[东北大学]19秋学期《离散数学》在线平时作业1[参考答案]
国家开放大学《离散数学(本)》形考任务1-3参考答案

)。
A.f°g={<a,5>, <b,4>}
B.g° f ={<a,5>, <b,4>}
C.f°g={<5,a >, <4,b >}
D.g° f ={<5,a >, <4,b >}
19.设集合 A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,
(
)个。
A.0
B.2
C.1
D.3
13.设集合 A={1,2,3,4}上的二元关系 R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,
<2,2>,<2,3>,<3,2>,<4,4>},则 S 是 R 的(
)闭包。
A.自反
B.传递
C.对称
D.自反和传递
14.设 A={1,2,3,4,5,6,7,8},R 是 A 上的整除关系,B={2,4,6},则集合 B 的最大元、
(
)。
A.自反的
B.对称的
C.传递且对称的
D.反自反且传递的
11.集合 A={1,2,3,4}上的关系 R={<x,y>|x=y 且 x,y∈A},则 R 的性质为(
A.不是自反的
)。
B.不是对称的
C.传递的
D.反自反
12.如果 R1 和 R2 是 A 上的自反关系,则 R1∪R2,R1∩R2,R1-R2 中自反关系有
离散数学答案版(全)

则称 G1,G2,…,Gn 蕴涵 H,又称 H 是 G1,G2,…,Gn 的逻辑结果,记作(G1 ∧G2∧…∧Gn) H 或(G1,G2,…,Gn) H。 1.6.2 基本蕴涵式 (1)P∧Q P; (3)P P∨Q; (5) P (P→Q) ; (7) (P→Q) P; (9)P,P→Q Q; (11) P,P∨Q Q; (13)P∨Q,P→R,Q→R R; (15)P,Q P∧Q。 (2)P∧Q Q; (4) Q P∨Q; (6)Q (P→Q) ; (8) (P→Q) Q; (10) Q,P→Q P; (12)P→Q,Q→R P→R; (14)P→Q,R→S (P∧R)→(Q∧S) ;
变元,若将 A 和 A*写成 n 元函数形式,则 (1) A(P1,P2,…,Pn) A*( P1, P2,…, Pn) (2)A( P1, P2,…, Pn) A*(P1,P2,…,Pn) 定理(对偶原理)设 A、B 是两个命题公式,若 AÛB,则 A* B*,其中 A*、 B*分别为 A、B 的对偶式。 1.5.2 范式 定义 仅由有限个命题变元及其否定构成的析取式称为简单析取式,仅由有 限个命题变元及其否定构成的合取式称为简单合取式。 定义 仅由有限个简单合取式构成的析取式称为析取范式。仅由有限个简单 析取式构成的合取式称为合取范式。 定理(范式存在定理)任何命题公式都存在着与之等价的析取范式和合取范式。 1.5.3 主范式 定义 在含有 n 个命题变元 P1,P2,…,Pn 的简单合取范式中,若每个命
P
Q
PQ
1 0 0 0
0 0 1 1
0 1 0 1
性质: (1)P↓P ﹁(P∨Q) ﹁P; (2) (P↓Q)↓(P↓Q) ﹁(P↓Q) P∨Q; (3) (P↓P)↓(Q↓Q) ﹁P↓﹁Q ﹁(﹁P∨﹁Q) P∧Q。
离散数学大作业答案

