东北大学16春学期《离散数学》在线作业

合集下载

离散数学作业 (2)

离散数学作业 (2)

离散数学作业布置第1次作业(P15)1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

解:(1)p∨(q∧r)=0∨(0∧1)=0(2)(p↔r)∧(﹁q∨s)=(0↔1)∧(1∨1)=0∧1 =0(3)(﹁p∧﹁q∧r)↔(p∧q∧﹁r)=(1∧1∧1)↔ (0∧0∧0)=0(4)(r∧s)→(p∧q)=(0∧1)→(1∧0)=0→0=11.17 判断下面一段论述是否为真:“π是无理数。

并且,如果3是无理数,则2也是无理数。

另外只有6能被2整除,6才能被4整除。

”解:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。

1.19 用真值表判断下列公式的类型:(4)(p→q) →(﹁q→﹁p)(5)(p∧r) ↔ (﹁p∧﹁q)(6)((p→q) ∧(q→r)) →(p→r)解:(4)p q p→q q p q→p (p→q)→( q→p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式,最后一列全为1(5)公式类型为可满足式(方法如上例),最后一列至少有一个1(6)公式类型为永真式(方法如上例,最后一列全为1)。

第2次作业(P38)2.3 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ﹁(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)解:(1) ﹁(p∧q→q) ⇔﹁(﹁(p∧q) ∨q) ⇔(p∧q) ∧﹁q⇔p∧(q ∧﹁q) ⇔ p∧0 ⇔0所以公式类型为矛盾式(2)(p→(p∨q))∨(p→r) ⇔ (﹁p∨(p∨q))∨(﹁p∨r) ⇔﹁p∨p∨q∨r⇔1所以公式类型为永真式(3) (p∨q) → (p∧r) ⇔¬(p∨q) ∨ (p∧r) ⇔ (¬p∧¬q) ∨(p∧r)易见, 是可满足式, 但不是重言式. 成真赋值为: 000,001, 101, 111P q r ¬p∧¬q p∧r (¬p∧¬q) ∨(p∧r)0 0 0 1 0 10 0 1 1 0 10 1 0 0 0 00 1 1 0 0 01 0 0 0 0 01 0 1 0 1 11 1 0 0 0 01 1 1 0 1 1所以公式类型为可满足式2.4 用等值演算法证明下面等值式:(2) ( (p→q)∧(p→r) ) ⇔ (p→(q∧r))(4)(p∧﹁q)∨(﹁p∧q) ⇔ (p∨q)∧﹁(p∧q)证明(2)(p→q)∧(p→r)⇔( ﹁p∨q)∧(﹁p∨r)⇔﹁p∨(q∧r))⇔p→(q∧r)(4)(p∧﹁q)∨(﹁p∧q) ⇔(p∨(﹁p∧q)) ∧(﹁q∨(﹁p∧q) )⇔ (p∨﹁p)∧(p∨q)∧(﹁q∨﹁p) ∧(﹁q∨q)⇔1∧(p∨q)∧(﹁p∨﹁q)∧1⇔ (p∨q)∧﹁(p∧q)第3次作业(P38)2.5 求下列公式的主析取范式, 并求成真赋值:(1)( ¬p→q) →(¬q∨p)(2) (¬p→q) ∧q∧r(3)(p∨∧r)) →(p∨q∨r)(4) ¬(p→q) ∧q∧r解:(1)(¬p→q) →(¬q∨p)⇔¬(p∨q) ∨(¬q∨p)⇔¬p∧¬q ∨¬q ∨p⇔¬q ∨p (吸收律)⇔ (¬p∨p)∧¬q ∨p∧(¬q∨q)⇔¬p∧¬q∨p∧¬q ∨p∧¬q ∨p∧q⇔m0∨m2∨m2∨m3⇔m0∨m2∨m3成真赋值为00, 10, 11.(2) (¬p→q) ∧q∧r⇔ (p∨q) ∧q∧r⇔ (p∧q∧r) ∨q∧r⇔ (p∧q∧r) ∨(¬p ∨p) ∧q∧r⇔p∧q∧r∨¬p ∧q∧r∨p∧q∧r⇔m3∨m7成真赋值为011,111.(3) (p∨(q∧r)) →(p∨q∨r)⇔¬(p∨(q∧r)) ∨(p∨q∨r)⇔¬p∧¬(q∧r) ∨(p∨q∨r)⇔¬p∧(¬q∨¬r)∨(p∨q∨r)⇔¬p∧¬q∨¬p∧¬r∨p∨q∨r⇔¬p∧¬q∧(r∨¬r)∨¬p∧(q∨¬q)∧¬r∨p∧(q∨¬q) ∧(r∨¬r) ∨ (p∨¬p) ∧q∧(r∨¬r)∨(p∨¬p) ∧(q∨¬q) ∧r⇔m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.(4) ¬(p→q) ∧q∧r⇔¬(¬p∨q) ∧q∧r⇔ (p∧¬q) ∧q∧r⇔ p∧(¬q ∧q)∧r⇔0主析取范式为0, 无成真赋值, 为矛盾式.第4次作业(P38)2.6 求下列公式的主合取范式, 并求成假赋值:(1) ¬(q→¬p) ∧¬p(2)(p∧q) ∨ (¬p∨r)(3)(p→(p∨q)) ∨r解:(1) ¬(q→¬p) ∧¬p⇔¬(¬q∨¬p) ∧¬p⇔q∧p ∧¬p⇔q∧0⇔0⇔M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)(p∧q) ∨ (¬p∨r)⇔(p∧q) ∨¬p∨r⇔(p∨¬p)∧(¬p ∨q)∨r⇔ (¬p ∨q)∨r⇔¬p ∨q∨r⇔M4, 成假赋值为100.