这章是本书的基础部分,要学好离散数学就需要很好的掌控集合的内容。
集合论的概念和方法已经渗透到全部的数学分支,因而各数学分支的完整体系,都是在所取集合上。
第二章.关系关系在我们日常生活中常常会遇到关系这一概念。
但在数学中关系表示集合中元素间的联系。
本章主要学习关系的基本概念、关系的性质、闭包运算、次序关系、等价关系,本章学习的重点:关系的性质、闭包运算、次序关系。
关系这一章是集合论这一章的延伸,对集合论的理解程度对学习关系这一章是特别有影响的。
而关系又是学习下一章代数系统必不可少的,所以本章是特别重要的章节。
第三章.代数系统代数结构也叫做抽象代数,主要讨论抽象的代数系统。
抽象代数讨论的中心问题就是一种很重要的数学结构--代数系统:半群、群等等。
本章主要学习了运算与半群、群。
学习本章需要学会判断是否是代数系统、群和半群,以及判断代数系统具有哪些运算规律,如:结合、交换律等及单位元、逆元。
这些都在我们计算机编码中表达出重要的作用。
第四章.图论图论〔Graph Theory〕起源于闻名的柯尼斯堡七桥问题,以图为讨论对象。
图论中的图是由假设干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
本章主要学习图的基本概念、路径与回路、图的矩阵表示、平面图和二部图、以及树。
学习的重点:图的矩阵表示、平面图和二部图、以及树。
第五章.数理规律数理规律又称符号规律、理论规律。
它既是数学的一个分支,也是规律学的一个分支。
是用数学方法讨论规律或形式规律。
数理规律是数学基础的一个不可缺少的组成部分。
离散数学集合论知识点

离散数学集合论知识点
离散数学集合论知识点
集合是离散数学中最基本的概念之一,集合论是研究集合性质、集合运算等问题的学科。
以下是关于集合论的几个重要知识点:
1. 集合的定义和符号表示
集合是由一些确定的对象组成的整体,这些对象称为该集合的元素,用大括号括起来表示。
例如,{1, 2, 3}表示一个由1、2、3三个元素组成的集合。
通常用小写字母表示集合,例如A、B、C等,用大写字母表示元素。
2. 子集和真子集
集合A是集合B的子集,当且仅当A中的每个元素都是B中的元素。
用符号A⊆B表示。
若A⊆B且A≠B,则称A是B的真子集。
用符号A⊂B表示。
3. 并集和交集
设A和B为两个集合,则它们的并集是由A和B中的元素组成的集合,用符号A∪B表示;它们的交集是A和B中共有的元素组成的集合,用符号A∩B表示。
4. 补集和差集
设U是全集,A是U的一个子集,那么A的补集是U中不属于A的所有元素组成的集合,用符号A'表示。
如果A、B是U的子集,则它们的差集是由属于A 但不属于B的元素组成的集合,用符号A-B表示。
5. 笛卡尔积
设A和B为两个集合,则A和B的笛卡尔积是由所有有序对(a,b)组成的集合,其中a∈A,b∈B。
用符号A×B表示。
例如,若A={1,2},B={a,b},则A×B={(1,a),(1,b),(2,a),(2,b)}。
以上是离散数学集合论的一些基本知识点,它们是其他数学领域的基础,在实际应用中也有广泛的应用。
《离散数学》课程总结

《离散数学》课程总结第一篇:《离散数学》课程总结《离散数学》学期总结转眼之间,这学期要结束了。
我们的离散数学,这门课程的学习也即将接近尾声。
下面就是我对这门课一些认识及自己的学习心得。
首先我们这门课程离散数学到底包含了哪几大部分?每部分具体又有什么内?这门课程在计算机科学中有什么地位?这门课程在我们以后的学习生活中,以及在将来的工作中有什么帮助?下面我将以上几个方面具体谈一谈并将总结一下自己本人在这门课程学习过程中遇到的一些问题和心得体会。
这门课程有数理逻辑,集合论,代数系统和图论四部分。
这四大部分通常被称为离散数学的四大体系。
其中每一部分都是一个独立的学科,内容丰富。
而我们离散数学中的内容是其中最基本,最重要且和计算机科学最密切相关的内容吸收到离散数学中来,并使它们前后贯通,形成一个有机整体。