一、简要回答下列问题:(每小题3分,共30分)1.请给出集合的结合率。
答:结合律(AUB)UC=AU(BUC)x∈(AUB)UC,即 x∈AUB 或 x∈C即 x∈A 或 x∈B 或 x∈C 即 x∈A 或 x∈B∪C即 x∈AU(BUC)说明 (AUB)UC包含于AU(BUC)同理可证AU(BUC)包含于(AUB)UC所以(AUB)UC=AU(BUC)2.请给出一个集合A,并给出A上既不具有自反性,又不具有反自反性的关系。
3.设A={1,2},问A上共有多少个不同的对称关系?答:不同的对称关系有:8种R = ΦR = {<1,1>}R = {<2,2>}R = {<1,1>,<2,2>}R = {<1,2>,<2,1>}R = {<1,1>,<1,2>,<2,1>}R = {<1,2>,<2,1>,<2,2>}R = {<1,1>,<1,2>,<2,1>,<2,2>}4.设A={1,2,3,4,5,6},R是A上的整除关系,M={2,3},求M的上界,下界。
5.关于P,Q,R请给出使极小项m0,m4为真的解释。
答:m0= ┐p∧┐q∧┐r m4= p∧┐q∧┐r6.什么是图中的简单路?请举一例。
答:图的通路中,所有边e1,e2,…,ek互不相同,称为简单通路。
7.什么是交换群,请举一例。
答:如果群〈G,*〉中的运算*是可以交换的,则称该群为可交换群,或称阿贝尔群。
如〈I,+〉是交换群。
8.什么是群中右模H合同关系?答:设G是群,H是G的子群,a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),记为a≡b(右mod H)。
9.什么是有壹环?请举一例。
答:幺元:如果A中的一个元素e,它既是左幺元又是右幺元,则称e为A中关于运算☆的幺元。
国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案

国开形成性考核《离散数学(本)》形考任务(1-3)试题及答案(课程ID:50501,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1 集合论部分概念及性质一、单项选择题题目:1、设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是()。
【A】:f°g ={<5,a >, <4,b >}【B】:g°f ={<a,5>, <b,4>}【C】:f°g ={<a,5>, <b,4>}【D】:g°f ={<5,a >, <4,b >}答案:g°f ={<a,5>, <b,4>}题目:2、设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()。
【A】:8、1、6、1【B】:无、2、无、2【C】:8、2、8、2【D】:6、2、6、2答案:无、2、无、2题目:3、设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ()。
【A】:{<2, 1>, <4, 3>, <6, 5>}【B】:{<2, 1>, <3, 2>, <4, 3>}【C】:{<2, 3>, <4, 5>, <6, 7>}【D】:{<2, 2>, <3, 3>, <4, 6>}答案:{<2, 3>, <4, 5>, <6, 7>}题目:4、设集合A ={1 , 2, 3}上的函数分别为:()。
离散数学作业标准答案

离散数学作业标准答案离散数学作业⼀、选择题1、下列语句中哪个是真命题(C )。
A .我正在说谎。
B .如果1+2=3,那么雪是⿊⾊的。
C .如果1+2=5,那么雪是⽩⾊的。
D .严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 是( C )。
A. 恒假的B. 恒真的C. 可满⾜的D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ??→中的变元x ( C )。
A .是⾃由变元但不是约束变元 B .既不是⾃由变元⼜不是约束变元 C .既是⾃由变元⼜是约束变元 D .是约束变元但不是⾃由变元4、设A={1,2,3},则下列关系R 不是等价关系的是(C )A .R={<1,1>,<2,2>,<3,3>}B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C .R={<1,1>,<2,2>,<3,3>,<1,4>}D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。
A .单射⽽⾮满射 B .满射⽽⾮单射 C .双射 D .既不是单射,也不是满射 6、下列⼆元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算 B. S={0,1},S 关于普通的乘法运算 C. 整数集合Z 和普通的减法运算D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所⽰,哪个能使({a,b},*)成为含⼳元半群( D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *A B C D8、下列图中是欧拉图的是( A )。
东北大学15秋学期《离散数学》在线作业1 答案