(3)(p→(p∨q)) ∨r⇔(¬p∨(p∨q)) ∨r⇔(¬p∨p)∨q ∨r⇔1主合取范式为1, 为重言式.2.32 用消解原理证明下述公式是矛盾式:(1) (¬p∨q) ∧ (¬p∨r) ∧ (¬q∨¬r) ∧ (p∨¬r) ∧r(2) ¬((p∨q) ∧¬p→q)解:(1) (¬p∨q) ∧ (¬p∨r) ∧ (¬q∨¬r) ∧ (p∨¬r) ∧r第一次循环S0=Φ, S1={¬p∨q,¬p∨r,¬q∨¬r,p∨¬r,r}, S2=Φ由¬p∨r, p∨¬r消解得到λ输出“no”,计算结束(2) ¬((p∨q) ∧¬p→q)⇔¬(¬((p∨q) ∧¬p) ∨q)⇔((p∨q) ∧¬p) ∧¬q⇔ (p∨q) ∧¬p ∧¬q第一次循环S0=Φ, S1={p∨q,¬p, ¬q}, S2=Φ由p∨q,¬p消解得到q,由q, ¬q消解得到λ,输出“no”,计算结束2.33 用消解法判断下述公式是否可满足的:(1) p∧ (¬p∨¬q) ∧q(2) (p∨q) ∧(p∨¬q) ∧(¬p∨ r)解:(1) p∧ (¬p∨¬q) ∧q第一次循环S0=Φ, S1={p, ¬p∨¬q, q}, S2=Φ由p, ¬p∨¬q消解得到¬q,由q, ¬q消解得到λ,输出“no”,计算结束(2) (p∨q) ∧(p∨¬q) ∧(¬p∨ r)第一次循环S0=Φ, S1={p∨q, p∨¬q, ¬p∨ r}, S2=Φ由p∨q, p∨¬q消解得到p,由p∨q, ¬p∨ r消解得到q ∨r,由p∨¬q, ¬p∨ r消解得到¬q ∨r,由p, ¬p∨ r消解得到r,S2={p, q ∨r, ¬q ∨r, r}第二次循环S0={p∨q, p∨¬q, ¬p∨ r}, S1={p, q ∨r, ¬q ∨r, r}, S2=Φ由p∨q, ¬q ∨r消解得到p∨r,由p∨¬q, q ∨r消解得到p∨r,由p∨¬q, q ∨r消解得到p∨r,由¬p∨ r, p 消解得到r,S2={p∨r}第三次循环S0={p, q ∨r, ¬q ∨r, r}, S1={p∨r}, S2=ΦS2=Φ输出“yes”,计算结束3.6 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三.(2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一.(3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一.(4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二.(5)若今天是星期一, 则明天是星期二或星期三. 今天是星期一. 所以明天是星期二.(6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三.(1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p⇒r所以推理正确.(2)推理的形式结构为(p→q) ∧q→p此形式结构不是重言式, 故推理不正确.(3)推理形式结构为(p→r) ∧¬r→¬p此形式结构为重言式, 即(p→r) ∧¬r⇒¬p故推理正确.(4)推理形式结构为(p→q) ∧¬p→¬q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为(p→(q∨r) )∧p →q它不是重言式, 故推理不正确.(6)推理形式结构为(p↔r) ∧¬p→¬r此形式结构为重言式, 即(p↔r) ∧¬p⇒¬r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等值演算法. 证明推理正确还可用构造证明法.下面用等值演算法和构造证明法证明(6)推理正确.1. 等值演算法(p↔r) ∧¬p→¬r⇔(p→r) ∧(r→p)∧¬p→¬r⇔¬((¬p∨r) ∧(¬r∨p)∧¬p) ∨¬r⇔¬(¬p∨r) ∨¬(¬r∨p) ∨p ∨¬r⇔(p∧¬r)∨(r∧¬p)∨p ∨¬r⇔ (r∧¬p)∨p ∨¬r 吸收律⇔ (r∧¬p)∨¬(¬p ∨r)德摩根律⇔1即(p↔r) ∧¬p⇒¬r故推理正确2.构造证明法前提: (p↔r), ¬p结论: ¬r证明:①p↔r 前提引入②(p→r) ∧(r→p) ①置换③r→p ②化简律④¬p 前提引入⑤¬r ③④拒取式所以, 推理正确.第7次作业(P53-54)3.15 在自然推理系统P中用附加前提法证明下面各推理: (1)前提: p→(q→r), s→p, q结论: s→r(2)前提: (p∨q) →(r∧s), (s∨t) →u结论: p→u(1)证明:①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理(2)证明:①P 附加前提引入②p∨q ①附加③(p∨q) →(r∧s) 前提引入④r∧s ②③假言推理⑤S ④化简⑥s∨t ⑤附加⑦(s∨t) →u 前提引入⑧u ⑥⑦假言推理3.16 在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s结论: ¬p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①P 结论否定引入②p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥r∧¬s 前提引入⑦r ⑥化简规则⑧¬r∧r ⑤⑦合取引入规则⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①¬(r∨s) 结论否定引入②p∨q 前提引入③p→r 前提引入④q→s 前提引入⑤(p→r) ∧(q→s) ∧(p∨q) ②③④合取引入规则⑥r∨s ⑤构造性二难⑦(r∨s) ∧¬(r∨s) ④⑤合取引入规则⑦为矛盾式, 所以推理正确.第8次作业(P65-66)4.5 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.