东北大学物理作业答案振动和波
大学物理 第5章 振动和波动习题解答

第5章 振动和波动5-1 解:(1))s rad (105.050===m kωmax 222max 100.040.4(m/s)100.044(m/s )v A a A ωω==⨯===⨯=(2) 设cos()x A t ωϕ=+,则d sin()d xv A t tωωϕ==-+ 2222d cos()d x a A t x t ωωϕω==-+=-当x=0.02m 时,cos()1/2,sin()3/2t t ωϕωϕ+=+=±,所以20.230.346(m/s)2(m/s )1(N)v a F ma =⨯==-==-(3) 作旋转矢量图,可知:π2ϕ=-π0.04c o s (10)2x t =-5 解:A=0.04(m) 0.7(rad/s)0.3(rad)10.11(Hz)8.98(s)2πT ωϕωνν==-====5-3 证明:如图所示的振动系统的振动频率为1212πk k mυ+=式中12,k k 分别为两个弹簧的劲度系数,m为物体的质量。
解: 以平衡位置为坐标原点,水平向右为x 轴正方向。
设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有0202101=+-x k x k当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为11022012()()()F k x x k x x k k x =-++-=-+由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++=上式表明此振动系统的振动为简谐振动,且振动的圆频率为12k k x mω+=振动的频率为 1212π2πk k mων+==5-4解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。
右液面偏离原点为至x 时,振动系统所受回复力为:22ππ242d d g F x g x ρρ=-⋅⋅=-振动角频率 2π2d gm ρω=振动周期 222ππmT d gρ=5-5解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机习题5-4 图械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。
大学物理振动与波练习题与答案

大学物理振动与波练习题与答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章 振动与波习题答案12、一放置在水平桌面上的弹簧振子,振幅2100.2-⨯=A 米,周期50.0=T 秒,当0=t 时 (1) 物体在正方向的端点;(2) 物体在负方向的端点;(3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。
求以上各种情况的谐振动方程。
【解】:π=π=ω45.02 )m ()t 4cos(02.0x ϕ+π=, )s /m ()2t 4cos(08.0v π+ϕ+ππ=(1) 01)cos(=ϕ=ϕ,, )m ()t 4cos(02.0x π=(2) π=ϕ-=ϕ,1)cos(, )m ()t 4cos(02.0x π+π=(3) 21)2cos(π=ϕ-=π+ϕ, , )m ()2t 4cos(02.0x π+π= (4) 21)2cos(π-=ϕ=π+ϕ, , )m ()2t 4cos(02.0x π-π=13、已知一个谐振动的振幅02.0=A 米,园频率πω4=弧度/秒,初相2/π=ϕ。
(1) 写出谐振动方程;(2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】:)m ()2t 4cos(02.0x π+π= , )(212T 秒=ωπ=15、图中两条曲线表示两个谐振动(1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。
【解】:振幅相同,频率和初相不同。
虚线: )2t 21cos(03.0x 1π-π= 米实线: t cos 03.0x 2π= 米16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为t 3cos 4x 1= 厘米)32t 3cos(2x 2π+= 厘米试用旋转矢量法求出合振动方程。
【解】:)cm ()6t 3cos(32x π+=17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。
《大学物理教学课件》振动与波作业答案

三、计算题
2、解:设S波源振动方程为: s
y Acos t
A处S1
y1
B处S2
振动方程为:
Acos( t
振动方程为:
2 1
b)
Xy处2 两 波Ac振o动s(位相t 差2为1 : a 2 b2 )
A b s1
a o s2
B
波动(三)
x x
p
2
[
2
x
2 1
a 2 b2 ] [ 2 b 2
v0
A
y x0
A cos ( v 0
y(m) A
t)
2 t
0
y
Acos(v0 t 2 A
x 2
x0
) 2
A
x0
X(m)
-A
2. x 0, t 0 : y 0 dy 0 dt
波动(二)
x0
2
在2秒内波形移动了40cm u 20cm / s
3.2m 2 u 8
(1). y
0.01cos(
t
)
(SI )
82
(2). y 0.01cos( (t x ) )
8 0.2 2
(SI )
一、选择题
波动(三)
1. A 2. A 3. A
二、填空题
1. 某时刻波阵面上每一个点都可以作为一个子波波源。经t时间后, 这些子波波阵面的包迹,就是经t时间后的新的波阵面.
1
2
p 2k 时干涉加强
a2 x2 ]
[ 2 x 2 a 2 b2 ] [ 2 b 2 a 2 x 2 ] 2k
2
1
1
2
1 ( a 2 x 2 x) 2 ( a 2 b2 b) k12
大学物理学振动与波动习题答案