15秋学期《离散数学》在线作业1单选题判断题多选题一、单选题(共 10 道试题,共 50 分。
)1.....-----------------选择:2.单选填空题:设G是有向简单图,其结点度数序列为(2,2,3,3),入度序列为(0,0,2,3)。
则结点的出度序列为( )。
. (2,2,3,3). (1,1,0,0). (2,2,1,0). (2,2,0,0)-----------------选择:3.令命题P表示“没有大学生不懂外语。
”下面命题( )与P等价。
.有些大学生懂一些外语。
. 所有大学生都懂一些外语。
. 有些大学生懂所有外语。
. 没有大学生懂所有外语。
-----------------选择:4.X,Y 是有限集合,|X|=m,|Y|=n。
若可构成从X到Y的入射的函数,则可构成从X到Y的入射的函数有()个。
.nm. n!. 2mn. n(n-1)(n-2)…(n-m+1)-----------------选择:5.单选填空题。
E是全集,E={,},E的幂集P(E)上的并运算?的幺元是()。
.Φ;. {} ;. {};. {,};E. 不存在。
-----------------选择:6.....-----------------选择:7.选择填空。
下面给定的集合中 ( ) 与-相等。
. ={1,2,3,4,5,6,7,8,9},. ={2,4,6,8},. ={1,3,5,7,9},. ={3,4,5},E. E=Ф,F. F={1,4,7,9},G. G={1,7,9}。
-----------------选择:G8.选择填空题。
R是上关系,如果R是反对称的,当且仅当()。
. 所有中元素x,y,如果有<x,y>∈R ,就没有< y, z >∈R ;.没有中元素x,y,使得有<x,y>∈R ,也有< y, x>∈R ;.所有中元素x,y,如果有<x,y>∈R ,也有< y, x >∈R,则x=y 。
最新电大《离散数学》形考作业任务01-07网考试题及答案-

最新电大《离散数学》形考作业任务01-07网考试题及答案:最新电大《离散数学》形考作业任务01-07网考试题及答案 100%通过考试说明:《离散数学》形考共有7个任务。
任务3、任务5、任务7是主观题,任务2、任务4、任务6是客观题,任务2、任务4、任务6需在考试中多次抽取试卷,直到出现02任务_0001或02任务_0009、04任务_0001或04任务_0009、06任务_0001或06任务_0009试卷,就可以按照该套试卷答案答题。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他教学考一体化答案,敬请查看。
01任务一、单项选择题(共 8 道试题,共 80 分。
)1. 本课程的教学内容分为三个单元,其中第三单元的名称是(). A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 2. 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(). A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲. A. 18 B. 20 C. 19 D. 17 4. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(). A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 5. 课程学习平台左侧第1个版块名称是:(). A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 6. 课程学习平台右侧第5个版块名称是:(). A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题7. “教学活动资料”版块是课程学习平台右侧的第()个版块. A. 6 B. 7 C. 8 D. 9 8. 课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(). A. 复习指导 B. 视频 C. 课件 D. 自测二、作品题(共 1 道试题,共 20 分。
离散数学习题集(十五套含答案)

离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(+=⋃BA{0,1,2,3,4,6} 。
2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。
3R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。
5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。
6.设A={1,2,3,4},A上关系图为则R2 = {<a.b>,<a,c>,<a,d>,<b,d>,<c,d> 。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A。
8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( C )个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C .若R ,S 是对称的, 则S R是对称的;D .若R ,S 是传递的, 则S R 是传递的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19秋学期《离散数学》在线平时作业1
试卷总分:100 得分:100
一、单选题 (共 10 道试题,共 50 分)
1.单选填空题:设G是有向简单图,其结点度数序列为(2,2,3,3),入度序列为(0,0,2,3)。
则结点的出度序列为( )。
A.(2,2,3,3)
B.(1,1,0,0)
C.(2,2,1,0)
D.(2,2,0,0)
答案:C
2.{图}
A.{图}
B.{图}
C.{图}
D.{图}
答案:A
3.单选择题:在一次集会中,与奇数个人握手的人数共有( )个。
A.奇数;
B.非负整数;
C.偶数;
D.不能确定。
答案:C
4.设命题P、Q所代表的意义如下:
P:天气好。
Q:我去旅游。
命题“只有天气好,我才去旅游。
”的符号表达式为:()
A.P?Q,
B.Q? P,
C.Ø P ? Q,
D.Ø Q ? P
答案:B
5.命题公式(P?Q)?Q的主合取范式是()。
A.P∨ØQ;
B.P∨Q;
C.(ØP∨Q)∧(P∨ØQ );
D.(P∨Q )∧(Ø P∨ØQ ) 。
答案:B
6.{图}
A.重言式。