解:因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y))其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快. (2) ∃x∃y(F(x) ∧G(y) ∧H(x,y))其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快. (3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧¬H(x,y)))其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) )其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.9 给定解释I 如下:(a)个体域为实数集合R.(b)特定元素a=0.(c)特定函数-f(x,y)=x-y, x,y∈R.(d)谓词-F(x,y): x=y,-G(x,y): x<y, x,y∈R.给出下列公式在I 下的解释, 并指出它们的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))解:(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x-y=0) →(x<y)), 真值为0.(3) ∀x∀y((x<y) → (x-y≠0)), 真值为1.(4) ∀x∀y((x-y<0) → (x=y)), 真值为0.第9次作业(P79-80)5.5 给定解释I如下:(a) 个体域D={3,4};(b)-f(x):-f(3)=4,-f(4)=3;(c)-F(x,y):-F(3,3)=-F(4,4)=0,-F(3,4)=-F(4,3)=1.试求下列公式在I下的真值:(1) ∀x∃yF(x,y)(2) ∃x∀yF(x,y)(3)∀x∀y(F(x,y)→F(f(x),f(y)))解:(1)∀x∃yF(x,y)⇔ (F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))⇔ (0∨1)∧(1∨0) ⇔ 1(2)∃x∀yF(x,y)⇔ (F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))⇔ (0∧1)∨(1∧0) ⇔ 0(3)∀x∀y(F(x,y)→F(f(x),f(y)))⇔ (F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4)))⇔ (0→0)∧(1→1)∧(1→1)∧(0→0) ⇔1 5.12 求下列各式的前束范式.(1)∀xF(x)→∀yG(x, y)(3)∀xF(x, y) ↔∃xG(x, y)(5) ∃x1F(x1, x2)→(F(x1)→¬∃x2G(x1, x2)). 解:前束范式不是唯一的.(1) ∀xF(x)→∀yG(x, y)⇔∃x (F(x)→∀yG(t, y))⇔∃x∀y(F(x)→G(t, y)).(3) ∀xF(x, y) ↔∃xG(x, y)⇔ (∀xF(x, y)→∃xG(x, y))∧(∃xG(x, y)→∀xF(x, y))⇔ (∀xF(x, y)→∃uG(u, y))∧(∃xG(x, y)→∀vF(v, y))⇔∃x∃u(F(x, y)→G(u, y))∧∀x∀v(G(x, y)→F(v, y))⇔∃x∃u(F(x, y)→G(u, y))∧∀w∀v(G(w, y)→F(v, y))⇔∃x∃u∀w∀v ((F(x, y)→G(u, y))∧(G(w, y)→F(v, y)))(5)∃x1F(x1, x2)→(F(x1)→¬∃x2G(x1, x2))⇔∃x1F(x1, x2)→(F(x1)→∀x2¬G(x1, x2))⇔∃x1F(x1, x2)→∀x2(F(x1)→¬G(x1, x2))⇔∃x1F(x1, x3)→∀x2(F(x4)→¬G(x4, x2))⇔∀x1(F(x1, x3)→∀x2(F(x4)→¬G(x4, x2)))⇔∀x1∀x2 (F(x1, x3)→(F(x4)→¬G(x4, x2)))第10次作业(P79-80)5.15 在自然推理系统F L中,构造下面推理的证明:(1) 前提: ∃xF(x) →∀y((F(y)∨G(y))→R(y)),∃xF(x)结论:∃xR(x).(2) 前提:∀x(F(x)→(G(a)∧R(x))),∃xF(x)结论:∃x(F(x)∧R(x))(3) 前提:∀x(F(x)∨G(x)),¬∃xG(x)结论:∃xF(x)(4) 前提:∀x(F(x)∨G(x)),∀x(¬G(x)∨¬R(x)),∀xR(x)结论: ∃xF(x)(1)证明:①∃xF(x) →∀y((F(y)∨G(y))→R(y)) 前提引入②∃xF(x) 前提引入③∀y((F(y)∨G(y))→R(y)) ①②假言推理④(F(c)∨G(c))→R(c) ③全称量词消去规则⑤F(c) ①存在量词消去规则⑥F(c) ∨G(c) ⑤附加⑦R(c) ④⑥假言推理⑧∃xR(x) ⑦存在量词引入规则(2) 证明:①∃xF(x) 前提引入②F(c) ①存在量词消去规则③∀x(F(x)→(G(a)∧R(x))) 前提引入④F(c)→(G(a)∧R(c)) ④全称量词消去规则⑤G(a)∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c)∧R(c) ②⑥合取引入⑧∃x(F(x)∧R(x)) ⑦存在量词引入规则(3) 