东北大学离散数学复习总结(满分版)

合集下载

计算机考试心得6篇

计算机考试心得6篇

计算机考试心得6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、事迹材料、心得体会、讲话致辞、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, performance materials, insights, speeches, rules and regulations, emergency plans, contract agreements, teaching materials, essay summaries, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!计算机考试心得6篇心得体会是对自己成长历程的记录,有助于建立自我档案,心得体会是我们写下的一种感受性文字,只有认真的写心得体会,我们才能将自己的真实想法传达给读者,本店铺今天就为您带来了计算机考试心得6篇,相信一定会对你有所帮助。

大学生考研后心得体会

大学生考研后心得体会

大学生考研后心得体会大学生考研后心得体会最新我们奋斗,我们彷徨,我们在考研教室里奋战的日日夜夜的情形如今依然历历在目。

下面是由作者为大家精心整理的大学生考研后心得体会最新,仅供参考,欢迎大家浏览本文。

大学生考研后心得体会【篇1】我的本科就读于北京师范大学信息科学与技术学院电子系,从高等数学(微积分)、离散数学、线性代数、概率论到基础物理学(可不是像名字那么基础,还讲相对论什么的)、电磁场,理工科目的基础课程基本上学了个遍:用编程语言将就是for循环遍历了一遍理工科这棵二叉树。

不得不说,这么多的疑难课程,到考研的关键关头,很难再全部拿起来。

但是又应当客观承认,多科目让我对数学这门基础课程从东南西北上下左右各个角度都注视了一番。

我想,这就是在培养学科背景和学科感觉吧。

我觉得本科真正学得手的理论还就是数学,其余都是技术……而考研初试重视的只能是理论,基本理论和基本方法,这些如果在大一大二就蒙混过关,那考研前的复习基本上就是从零开始,从失望开始。

我和很多人一样,在大二大三时很不想推敲考研这件事。

所有人都懂,保研的人过着猪的生活,工作的人过着狗一样的生活,考研的人则过着猪狗不如的生活。

我的最大爱好并不是本科这个专业,但是同许多平凡家庭一样,艺术、文艺这些高雅而浪费金钱的事业注定和我无缘,只有挑选理工科来“发家致富”。

逼着自己学下去,保研还是功亏一篑。

大三早早就准备考研,每天为自习室像猪狗一样四处游荡,突然有一天放出消息,如果比你排名高的人再有一个舍弃保研出国去,你就可以保!但是等啊等,终于等来了噩耗……但是等归等,我并没有从自习室和通往自习室的路上消逝。

只有这样,提早准备的优势才不至于被小道消息所消解。

然后就来了关于挑选的问题:报哪个学校、哪个专业?这段时间就是各种聊,各种传说,各种扯淡,各种不上自习……等真的决定了报什么、要不要跨专业,师姐师兄也找得差不多,这是可能就真的可以收心了,可以冲刺了。

我觉得本科大学就不次而且没有什么病的(比如清华并北大病)就不用再选别的地方了。

离散数学课程标准

离散数学课程标准

《离散数学》课程标准英文名称:Discrete Mathematics 适用专业:数学与应用数学学分数:4一、课程性质《离散数学》是研究离散量的结构及其相互关系的应用数学学科,是随着计算机科学的发展而逐步建立的,它形成于七十年代初期,是一门新兴的工具性学科。

《离散数学》是应用数学专业以及计算机专业的一门重要专业必修课。

二、课程理念1、课程所属学科分析离散与连续是现实世界中物质运动的对立统一的两个方面,离散数学与连续数学是描述、刻画和表达现实世界物质运动的两个重要工具。

计算机的高速发展与广泛应用,促进了信息数字化、符号化和离散化。

从目前的发展趋势来看,离散数学在现代应用科学中的作用已经超过了连续数学。

离散数学已成为计算机科学与技术的重要理论基础之一,在计算机科学与技术等领域有着广泛的应用。

2、课程授课对象分析离散数学课程是应计算机科学和技术发展的需要,综合了高等数学的多个分支而形成的。

其特点是以离散量为研究对象,内容丰富,涉及面较宽。

因此概念多、定理多、推理多,但它研究的内容均比较基础,难度不大。

本课程面对的是计算机科学与技术专业一年级的学生,。

通过本课程的学习,培养学生的抽象思维和严密的逻辑推理能力,为进一步学习专业课打好基础,并为学生今后处理离散信息,提高专业理论水平,从事计算机的实际工作提供必备的数学工具。