这门课的主要内容有命题逻辑、谓词逻辑,属于数理逻辑部分,集合论中有集合、二元关系、函数,代数系统包含代数系统基础、群、环、域以及格和布尔代数的知识(这部分我们没有涉及)。
那么这门课程在计算机科学中有着什么样的地位呢,这门课程是计算机科学专业中重要的专业基础课程,核心课程,可以这么说,离散数学,既是一门专业基础课,是一门工具性学科。
这门课讲授的内容,与后续专学习业密切相关。
在这门课里我们讲授了大量的计算机学科专业必要的基本概念,基本理论和基本方法。
为我们以后的学习,工作打下良好基础。
在算法设计,人工智能,计算机网络,神经网络,智能计算等学科中有着重要的作用。
在计算机科学中有着广泛的应用。
通过这门课可以对我们计算机算法的理解和逻辑思维得到提高。
那么我们具体学了什么内容呢?(一)首先集合论是整个数学的基础,(不管是离散数学还是连续数学)如果没有专门学过,那么出现在离散数学中还是很合适的。
至于由集合论引出的二元关系,函数的内容,也是理所应当的。
数理逻辑是一个让人眼前一亮的东西。
我第一次发现,原来有些复杂的推理问题是可以通过“计算”的方法解决的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章集合论基础1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。
⑴{a}∈A T ⑵⌝({a}⊆ A) F⑶c∈A F ⑷{a}⊆{{a,b},c} F⑸{{a}}⊆A T ⑹{a,b}∈{{a,b},c} T⑺{{a,b}}⊆A T ⑻{a,b}⊆{{a,b},c} F⑼{c}⊆{{a,b},c} T ⑽({c}⊆A)→(a∈Φ) T2、证明空集是唯一的。
(性质1:对于任何集合A,都有Φ⊆A。
)证明:假设有两个空集Φ1 、Φ2 ,则因为Φ1是空集,则由性质1得Φ1 ⊆Φ2 。
因为Φ2是空集,则由性质1得Φ2 ⊆Φ1 。
所以Φ1=Φ2 。
3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念)a)是否Φ∈B?是否Φ⊆B?b)是否{Φ}∈B? 是否{Φ}⊆B?c)是否{{Φ}}∈B? 是否{{Φ}}⊆B?解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}}在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b}B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}}然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}}以后熟悉后就可以直接写出。
a) Φ∈B Φ⊆Bb) {Φ}∈B {Φ} ⊆ Bc) {{Φ}}∈B {{Φ}}⊆Ba)、b)、c)中命题均为真。
4、证明A⊆B ⇔ A∩B=A成立。
证明:A∩B=A ⇔∀x(x∈A∩B ↔x∈A)⇔∀x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B))⇔∀x((x∉A∩B∨x∈A)∧(x∉A∨x∈A∩B))⇔∀x((⌝(x∈A∧x∈B)∨x∈A)∧(x∉A∨(x∈A∧x∈B))⇔∀x(((x∉A∨x∉B)∨x∈A)∧(x∉A∨(x∈A∧x∈B)))⇔∀x(T∧(T∧( x∉A∨x∈B)))⇔∀x( x∉A∨x∈B)⇔∀x(x∈A→x∈B)⇔ A⊆B5、(A-B)-C=(A-C)-(B-C)证明:任取x∈(A-C)-(B-C)⇔x∈(A-C)∧x∉(B-C)⇔(x∈A∧x∉C)∧⌝(x∈B∧x∉C)⇔(x∈A∧x∉C)∧(x∉B∨x∈C)⇔(x∈A∧x∉C∧x∉B)∨(x∈A∧x∉C∧x∈C)⇔x∈A∧x∉C∧x∉B⇔x∈A∧x∉B∧x∉C⇔(x∈A∧x∉B)∧x∉C⇔x∈A-B∧x∉C⇔x∈(A-B)-C所以(A-B)-C=(A-C)-(B-C)6、A-(B∪C)=(A-B)∩(A-C)证明:任取x∈A-(B∪C)⇔x∈A∧x∉(B∪C)⇔x∈A∧⌝(x∈B∨x∈C)⇔x∈A∧(x∉B∧x∉C)⇔(x∈A∧x∉B)∧(x∈A∧x∉C )⇔x∈A-B∧x∈A-C⇔x∈(A-B)∩(A-C)所以A-(B∪C)=(A-B)∩(A-C))7、~(A∩B)=~A∪~B ~(A∪B)=~A∩~B 这两个公式称之为底-摩根定律。