.
显然f点的速度大于零,所以取负值,解得
tf= -T/12.
从f点到达a点经过的时间为T/4,所以到达a点的时刻为
ta= T/4 +tf= T/6,
其位相为
.
由图可以确定其他点的时刻,同理可得各点的位相.
4.3如图所示,质量为10g的子弹以速度v= 103m·s-1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m-1,木块的质量为4.99kg,不计桌面摩擦,试求:
[解答](1)设物体的简谐振动方程为
x = Acos(ωt + φ),
其中A= 0.12m,角频率ω =2π/T= π.
当t =0时,x= 0.06m,所以
cosφ= 0.5,
因此
φ= ±π/3.
物体的速度为
v= dx/dt= -ωAsin(ωt + φ).
当t =0时,
v= -ωAsinφ,
由于v> 0,所以sinφ< 0,因此
大学物理学(上)
第四,第五章习题答案
第4章振动
P174.
4.1一物体沿x轴做简谐振动,振幅A= 0.12m,周期T= 2s.当t= 0时,物体的位移x= 0.06m,且向x轴正向运动.求:
(1)此简谐振动的表达式;
(2)t=T/4时物体的位置、速度和加速度;
(3)物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.
φ= -π/3.
简谐振动的表达式为
x= 0.12cos(πt –π/3).
(2)当t=T/4时物体的位置为
x= 0.12cos(π/2–π/3)
= 0.12cosπ/6 = 0.104(m).
振动和波综合标准答案

振动和波综合标准答案一、单选题:本大题共6小题,第1小题为3分;从第2小题到第6小题每题4分小计20分;共计23分。
1、◆标准答案:A★ 试题提示:再经T/2时,A.b的运动情况应与原来的运动情况相反,即a点振动到x轴下方的最低点,b恰好通过平衡位置向下运动,并以此画出A.b 间的波形.2、◆标准答案:C3、◆标准答案:D4、◆标准答案:C★ 试题详解:如图A错.周期T满足:0.15s=T,T=0.1s.0.25s相当于周期.故2m处质点此时y轴位移为0,B错.0.1s后,波到达10m处,故C对.10m处质点第一次到达y轴最大位移,用时.波源质点只通过了0.5m路程,D错.5、◆标准答案:D6、◆标准答案:B二、填空题:本大题共11小题,从第7小题到第12小题每题4分小计24分;第13小题为5分;从第14小题到第17小题每题6分小计24分;共计53分。
7、◆标准答案:各个时刻,各个质点★ 试题详解:各个时刻,各个质点8、◆标准答案:29、★ 试题详解: 0,向下10、◆标准答案:2.5,011、★ 试题详解: 16cm,+2cm12、◆标准答案:[3,2],613、◆标准答案:0.2414、★ 试题详解: 16cm/s,如下图所示15、◆标准答案:1000/316、◆标准答案:-4,0.117、◆标准答案:[0,1]、[3,4]三、多选题:本大题共10小题,第18小题为3分;从第19小题到第27小题每题4分小计36分;共计39分。
18、◆标准答案:BD★ 试题提示:波长有三种可能,如图所示,可以看出这三种可能的波长是λ1=2x0,λ2= x0,λ3=2x0/3.经过时间t,a点从平衡位置第一次到达正的最大位移处,说明它的振动周期有两种可能,分别是 T1=4t,T2=4t/3.根据公式v=λ/T,似乎有6种可能的速率,但经过计算,只有5种可能的数值,具体计算过程同学们可以自己去完成.如果经过时间t,b点也到达正的最大位移处,说明只能是中间图所示的情况,即波长λ2=x0,这列波的波速只可能是x0/4t或3x0/4t,选项A不对而选项B正确.如果经过时间t,b点到达负的最大位移处,则可能是两侧图所示的情况,即波长值有两种可能,即λ1=2x0或λ3=2x0/3.这列波的波速可能是x0/2t、3x0/2t、x0/6t三种情况,选项C不对.如果这列波的波速是x0/6t,经过时间t,b点一定到达负的最大位移处,选项D 正确.本题特别强度了波动过程中的两个周期性,计算结果不是唯一的,必须根据题目的具体条件去认真分析.)19、◆标准答案:BD20、◆标准答案:BD21、◆标准答案:ABC★ 试题详解:由题图中看出质点振动的周期T=0.5s,故波的频率f==2Hz,A对.由于P、Q两质点振动反向,故它们之间的距离为,由于波长大于它们之间距离,即n只能取0,即=2m,故=4m,B正确,由v=f知v=4×2=8(m/s),C对.无法确定波的传播方向,D错.22、◆标准答案:AB★ 试题详解:解题过程:从振动图象中知,周期T=4s,又知在t =0时刻,a质点在波谷,b质点在平衡位置且向y轴正方向运动,根据波由a 传向b,可知ab间距离x与波长的关系为即得波长λ的通式波速v=,则波速的通式为案为A、B.思路点拨:从题设条件和图形中,知周期T和波传播方向,确定此波属于单向传播问题.又知道在t=0时刻,a在波谷,b在平衡位置向y轴正方向运动.可是ab间距离x与波长λ关系不明确,波长λ是多值问题,周期T一定,波速也是多值问题,分别列出波长和波速的通式,再分析讨论便可得本题结果.小结:本题属于周期T确定,两点间距离与波长关系不明确,引起波长和波速的多值问题.若本题又未明确波沿直线ab向右传播,还需讨论波向左传播的情况,使题目变成双向多解问题.23、◆标准答案:BD24、◆标准答案:ABD25、◆标准答案:BD26、◆标准答案:ACD27、◆标准答案:ABC★ 试题提示:虽然波速v=λ/T,但不是“最大波速=最大波长/最大周期”.四、作图题:本大题共3小题,第28小题为5分;第29小题为6分;第30小题为8分;共计19分。
东北大学物理作业答案振动和波