证明:①¬∃xG(x) 前提引入②∀x¬G(x) ①置换③¬G(c) ②全称量词消去规则④∀x(F(x)∨G(x)) 前提引入⑤F(c)∨G(c) ④全称量词消去规则⑥F(c) ③⑤析取三段论⑦∃xF(x) ⑥存在量词引入规则(4) 证明:①∀x(F(x)∨G(x)) 前提引入②F(y)∨G(y) ①全称量词消去规则③∀x(¬G(x)∨¬R(x)) 前提引入④¬G(y) ∨¬R(y) ③全称量词消去规则⑤∀xR(x) 前提引入⑥R(y) ⑤全称量词消去规则⑦¬G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥∃xF(x) ⑧存在量词引入规则第11次作业(P96)6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M表示数学专业学生的集合, R 表示计算机专业学生的集合, T表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课.(2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉.(3)听离散数学课的学生都没参加星期一晚上的音乐会.(4)这个音乐会只有大学一, 二年级的学生参加.(5)除去数学专业和计算机专业以外的二年级学生都去参加了音乐会.备选答案:①T⊆G∪H ②G∪H⊆T ③S∩R⊆T④H=G∪T ⑤T∩G=∅⑥F∪S⊆G⑦G⊆F∪S ⑧S-(R∪M) ⊆G ⑥G⊆S-(R∩M)解:(1) ③S∩R⊆T(2) ④H=G∪T(3) ⑤T∩G=∅(4) ⑦G⊆F∪S(5) ⑧S-(R∪M)⊆G6.5. 确定下列命题是否为真:(1) ∅⊆∅ (2) ∅∈∅ (3) ∅⊆{∅} (4) ∅∈{∅}(5){a, b}⊆{a, b, c, {a, b, c}} (6){a, b}∈{a, b, c, {a, b }} (7){a, b}⊆{a, b, {{a, b}}} (8){a, b}∈{a, b, {{a, b}}} 解:(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假第12次作业(P130-131)7.1. 已知 A={∅,{∅}},求A×P(A). 解: A×P(A)= {∅,{∅}}×{∅,{∅},{{∅}},{∅,{∅}}}={<∅, ∅>,<∅,{∅}>,<∅,{{∅}}>,<∅,{∅,{∅}}>,<{∅},∅>,<{∅},{∅}>,<{∅},{{∅}}>, <{∅},{∅,{∅}}>}7.7. 列出集合 A={2, 3, 4}上的恒等关系I A , 全域关系E A , 小于或等于关系L A , 整除关系D A . 解:I A ={<2,2>,<3,3>,<4,4>} E A =A ×A ={<2,2>,<2,3>,<2,4>,<3,2>,<3,3>,<3,4>,<4,2>,<4,3>,<4,4>} L A ={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>} D A ={<2,2>,<2,4>,<3,3>,<4,4>}7.12.设A={0, 1, 2, 3}, R 是A 上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}给出R 的关系矩阵和关系图.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0010110100001001第13次作业(P131)7.13.设A = {〈1, 2〉, 〈2, 4〉, 〈3, 3〉}B = {〈1, 3〉, 〈2, 4〉, 〈4, 2〉}求A ∪B , A ∩B , dom A , dom(A ∪B ), ran A , ran B , ran(A ∩B ), fld(A −B ).解:A ∪B={〈1,2〉, 〈1,3〉, 〈2,4〉, 〈3,3〉, 〈4,2〉} A∩B={〈2,4〉}domA={1,2,3} dom(A ∪B)={1,2,3,4} ranA={2,3,4} ranB={3,4,2} ran(A∩B)={4} fld(A−B)={1,2,3}1 37.15.设A={〈∅,{∅,{∅}}〉,〈{∅},∅〉}求A−1,A2,A3,A↾{∅},A[∅],A↾∅,A↾{{∅}},A[{{∅}}].解:A−1={〈{∅,{∅}},∅〉,〈∅,{∅}〉},A2={〈{∅},{∅,{∅}}〉},A3=∅,A↾{∅}={〈∅,{∅,{∅}}〉},A[∅]={∅,{∅}},A↾∅=∅,A↾{{∅}}={〈{∅},∅〉},A[{{∅}}]=∅7.16.设A={a,b,c,d}, R1,R2 为A上的关系, 其中R1={〈a,a〉,〈a,b〉,〈b,d〉}R2={〈a,d〉,〈b,c〉,〈b,d〉,〈c,b〉}求R1○R2, R2○R1,R12,R23.解:R1○R2={〈a,a〉,〈a,c〉,〈a,d〉},R2○R1={〈c,d〉},R12={〈a,a〉,〈a,b〉,〈a,d〉},R23={〈b,c〉,〈b,d〉,〈c,b〉}7.17.设A={a,b,c}, 试给出A 上两个不同的关系R1和R2,使得R12=R1, R23=R2.解:R1={〈a,a〉,〈b,b〉},R2={〈b,c〉,〈c,b〉}第14次作业(P131-133)7.21.设A={1,2,…,10},定义A上的关系R={<x,y>|x,y∈A∧x+y=10}说明R具有哪些性质并说明理由。