证明:任取x∈~(A∩B)x∈~(A∩B)⇔x∉A∩B⌝⇔(x∈A∧x∈B)⇔(x∉A∨x∉B)⇔x∈~A∨x∈~B⇔x∈~A∪~B ∴~(A∩B)=~A∪~B8、A⊆B ⇔ ~B⊆~A证明:A⊆B ⇔∀x(x∈A→x∈B)⇔∀x(x∉B→x∉A)⇔∀x(x∈~B→x∈~A)⇔ ~B⊆~A9、~A=B 当且仅当A∪B=E且A∩B=Φ证明:A∪B=E∧A∩B=Φ⇔∀x(x∈A∪B↔x∈E)∧(P↔T⇔P)∀x(x∈A∩B↔x∈Φ) (P↔F⌝⇔P)⇔∀x(x∈A∪B↔T)∧∀x(x∈A∩B↔F)⇔∀x(x∈A∪B∧⌝(x∈A∩B))⇔∀x((x∈A∨x∈B)∧⌝(x∈A∧x∈B))⇔∀x((x∈A∨x∈B)∧(x∉A∨x∉B))⇔∀x((x∉A→x∈B)∧(x∈B→x∉A))⇔∀x((x∈~A→x∈B)∧(x∈B→x∈~A))⇔∀x((x∈~A↔x∈B)⇔~A=B关于对称差A、B是集合,由属于A而不属于B,或者属于B而不属于A的元素构成的集合,称之为A与B的对称差,记作A⊕B。
例如A={1,2,3} B={2,3,4}A⊕B={1,4}谓词定义:A⊕B=(A-B)∪(B-A)={x|(x∈A∧x∉B)∨(x∈B∧x∉A)}A⊕B=(A∪B)-(A∩B)10、∩对⊕可分配A∩(B⊕C)=(A∩B)⊕(A∩C)证明:(A∩B)⊕(A∩C)= ((A∩B)∪(A∩C))-((A∩B)∩(A∩C))= (A∩(B∪C))-(A∩B∩C)= A∩((B∪C)-(B∩C)) (∩对-分配)= A∩(B⊕C)但是∪对⊕不可分配, 举反例:A ∪(A ⊕B)=A ∪B , 而(A ∪A)⊕(A ∪B)=A ⊕(A ∪B)= (A ∪B)-AA ∪(A ⊕B)≠(A ∪A)⊕(A ∪B)一般地,有n 个有限集合A1, A2,... An,则11、某个研究所有170名职工,其中120人会英语,80人会法语,60人会日语,50人会英语和法语,25人会英语和日语,30人会法语和日语,10人会英语、日语和法语。
问有多少人不会这三种语言?解:令U 为全集,E 、F 、J 分别为会英语、 法语和日语人的集合。
|U|=170|E|=120 |F|=80 |J|=60 |E ∩F|=50|E ∩J|=25 |F ∩J|=30 |E ∩F ∩J|=10|E ∪F ∪J|=|E|+|F|+|J|-|E ∩F|-|E ∩J|-|F ∩J|+|E ∩F ∩J|= 120+80+60-50-25-30+10=165|U-(E ∪F ∪J)|=170-165=5 即有5人不会这三种语言。
12、求1到1000之间不能被5、6、8整除的数的个数。
解.设全集 E ={x| x 是1到1000的整数} |E|=1000A5、 A6、 A8是E 的子集并分别表示可被5、6、8整除的数的集合。
⎣x ⎦ 表示小于或等于x 的最大整数。
LCM(x,y):表示x,y 两个数的最小公倍数。