3、课程内容选择分析本课程研究离散型的量的结构及其相互间的关系,因而特别体现了计算机科学的离散性这一重要特征。

其内容极为广泛,不同的教材或专著在选材上通常会有较大的差异。

但都至少包含了以下四个方面内容:数理逻辑、集合论、代数系统、图论。

作为一门数学课,《离散数学》特别能体现数学的三大特性——严密的逻辑性、高度的抽象性以及广泛的应用性。

4、课程学习要求的分析在本课程的教学过程中,要坚持学生为主体、教师为主导、以人为本的教学理念,将研究性学习运用于教学中,课堂讲授、课堂讨论、课外扩展学习相结合,鼓励创新,充分体现素质教育、个性化教育等现代教育思想和观念,构建以学习者为中心,以学生实践性的自主活动为基础的动态、开放的教学过程。

智慧树知道网课《离散数学(山东联盟)》课后章节测试满分答案

智慧树知道网课《离散数学(山东联盟)》课后章节测试满分答案

第一章测试1【单选题】(6分)A.B.C.D.2【单选题】(6分)设P:我将去市里,Q:我有时间.命题“我将去市里,仅当我有时间”符号化为A.Q→PB.⌝P∨QC.P↔QD.P→Q3【单选题】(7分)A.B.C.D.4【单选题】(7分)下列公式是重言式的为A.P∧Q↔⌝P∨QB.⌝(P∨Q)↔(⌝P∧⌝Q)C.(B→(A∨B))↔(⌝A∧(A∨B))D.A∧⌝B↔A∨B5【单选题】(6分)A.永真式B.永假式C.可满足式D.无法确定6【单选题】(7分)下列表述成立的为A.⌝P∧⌝Q⇔P∨QB.⌝A∧(A∨B)⇒BC.P→Q⇒QD.⌝B→A⇔A→B7【单选题】(7分)下列结论中不正确的是A.三个命题变元的布尔小项⌝P∧Q∧⌝R的编码是m010B.任意两个不同的布尔小项的析取式必为永真式C.任意两个不同的布尔大项的析取式必为永真式D.三个命题变元的布尔大项⌝P∨Q∨⌝R的编码是M1018【单选题】(7分)A.B.C.D.9【单选题】(6分)设A,B都是命题公式,则A→B为可满足式是A B的A.既非充分又非必要条件B.充分必要条件C.充分而非必要条件D.必要而非充分条件10【单选题】(7分)A.B.C.D.11【单选题】(7分)一个公式在等价意义下,下面哪个写法是唯一的A.析取范式B.合取范式C.主析取范式D.等价公式12【单选题】(7分)下面4个推理定律中,不正确的是A.B.C.D.13【单选题】(7分)A.B.C.D.14【单选题】(6分)下列语句中哪个是真命题A.我在说假话.B.如果1+2=3,那么雪是黑的.C.如果疑问句是命题,那么地球将停止转动.D.严禁吸烟!15【单选题】(7分)A.8B.3C.5D.第二章测试1【单选题】(7分)谓词公式∃xA(x)∧⌝∃xA(x)的类型是A.矛盾式B.非永真式的可满足式C.无法确定D.永真式2【单选题】(7分)设个体域为整数集,下列公式中其真值为1的是A.B.C.D.3【单选题】(6分)A.B.C.D.4【单选题】(7分)下面给出的一阶逻辑等价式中,的是A.B.C.D.5【单选题】(7分)A.。

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结 一、各章复习要求与重点第一章 集 合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、 De Morgan 律等),文氏(V enn )图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明 [复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。

2、掌握集合的表示法和集合的交、并、差、补等基本运算。

3、掌握集合运算基本规律,证明集合等式的方法。

4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。

[本章重点习题]P5~6,4、6; P14~15,3、6、7; P20,5、7。

[疑难解析] 1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n 。

2、集合恒等式的证明通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。

实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在B A B A ~⋂=-证明中的特殊作用。

[例题分析]例1 设A ,B 是两个集合,A={1,2,3},B={1,2},则=-)()(B A ρρ 。

解}}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(φρ=A}}2,1{},2{},1{,{)(φρ=B于是}}3,2,1{},3,2{},3,1{},3{{)()(=-B A ρρ例2 设{}{}Φ=,,,,b a b a A ,试求:(1){}b a A ,-; (2)Φ-A ; (3){}Φ-A ; (4){}{}A b a -,; (5)A -Φ; (6){}A -Φ。