15春华师《离散数学》在线作业答案

15春华师《离散数学》在线作业答案

华师《离散数学》在线作业一、单选题(共50 道试题,共100 分。

)1.题面见图片:A. AB. BC. CD. D正确答案:D2. 无向图G是欧拉图,当且仅当( )。

A. G的所有结点的度数全为偶数B. G的所有结点的度数全为奇数C. G连通且所有结点的度数全为偶数D. G连通且所有结点的度数全为奇数正确答案:C3.题面见图片:A.AB. BC. CD. D正确答案:D4. 平面连通图G有4个顶点,5条边,则其面数为()。

A. 3B. 4C. 5D. 不能确定正确答案:A5. 下面说法中正确的是()。

A. 所有可数集合都是等势的B. 任何集合都有与其等势的真子集C. 有些无限集合没有可数子集D. 有理数集合是不可数集合6. 下列集合不是连接词极小全功能集的为()。

A. {?,∧,∨}B. {?,→}C. {↓}D. {↑}正确答案:A7. 设R是实数集合,在上定义二元运算*:a,b↔R,a*b=a+b-ab,则下面的论断中正确的是()。

A. 0是*的零元B. 1是*的幺元C. 0是*的幺元D. *没有等幂元正确答案:C8.题面见图片:A. AB. BC. CD. D正确答案:C9.题面见图片:A. AB. BC. CD. D正确答案:D10.题面见图片:A. AB. BC.CD. D正确答案:B11. 图的构成要素是()。

A. 结点B. 边C. 结点与边D. 结点、变和面12.题面见图片:A. AB. BC. CD. D正确答案:B13. 设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A是不封闭的?()A. x*y=max{x,y}B. x*y=min{x,y}C. x*y=GCD(x,y),即x,y的最大公约数D. x*y=LCM(x,y),即x,y的最小公倍数正确答案:D14. 若图G有一条开路经过图中每个结点恰好一次,则G()。

A. 有一条欧拉路径B. 是欧拉图C. 有一条哈密顿通路D. 是哈密顿图正确答案:C15.题面见图片:A. AB. BC. CD. D正确答案:C16.题面见图片:A. AB. BC. CD. D正确答案:A17.题面见图片:A. AB. BC. CD. D18. G是一棵根树,则()。

春离散数学——电大网上形成性测试作业二试题及答案

春离散数学——电大网上形成性测试作业二试题及答案

02 任务 _0001试卷总分: 100测试时间: 0单项选择题1.一、单项选择题(共 10 道试卷,共100分。

)B,则集设 A, R 是A 上的整除关系,={1, 2, 3, 4, 5, 6, 7, 8}={2, 4, 6}合 B 的最大元、最小元、上界、下界挨次为() .A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、 2、无、 2 2.设会合 A ={1 , 2, 3} 上的函数分别为:f = {<1, 2> ,<2, 1> ,<3, 3>} ,g = {<1, 3> , <2, 2> , <3, 2>} ,h = {<1, 3> , <2, 1> , <3, 1>} ,则 h = ( ).A.g? B. g?f C. ff?D.g?g3.设会合 A={1 , 2 , 3 , 4}上的二元关系 R={<1, 1> ,<2, 2> , <2, 3> ,<4, 4>} , S={<1, 1> ,<2, 2> ,<2, 3> ,<3, 2> , <4, 4>} ,则 S 是 R 的 ()闭包.A.自反 B. 传达 C.对称D. 自反和传达会合A上的关系 R x , y>|x y且 x, y4.={1, 2, 3, 4, 5, 6, 7, 8}={<+ =10,则 R 的性质为().A}A.自反的B.对称的1 / 3C.传达且对称的D.反自反且传达的设会合A= {1,a},则PA).5.( )=( A.{{1}, {a}}B. {,{1}, {a}}C.{{1}, {a}, {1,a}}D.{,{1}, {a a}} }, {1,6.设会合 A a,则 A 的幂集为().={ } A.{{ a}}B.{ a,{ a}}C.{ ,{ a}}D.{ ,a} 7.若会合A 的元素个数为,则其幂集的元素个数为().10A.1024B.10C.100D.18.会合 A={1, 2, 3, 4}上的关系R={< x,y>| x=y且x, y A},则R的性质为().A.不是自反的B.不是对称的C.传达的D.反自反9.设 A={ a,b,c} , B={1 , 2} ,作 f :A→B,则不一样的函数个数为.A.22 / 3B.3C.6D.810.若会合 A={1 ,2} ,B={1 ,2,{1 , 2}} ,则以下表述正确的选项是() .A. A B,且A BB. B A,且A BC. A B,且A BD.AB,且AB3 / 3。