(Least Common Multiple ) 33301000)6,5(1000|65|12581000||16661000||20051000||865=⎥⎦⎥⎢⎣⎢=⎥⎦⎥⎢⎣⎢==⎥⎦⎥⎢⎣⎢==⎥⎦⎥⎢⎣⎢==⎥⎦⎥⎢⎣⎢=LCM A A A A A E FJ10U不能被5、6、8整除的数的集合为~(A5∪A6∪A8)|~(A5∪A6∪A8)|=|E|-|A5∪A6∪A8|=|E|-(|A5|+|A6|+|A8|-|A5∩A6|-|A5∩A8|-|A6∩A8|+|A5∩A6∩A8|)=1000-(200+166+125-33-25-41+8)=60013、对24名科技人员掌握外语的情况进行调查结果如下:英、日、德、法四种外语中,每个人至少会一种;会英、日、德、法语的人数分别是13、5、10、9人; 同时会英、日语的有2人; 同时会英、法语的有4人; 同时会德、法语的有4人; 同时会英、德语的有4人;会日语的人不会德语,也不会法语;问这24人中,只会一种外语的人各是多少人?同时会英、法、德三种语言的人有多少人? 解:设全集为U ,E,F,G ,J 分别表示会英、法、德、日语人的集合。
|U|=24 |E ∩F|=|G ∩F|=|E ∩G|=4又设 |E ∩F ∩G|=x 只会英、法、德、日一种外语的人分别是y1, y2, y3, y4。
于是可以画出文氏图及方程如下:y1 +2(4-x)+x+2=13y2 +2(4-x)+x=9y3 +2(4-x)+x=10y4+2=5y1+ y2+ y3 +y4 +3(4-x)+x+2=24 解得: y1=4, y2=2, y3=3, y4=3 x=114、A,B 是有限集合, P(A)表示A 的幂集,已知|A|=3,|P(B)|= 64 ,|P(A ∪B)|= 256, 则|B|=( ), |A ∩B|=( ),|A-B|=( ),|A ⊕B|=( )。
解:由|P(B)|=64=26,得 |B|=6由|P(A ∪B)|=256=28,得|A ∪B|=8由包含排斥原理得 |A ∪B|=|A|+|B|-|A ∩B|得8=3+6-|A ∩B| ,所以 |A ∩B|=1|A-B|=|A|-|A ∩B|=3-1=2|A ⊕B|=|A ∪B|-|A ∩B|=8-1=7E F G J x 4-x 4-x 4-x 2 y 1y 2 y 3 y 481201000)8,6,5(1000||41241000)8,6(1000||25401000)8,5(1000||8658685=⎥⎦⎥⎢⎣⎢=⎥⎦⎥⎢⎣⎢==⎥⎦⎥⎢⎣⎢=⎥⎦⎥⎢⎣⎢==⎥⎦⎥⎢⎣⎢=⎥⎦⎥⎢⎣⎢=LCM A A A LCM A A LCM A A15、设F表示一年级大学生的集合,S表示二年级大学生的集合,M表示数学专业学生的集合,C表示计算机专业学生的集合,D表示听离散数学课学生的集合,G表示星期六晚上参加音乐会的学生的集合,H表示星期六晚上很晚才睡觉的学生集合,则将下面各个句子所对应的集合表达式分别写在句子后面的括号内:(1)所有计算机专业二年级的学生在学离散数学课。
( C∩S ⊆ D )(2)这些且只有这些学离散数学课的学生或者星期六晚上去听音乐会的学生在星期六晚上很晚才睡觉。
( D ∪G=H )(3)星期六晚上的音乐会只有大学一、二年级的学生参加。
( G ⊆ F∪S )(4)除去数学专业和计算机专业以外的二年级的学生都去参加星期六晚上的音乐会。
( ~(M∪C) ∩S ⊆ G )16、一个班有50人,第一次考试得A的人数等于第二次考试得A的人数,仅仅在一次考试中得A的学生总数是40,有4个学生两次考试都没有得到A,问有多少学生仅在第一次考试中取得A?问有多少学生仅在第二次考试中取得A?问有多少学生两次考试中都取得A?解.设A1、A2 分别表示在第一次和第二次得A的人的集合。
根据题意得: |E| = 50, |A1| = |A2|,(|A1| - |A1∩A2|) + (|A2| - |A1∩A2|) = 40 ,即|A1| + |A2| - |A1∩A2| - |A1∩A2 | = 40 ,∴2|A1| - 2|A1∩A2| = 40 , (1)∴|A1| - |A1∩A2| = |A2| - |A1∩A2| = 20 , (仅一次得A)又|E| - |A1∪A2| = 4, ∴|A1∪A2| = 50 - 4 = 46即|A1| + |A2| - |A1∩A2| = 2|A1| - |A1∩A2| = 46, (2)(2) - (1)得:|A1∩A2| = 6。