解 (1){}{}{}Φ=-,,,b a b a A (2)A A =Φ- (3){}{}{}b a b a A ,,,=Φ- (4){}{}Φ=-A b a , (5)Φ=-ΦA (6){}Φ=-ΦA 例3 试证明()()()()B A B A B A B A ~~~~⋂⋃⋂=⋃⋂⋃ 证明()()()()()()()()()()()()()()()()()()B A B A B A B A B B B A A B A A B B A A B A B A B A ~~~~~~~~~~~~~⋂⋃⋂=Φ⋃⋂⋃⋂⋃Φ=⋂⋃⋂⋃⋂⋃⋂=⋂⋃⋃⋂⋃=⋃⋂⋃第二章 二元关系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse )、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念 [复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和关系图、关系的运算。

东北大学离散数学复习总结(满分版)

东北大学离散数学复习总结(满分版)

方法、知识点总结(知识重点和考题重点)前三章重点内容(知识重点):1、蕴含(条件)“→”的真值P→Q的真值为假,当且仅当P为真,Q为假。

2、重言(永真)蕴涵式证明方法<1>假设前件为真,推出后件也为真。

<2>假设后件为假,推出前件也为假。

易错3、等价公式和证明中运用4、重要公式重言蕴涵式:P∧Q => P or QP or Q => p∨QA->B =>(A∧or∨C)->(B∧or∨C)其他是在此基础上演变等价公式:幂等律P∧P=P P∨P=P吸收律P∧(P∨Q)=P P∨(P∧Q)=P同一律P∨F=P P∧T=PP∨T=T P∧F=FP <-> Q = (P->Q)∧(Q->P) = (P∧Q)∨(﹁P∧﹁Q)5、范式的写法(最方便就是真值表法)6、派遣人员、课表安排类算法:第一步:列出所有条件,写成符号公式第二步:用合取∧连接第三步:求上一步中的析取范式即可7、逻辑推理的写法直接推理论证:其中I公式是指重言蕴涵式那部分其中E公式是指等价公式部分条件论证: 形如~ , ~, ~ => R->SR P(附加条件)......S TR->S CP8、谓词基本内容注意:任意用—> 连接存在用∧连接量词的否定公式量词的辖域扩充公式量词分配公式其他公式9、带量词的公式在论域内的展开10、量词辖域的扩充公式11、前束范式的写法给定一个带有量词的谓词公式,1)消去公式中的联接词→和←→(为了便于量词辖域的扩充);2)如果量词前有“﹁”,则用量词否定公式﹁”后移。

再用摩根定律或求公式的否定公式,将“﹁”后移到原子谓词公式之前;3)用约束变元的改名规则或自由变元的代入规则对变元换名(为量词辖域扩充作准备);4)用量词辖域扩充公式提取量词,使之成为前束范式形式。

简要概括:1、去-> ,<-> 2、移﹁3、换元4、量词辖域扩充12、谓词演算的推理理论推理规则:P、T、CP、US、ES、EG、UG 的使用ES US 去量词EG UG 添量词★谨记:ES要在US之前,很重要添加量词注意事项:13、集合的幂集(用P表示,也常有花P表示)A是集合,由A的所有子集构成的集合,称之为A的幂集。

离散数学复习题

离散数学复习题

离散数学复习题第⼀套题⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2},则A - B=____________________;ρ(A) - ρ(B)=_________________ .答案:{3};{{3},{1,3},{2,3},{1,2,3}}.2. 设有限集合A, |A| = n,则|ρ(A×A)| = ____________.答案:22n.3. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是____________.答案:(P∧?Q∧R).4. 设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_____; A?B=_____;A-B=_____.答案:{4};{1, 2, 3, 4};{1, 2}.5. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______, ________, ________.答案:⾃反性;对称性;传递性.6. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)},则R1?R2=________;R2?R1 =________;R12=___________.答案:{(1,3),(2,2),(3,1)};{(2,4),(3,3),(4,2)};{(2,2),(3,3)}.7. 设有限集A, B,|A| = m, |B| = n,则| |ρ(A?B)| = ___________.则R以集合形式(列举法)记为______________.答案:{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}.9. 设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