离散数学第一次作业题及答案.doc

离散数学第一次作业题及答案.doc

第1次作业一、单项选择题(本大题共40分,共20小题,每小题2分)1.表达式FA (PV (QA-i S))的对偶式为 ___________ oA.FV(PA(QV-i S))B.T-(PV(QVn S))C.TV(PA(QV-| S))D.TV(PA(QAS))2.公式VxF(x) —3xG(x),下面给出的前束范式等价式中,哪一个是对的()OA.3x(F(x) V^G(x))B.VxF (x) VG(x)C.3x(-F(x) VG(x))Vx (「F(x) VG(X))3.设两个群<乙+>和V,•>,,其中Z为整数集,Z x= {•••,10-3/10~2,10_1,10°,101,102,103,'-}, + 为普通加法,为普通乘法。

设(p: Z-»Z\屮(n)-io”。

则V乙+>和<Z-,•> ()A.是同构B.是单一同态C.是满同态D.不是同态4.不是命题的是()。

A.5大于3B.11是质数C.他是优秀学牛k是太阳5.对任意的公式P、Q、R,若P=>Q、Q=>R,则有A.R=>PB.P=>RC.Q=>PD.RnQ6.下列代数系统中, _________ 是群。

A.S={0, 1,3, 5}, *是模7 加法B.S=Q (有理数集),*是普通乘法C.S=Z (整数集合),*是普通减法D.S={1,3, 4, 5, 9}, *是模11 乘法7.P:今天下雨。

Q:明天下雨。

上述命题的合取为____________ o (符号表示)A.-1 PA-i QB.-I PVQC.n PV-i QD.PAQ&A.B.C.6D.39.他虽聪明单不用功。

设P:他聪明。

Q:他用功。

则命题符号化为_______ oA.PA-i QB.-I PVQC.n PVQD.QAP10.设G为至少有三个结点的连通平面图,则G中必有一个结点u,使得deg(u)<5B.deg(u)=5C.deg(u)>5D.deg(u) W511.下列关系中哪些能构成函数?()A.{ <x, y) |x, ye N, x+y<10}B.{ <x, y) |x, ye N, x+y二10}C.{ <x, y) |x, ye R, |x|=y}D.{ <x,y) |x,yG R, x=|y|}12.联结词一可以转化为由「和V表示,P-Qon PAn QB.-i PVQC.-1 PV-i QD.PAQ13.连通图G有6个顶点9条边,从G中删去___________ 条边才可能得到G的一•棵生成树T。

东大18秋学期《离散数学》在线作业1答案

东大18秋学期《离散数学》在线作业1答案
A错误
B正确
正确答案是:B
5、
判断题,判断下面说法是否正确。
“对于整数集合I上的减法运算“-”来说, 0是幺元。”
A错误
B正确
正确答案是:A
三、多选题共5题,25分
1、
AA:⑴⑵⑶
BB:⑴⑵⑷
CC:⑵⑶⑷
DD:⑴⑵⑶⑷
正确答案是:AD
2、
多选题。下面哪些序列可能是汉米尔顿图的结点度数序列
A (1,2,3,4,5)
C无法确定
D不知道
正确答案是:B
7、
单选题。一棵根树是m叉树,当且仅当 该图( )。
A每个结点的度数是m;
B 每个结点的出度都是m;
C每个结点的出度小于或等于m;
D恰有一个结点入度为0:其余结点入度为1。
正确答案是:C
8、
单选填空题。E是全集,E={a,b},E的幂集P(E)上的交运算Ç,的零元是
()。
3、
单选题。结点是树的叶结点,当且仅当该结点( )。
A度数不为0;
B度数大于1;
C度是等于1。
正确答案是:C
4、
A等价
B不等价
C无法确定
D不知道
正确答案是:A
5、
单选题。有n个结点的无向完全图有( )条边。
A2n;
B (n(n-1))÷2;
Cn(;
D n2。
正确答案是:B
6、
A矛盾式
B重言式
AΦ;
B{a} ;
C {b};
D {a,b};
E不存在。
正确答案是:A
9、
单选题。一棵根树是完全m叉树,当且仅当 该图( )。
A每个结点的度数是m;
B每个结点的出度都是m;