答案:21.10. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是_____________.答案:(R(a)∧R(b))→(S(a)∨S(b)).11. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)},S={(1,3),(2,3),(3,2)}。

考研数学心得体会范文10篇

考研数学心得体会范文10篇

考研数学心得体会范文10篇考研数学心得体会精选篇1*的重点内容是一、多元函数(主要是二元、三元)的偏导数和全微分概念;二、偏导数和全微分的计算,尤其是求复合函数的二阶偏导数及隐函数的偏导数;三、方向导数和梯度(只对数学一要求);四、多元函数微分在几何上的应用(只对数学一要求);五、多元函数的极值和条件极值。

*的常见题型有1.求二元、三元函数的偏导数、全微分。

2.求复全函数的二阶偏导数;隐函数的一阶、二阶偏导数。

3.求二元、三元函数的方向导数和梯度。

4.求空间曲线的切线与法平面方程,求曲面的切平面和法线方程。

5.多元函数的极值在几何、物理与经济上的应用题。

第4类题型,是多元函数的微分学与前一章向量代数与空间解析几何的综合题,应结合起来复习。

极值应用题多要用到其他领域的知识,特别是在经济学上的应用涉及到经济学上的一些概念和规律,读者在复习时要引起注意。

一元函数微分学在微积分中占有极重要的位置,内容多,影响深远,在后面绝大多数章节要涉及到它。

*内容归纳起来,有四大部分1.概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系;2.运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等;3.理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理;4.应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如"弹性"、"边际"等等。

常见题型有1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程确定的函数求导。

2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如"证明在开区间至少存在一点满足……",或讨论方程在给定区间内的根的个数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法、知识点总结(知识重点和考题重点)前三章重点内容(知识重点):1、蕴含(条件)“→”的真值P→Q的真值为假,当且仅当P为真,Q为假。

2、重言(永真)蕴涵式证明方法<1>假设前件为真,推出后件也为真。

<2>假设后件为假,推出前件也为假。

易错3、等价公式和证明中运用4、重要公式重言蕴涵式:P∧Q => P or QP or Q => p∨QA->B =>(A∧or∨C)->(B∧or∨C)其他是在此基础上演变等价公式:幂等律P∧P=P P∨P=P吸收律P∧(P∨Q)=P P∨(P∧Q)=P同一律P∨F=P P∧T=PP∨T=T P∧F=FP <-> Q = (P->Q)∧(Q->P) = (P∧Q)∨(﹁P∧﹁Q)5、范式的写法(最方便就是真值表法)6、派遣人员、课表安排类算法:第一步:列出所有条件,写成符号公式第二步:用合取∧连接第三步:求上一步中的析取范式即可7、逻辑推理的写法直接推理论证:其中I公式是指重言蕴涵式那部分其中E公式是指等价公式部分条件论证: 形如~ , ~, ~ => R->SR P(附加条件)......S TR->S CP8、谓词基本内容注意:任意用—> 连接存在用∧连接量词的否定公式量词的辖域扩充公式量词分配公式其他公式9、带量词的公式在论域内的展开10、量词辖域的扩充公式11、前束范式的写法给定一个带有量词的谓词公式,1)消去公式中的联接词→和←→(为了便于量词辖域的扩充);2)如果量词前有“﹁”,则用量词否定公式﹁”后移。

再用摩根定律或求公式的否定公式,将“﹁”后移到原子谓词公式之前;3)用约束变元的改名规则或自由变元的代入规则对变元换名(为量词辖域扩充作准备);4)用量词辖域扩充公式提取量词,使之成为前束范式形式。

简要概括:1、去-> ,<-> 2、移﹁3、换元4、量词辖域扩充12、谓词演算的推理理论推理规则:P、T、CP、US、ES、EG、UG 的使用ES US 去量词EG UG 添量词★谨记:ES要在US之前,很重要添加量词注意事项:13、集合的幂集(用P表示,也常有花P表示)A是集合,由A的所有子集构成的集合,称之为A的幂集。

记作P(A)或2的A次方给定有限集合A,如果|A|=n, 则|P(A)|=2的n次方14、求集合的划分数与等价关系数——相同15、三种重要集合运算一、差运算- (相对补集)二、绝对补集~三、对称差前三章重点内容(考题重点):最常考内容和方法需要看自己课件,前三章考试内容不多且简单1、命题符号化(包括第一章简单的命题和第二章谓词的命题)2、逻辑推理(命题逻辑和谓词逻辑两种推理,每章书最后部分)3、主析取范式与主合取范式(命题逻辑和谓词逻辑中的两种范式写法)4、真值的判断后五章重点内容(知识重点):1、笛卡尔积定义:设A、B是集合,由A的元素为第一元素,B 的元素为第二元素组成序偶的集合,称为A和B 的笛卡尔积,记作A×B如果A、B都是有限集,且|A|=m, |B|=n,则|AXB |=mn.2、域的表示:定义域dom(关系的第一个元素的范围)值域Ran(关系的第二个元素的范围)3、空关系、完全关系、A上的恒等关系IA的定义空关系只有点,没有一条边。

4、关系的个数5、对称、反对称、自反、反自反、传递的判定6、等价关系、等价类定义:设R是A上关系,若R是自反的、对称的和传递的,则称R是A中的等价关系等价关系的个数:划分数;由等价关系图求等价类:R图中每个独立子图上的结点,构成一个等价类。

不同的等价类个数=独立子图个数7、相容关系、相容类特点:自反、对称。

图的简化:⑴不画环;⑵两条对称边用一条无向直线代替相容类:设r是集合X上的相容关系,C X,如果对于C中任意两个元素x,y有<x,y>∈r ,称C是r的一个相容类从简化图找最大相容类:最大相容类的意义是——一个相容类加多一个点就不是相容类了,所以最大相容类可以是多个而不是唯一的“最大”的概念,定义类似极大线性无关组,但元素个数不同------找最大完全多边形。

最大完全多边形:含有结点最多的多边形中,每个结点都与其它结点相联结。

通过最大相容类求完全覆盖:完全覆盖就是指所有最大相容类构成的集合。

8、关系的分类:偏序关系定义:R是A上自反、反对称和传递的关系,则称R 是A上的偏序关系。

并称<A,R>是偏序集。

全序关系定义:<A,≤>是偏序集,任何x,y∈A,如果x与y都是可比较的,则称≤是全序关系(线序、链)。

9、偏序集Hasse图的画法1).用“。

”表示A中元素。

2).如果x≤y,且x≠y,则结点y要画在结点x的上方。

3). 如果x≤y,且y盖住x,x与y之间连一直线。

4). 一般先从最下层结点(全是射出的边与之相连(不考虑环)),逐层向上画,直到最上层结点(全是射入的边与之相连)。

(采用抓两头,带中间的方法)10、重要元素定义(极大小元、最大小元、上下界、最大下界与最小上界)11、如何求映射是入(单)、满、双射?第一步:分别求出定义域和值域第二步:比较就出来了,就那么简单但是要证明的话:两者结合得:双射成立12、复合函数中的重要性质(常考):f:X→Y, g:Y→Z是两个函数, 则⑴如果f和g是满射的,则g。

f 也是满射的;⑵如果f和g是入射的,则g。

f 也是入射的;⑶如果f和g是双射的,则g。

f 也是双射的⑴如果g。

f 是满射的,则g是满射的;⑵如果g。

f 是入射的,则 f 是入射的;⑶如果g。

f 是双射的,则f是入射的和g是满射的13、函数种类个数的求法14、逆函数(性质)设f:X→Y是双射的函数,f C:Y X 也是函数, 称之为 f 的逆函数。

设f:X→Y是双射的函数,则有15、第六章基础知识重点幂等元、幺元e、零元0、逆元的概念同态同构:f(x)满射、并且满足*不是双射就一定复合同构的条件:必须具有幺元对幺元、零元对零元......代数系统(重点)半群:封闭、可逆独异点:有幺元群:可逆交换群:可交换群的特征:1.消去律 2.无零元 3.除幺元外无其他幂等元运算表中:每个元素在每一行、列必须出现仅出现一次!16、第七章基础知识重点格:<A,≤>是偏序集,如果任何a,b∈A,使得{a,b}都有最大下界和最小上界,则称<A,≤>是格平凡格:所有全序都是格,称之为平凡格。

分配格:(判定定理)所有链均为分配格。

设<A, ≤>是分配格,对任何a,b,c∈A, 如果有a∧b=a∧c 及a∨b=a∨c则必有b=c .有界格:(判定定理)有界格定义:如果一个格存在全上界1与全下界0,则称此格为有界格。