东大20秋学期《离散数学X》在线平时作业2【标准答案】

东大20秋学期《离散数学X》在线平时作业2【标准答案】

东大20秋学期《离散数学X》在线平时作业2【标准答案】A.所有有理数都是整数。

B.存在一个自然数n,使得n+1>n。

C.对于任意实数x,都有x+0=x。

D.所有图形都具有对称性。

答案: B为假,其他为真。

19.判断题。

对于任意两个自然数a和b,一定存在两个整数q和r,满足a=bq+r且0≤r<b。

答案:正确20.判断题。

对于一个有限集合A和它的子集B,B的补集一定是A的子集。

答案:正确离散数学X在线平时作业2试卷一、单选题(共10道试题,共40分)1.X,Y是有限集合,|X|=m,|Y|=n。

可以构成多少个从X 到Y的函数?A。

mnB。

mnC。

2mnD。

nm答案:D2.设集合S={Ф,{1},{1,2}},下面给定的四个选择答案中哪个是S的子集?A。

Ф;B。

{1};C。

{2};D。

{1,2}。

答案:A3.如果两个关系是等价关系,则它们是什么关系?A。

等价关系B。

不等价关系C。

无法确定D。

不知道答案:A4.在无向图中,度数是奇数的结点有多少个?A。

奇数;B。

非负整数C。

偶数。

答案:C5.有n个结点的无向完全图有多少条边?A。

2n;B。

(n(n-1))/2;C。

n(n-1);D。

n2.答案:B6.如果一个命题公式在所有情况下都为真,则它是什么?A。

矛盾式B。

重言式C。

无法确定D。

不知道答案:B7.在集合A上给定了两个二元关系R和S,下列哪个选项是R和S的交集?A.B.C.D.答案:D8.一个有向图中,每个结点的入度都等于出度,则这个有向图是什么?A。

有向树B。

有向图C。

有向___图D。

无向图答案:C9.在一个n元集合上,有多少个二元关系?A。

nB。

2nC。

n^2D。

2^n答案:2^(n^2)10.在下列选项中,哪个选项列出了4个逻辑运算符号?A。

⑷⑸⑺⑻B。

⑴⑵⑷⑹C。

⑴⑷⑸⑹D。

⑴⑷⑸⑺答案:C二、多选题(共5道试题,共20分)11.下面哪些代数系统是独异点?A。

B。

C。

D。

E。

答案:ABCDE12.下面的命题公式中哪些是永真式?A。

离散数学(本)试题(半开卷)

离散数学(本)试题(半开卷)

・ S,(2)R 一, ;(3)r(R 门 S).
16.图G=<V,E>,其中V=(a, b,c,d},E一 { (a , b), (a ,c), (a, ci), (b, c), (b,
d),(c,d)} ,对应边的权值依次为1、1,5、2.3及4,请画出G的图形、写出G的邻接矩阵并求
出C权最小的生成树及其权值.
l
二、坟空题(每小题3分,本题共巧分)
.设集合 A={1,2,3},B={2,3,4),C={3,4,5) ,则 BU(A 一C)等于 .设 A= {1, 2) ,B= (2, 3) , C= (3, 4) ,从A到B的函数 1= (<1, 2>, <2, 3>) ,从B 到C的函数 g={ <2 , 3> , <3 , 4>) ,则 Ran(g of )等于 8.两个图同构的必要条件包括结点数相等、边数相等与
9.设G是连通平面图, V ,e , r 分别表示C的结点数,边数和面数,V值为5,e值为4则r 的值为 10.设个体域 D={1,2,3,4) ,则谓词公式( Jx)A(x )消去量词后的等值式为
得分
评卷人 三、逻辑公式翻译【每小题6分,本题共12分)
11
.得分评卷人
将语句“昨天下雨,今天仍然下雨.”翻译成命题公式. 将语句“若不下雨,我们就去参加比赛.”翻译成命题公式.
11
(9分)
(12分)
六、证明题(本题共8分)
18.证明:
设 S=A 门 (B 一 C),T=(A 门B)一(A自 C), 若'Es,则xEA且xEB一C,即zEA,并且x任B且I诺C, 所以 x E (A 门B)且.1任(A门C),得 zET,

离散数学课程作业(3)

离散数学课程作业(3)

《离散数学》课程作业(3)——第三部分图论一、填空题1、一个无向图表示为G=(P,L),其中P是____________的集合,L是________________________的集合,并且要求________________。

2、设G=(P,L)是图,如果G是____________,并且____________,则G是树。

如果根树T的每个点v最多有两棵子树,则称T为____________。

3、设G是完全二叉树,G有15个点,其中8个叶结点,则G的总度数为____________,分枝点数为____________。

二、单项选择题1、已知图G的相邻矩阵为,则G有()。

A. 5点,8边;B. 6点,7边;C. 5点,7边;D. 6点,8边2、设图G是有6个顶点的连通图,总度数为20,则从G中删去()边后使之变成树。

A .10;B. 5;C. 3;D. 23、已知图G的相邻矩阵为,则G的边数与分枝数为()。

A. 5,3 ;B.4,2;C.5,1;D.6,4三、计算题1、设无向图个G=(P,L),P={v1,v2,¼v6},L={(v1,v2),(v2,v2),(v2,v4),(v4,v5),(v3,v4),(v1,v3),(v3,v1)}。

(1)画出G的图形;(2)求出G中各顶点的度及奇数度顶点的个数。

2、设T是如下的二叉树,试写出对T先根遍历,中根遍历和后根遍历时访问所有点的顺序。

(从上到下,从左至右,节点依次为A、B、C、…、O、P)3、求图中A到其余各顶点的最短路径,并写出它们的权。

4、用迪克斯特拉算法求出下面有限权图中从A到D的最短路,要求用图示方法给出求解过程。

5、设有5个城市v1,v2,v3,v4,v5,任意两城市之间铁路造价如下:(以百万元为单位)w(v1,v2)=4,w(v1,v3)=7,w(v1,v4)=16,w(v1,v5)=10,w(v2,v3)=13,w(v2,v4)=8,w(v2,v5)=17,w(v3,v4)=3,w(v3,v5,)=10,w(v4,v5)=12试求出连接5个城市的且造价最低的铁路网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16春学期《离散数学》在线作业2
一、单选题(共 10 道试题,共 50 分。