从格的图形看:全上界1,就是图的最上边元素(只一个)。

全下界0,就是图的最下边元素(只一个)。

有补格:(判定定理:根据定义看是不是每个中间元素都有补元)补元:设<A,≤>是个有界格,a∈A, 如果存在b∈A, 使得a∨b=1 a∧b=0 则称a与b互为补元(其中∨是求最小上界,∧求最大下界)有补格的定义:一个有界格中,如果每个元素都有补元,则称之为有补格布尔格:如果一个格既是分配格又是有补格,则称之为布尔格。

*重要定理:在有界分配格中,如果元素有补元,则补元是唯一的。

17、格的同构条件(特别)需同时满足:钻石定律:一个布尔代数的所有原子(直接覆盖最小元0的元素)构成的布尔代数一定与元代数同构18、布尔代数表达式和布尔函数<B,∨,∧,¯> 是布尔代数的形式含有变元x1,x2,…,xn 的布尔表达式记作E(x1,x2,…xn),也可以看成是一个函数f:Bn→B, 称之为布尔函数布尔表达式的范式的写法(很重要,与第一第二章的方法类似)19、第八章图论的重要知识点(好多好多的定义自己记吧)图的同构:两个图同构的必要条件:1.结点个数相等.2.边数相等.3.度数相同的结点数相等.4.对应的结点的度数相等.图的连通:强连通、单侧连通和弱连通(一般不考)如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通强分图、单侧分图和弱分图在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图.具有弱连通的最大子图,称为弱分图.图的矩阵表示和写法(前两个有点重要):一、邻接矩阵每一行的1:在无向图中代表一条线有向图中代表—>出线列中的1代表<—入线二、可达性矩阵三、完全关系矩阵图中结点的度与个数、边的关系:考试需要两则结合20、欧拉图与H(汉密尔)图(重点)定义:在无孤立结点的图G中,若存在一条回路,它经过图中每条边一次且仅一次,称此回路为欧拉回路. 称此图为欧拉图汉密尔顿回路(H回路):通过G中每个结点恰好一次的回路.具有汉密尔顿回路(H回路)的图.欧拉回路的判定:(充要条件)无向图G具有欧拉路,当且仅当G是连通的,且有零个或两个奇数度的结点.汉密尔顿图的判定: (只有充分条件)(充分条件)设G是有n个结点的简单图,若G中每对结点度数之和大于等于n,则G有一条H回路欧拉回路的算法(重重重!虽然可能不考)(记做闭迹交集法)H回路的算法(重重重!虽然可能不考)(记做相邻最小权法)21、树中的重要方法:树的结点与边数:边数=结点数-1 e = v-1m叉有序树转化成二叉树的方法:赋权图的最小生成树的求法(记做相邻最小权不回路法):定义:一棵生成树中的所有边的权之和称为该生成树的权. 具有最小权的生成树,称为最小生成树.最优树求法:定义***后五章重点内容(考题重点):<精华看完绝对不亏>1、求逆元(例如a逆)第一步:求出幺元e第二步:a逆与a进行所定义的运算,写出等式:如a*a逆=e,求解2、群的阶性质*有一个群G,a属于G,a元素的阶为n,当且仅当k=mn(n的整数倍),a的k次方=e.*n阶群中的元素x,x的n次方等于e3、树的边数e与叶结点t的关系e=2t-24、图的画法与格的判断画法在前面总结过:偏序集Hasse图的画法3).用“。

”表示A中元素。

4).如果x≤y,且x≠y,则结点y要画在结点x的上方。

3). 如果x≤y,且y盖住x,x与y之间连一直线。

4). 一般先从最下层结点(全是射出的边与之相连(不考虑环)),逐层向上画,直到最上层结点(全是射入的边与之相连)。

(采用抓两头,带中间的方法)判断——格:看是否任意都有最小上界、最大下界;分配格:跟那俩个特别的格比较,没有那样的子格就是分配格;链一定是分配格有界格:有无最大最小元(1,0表示),有限个元素的格一定是有界格;有补格:看是否每个元素都有补元若有补元,补元唯一的是有界分配格!布尔格:分配、有补5、复合函数的性质f:X→Y, g:Y→Z是两个函数, 则⑴如果f和g是满射的,则g。

相关文档
最新文档