1.
设.X、Y 是有限集合,|X|=3,|Y|=2,可以构成( )个是从X到Y的常值函数。

.
. 1
. 2
. 3
正确答案:
2.
. 重言式
. 矛盾式
. 无法确定
. 不知道
正确答案:
3.
单选题。

有n个结点的无向完全图有( )条边。

.
2n;
. (n(n-1))÷2;
. n(n-1);
. n2。

正确答案:
4.
下面的命题公式中不是永真式的是()。

. (P∧Q)→Q
. (P∧(P→Q))→Q
. P→(P∨Q)
.
(P∨Q)→P
正确答案:
5. 7.选择题:在一次集会中,与奇数个人握手的人数共有()个。

. 奇数
. 不能确定
. 偶数
. 不知道
正确答案:
单选题。

一棵树有7片树叶,3个3度结点,其余都是4度结点,该树有()个4度结点。

.
4;
. 3;
. 2;
. 1;
. 不在给定的选择的范围内。

正确答案:
7.
设.X、Y 是有限集合,|X|=3,|Y|=2,可以构成( )个是从X到Y的入射函数。

.
. 1
. 2
. 3
正确答案:
8.
单选填空题。

是全集,={,},的幂集P()上的交运算?,的零元是
()。

.
Φ;
. {} ;
. {};
. {,};
. 不存在。

正确答案:
9.
多选填空题。

给定集合={1,2,3},定义上的关系如下:
R={<1,1>,<1,2>,<1,3>,<2,2><3,3>}
S={<1,1>,<1,2>,<2,1>,<2,2>,<3,3>}
T={<1,1>,<1,3>,<2,1>,<2,2>,<2,3>,<3,3>}
M=Ф(空关系)
N=×(完全关系(全域关系))
上述关系中,是偏序关系的有( )。

.
R,S,T,N;
. R,T;
. R,S;
. S,T,N。

正确答案:
10.
单选题。

无向图G=<V,>,所有结点度数的总和等于()。

边数;
. 边数的2倍;
. 不能确定。

正确答案:
16春学期《离散数学》在线作业2
二、判断题(共 5 道试题,共 25 分。


1.
下面命题公式成立吗?
$x(x)∧$x(x) ?$x((x)∧(x))
. 错误
. 正确
正确答案:
2. 设={Φ},=P(P())。

判断下面命题的真值。

. 错误
. 正确
正确答案:
3. 判断下面命题的真值。

. 错误
. 正确
正确答案:
4.。

判断下面的说法是否正确。

R和S是任何自反上关系,则R∪S 也自反。

. 错误
. 正确
正确答案:
5.
判断题,判断下面说法是否正确。

“对于整数集合I上的减法运算“-”来说, 0是幺元。

”. 错误
. 正确
正确答案:
16春学期《离散数学》在线作业2
三、多选题(共 5 道试题,共 25 分。


1.
多选填空题。

给定集合={1,2,3},定义上的关系如下:
R={<1,1>,<1,2>,<1,3>,<2,2><3,3>}
S={<1,1>,<1,2>,<2,1>,<2,2>,<3,3>}
T={<1,1>,<1,3>,<2,1>,<2,2>,<2,3>,<3,3>}
M=Ф(空关系)
N=×(完全关系(全域关系))
上述关系中,是等价关系的有( )。

. R
. S
. T
. M
. N
正确答案:
2.
多选题。

下面数的序列中,哪些可能不是简单图的结点度序列?
. (1,2,3,4,5)
. (2,2,2,2,2)
. (1,2,3,2,4)
. (1,1,1,1,4)
. (1,2, 2,4,5)
正确答案:
3. 试题见图片
. 图
. 图
. 图
. 图
. 图
F. F图
G. H图
H. K图
I. M图
J. N图
K. R图
L. S图
M. T图
N. W图
O. V图
P. X图
Q. Y图
正确答案:FG
4.
多选填空题。

给定集合={1,2,3},定义上的关系如下:R={<1,1>,<1,2>,<1,3>,<3,3>}
S={<1,1>,<1,2>,<2,1>,<2,2>,<3,3>}
T={<1,1>,<1,3>,<2,1>,<2,2>,<2,3>,<3,3>}
M=Ф(空关系)
N=×(完全关系(全域关系))
上述关系中,具有自反性的关系有( )。

. R
. S
. T
. M
. N
正确答案:
5. 下面的命题公式中哪些是永真式,只写出题号即可. 1
. 2
. 3
. 4
正确答案:。

相关文档
最新文档