第9章 振动 作 业一、教材:选择填空题 1~5;计算题:13,14,18 二、附加题(一)、选择题1、一沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π34,则t =0时,质点的位置在: D(A )过A x 21=处,向负方向运动; (B) 过A x 21=处,向正方向运动; (C) 过A x 21-=处,向负方向运动; (D) 过A x 21-=处,向正方向运动。
2、一物体作简谐振动,振动方程为:x =A cos(?t +?/4 )在t=T/4(T 为周期)时刻,物体的加速度为: B(A) 222ωA -. (B) 222ωA . (C) 232ωA -. (D)232ωA . (二)、计算题1、一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s .当t = 0时, 物体的位移x 0= 0.06m ,且向x 轴正向运动.求: (1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度; 解:(1)0.12cos 3x t ππ⎛⎫=- ⎪⎝⎭m(2)0.12sin 3v t πππ⎛⎫=-- ⎪⎝⎭m/s 20.12cos 3a t πππ⎛⎫=-- ⎪⎝⎭m/s 2 t = T /4时0.12cos 0.106x π==≈m0.12sin 0.060.196v πππ=-=-≈- m/s20.12cos 0.06 1.026a πππ=-=-≈- m/s 22、一物体沿x 轴做简谐运动,振幅A = 10.0cm ,周期T = .当t = 0时, 物体的位移x 0= -5cm ,且向x 轴负方向运动.求: (1)简谐运动方程; (2)t = 时,物体的位移;(3)何时物体第一次运动到x = 5cm 处(4)再经过多少时间物体第二次运动到x = 5cm 处 解:(1)20.1cos 3x t ππ⎛⎫=+ ⎪⎝⎭m(2)t = 时,270.1cos 0.1cos 0.087236x πππ⎛⎫=+=≈- ⎪⎝⎭m (3)利用旋转矢量法,第一次运动到x = 5cm 处,相位是15233t πππ=+所以 11t =s(3)利用旋转矢量法,第二次运动到x = 5cm 处,相位是27233t πππ=+所以 253t =s 215210.6733t t t s ∆=-=-==3、若简谐振动方程为m ]4/20cos[1.0ππ+=t x ,求: (1)振幅、频率、角频率、周期和初相;(2)t =2s 时的位移、速度和加速度. 解:(1)可用比较法求解.据]4/20cos[1.0]cos[ππϕω+=+=t t A x得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 据cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-4、一简谐振动的振动曲线如图所示,求振动方程. 解:设所求方程为)cos(ϕω+=t A x当t=0时:115,0x cm v =-<由A 旋转矢量图可得:02/3t rad ϕπ== 当t=2s 时:从x-t 图中可以看出:220,0x v => 据旋转矢量图可以看出, 223/2t rad ϕπππ==-+=题图4所以,2秒内相位的改变量203/22/35/6t t rad ϕϕϕπππ==∆=-=-= 据t ϕω∆=∆可求出:/5/12/t rad s ωϕπ=∆∆=于是:所求振动方程为:520.1cos()()123x t SI ππ=+5、一物体沿x 轴作简谐振动,振幅为0.06m ,周期为,当t =0时位移为0.03m ,且向轴正方向运动,求:(1)t =时,物体的位移、速度和加速度;(2)物体从m 03.0-x =处向x 轴负方向运动开始,到达平衡位置,至少需要多少时间解:设该物体的振动方程为)cos(ϕω+=t A x 依题意知:2//,0.06T rad s A m ωππ=== 据Ax 01cos -±=ϕ得)(3/rad πϕ±= 由于00v >,应取)(3/rad πϕ-= 可得:)3/cos(06.0ππ-=t x(1)0.5t s =时,振动相位为:/3/6t rad ϕπππ=-= 据22cos ,sin ,cos x A v A a A x ϕωϕωϕω==-=-=- 得20.052,0.094/,0.512/x m v m s a m s ==-=-(2)由A 旋转矢量图可知,物体从0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,A 矢量转过的角度为5/6ϕπ∆=,该过程所需时间为:/0.833t s ϕω∆=∆=第10章 波动 作 业一、教材:选择填空题 1~5;计算题:12,13,14, 21,30 二、附加题(一)、选择题1、一平面简谐波的波动方程为y = (3?t -?x+?) (SI). t = 0时的波形曲线如图所示,则: C(A) O 点的振幅为-0.1m . (B) 波长为3m . (C) a 、b 两点间相位差为?/2 . (D) 波速为9m/s .2、某平面简谐波在t = 时波形如图所示,则该波的波函数为: A(A) y = [4? (t -x /8)-?/2] (cm) . (B) y = [4? (t + x /8) + ?/2] (cm) . (C) y = [4? (t + x /8)-?/2] (cm) .(D) y = [4? (t -x /8) + ?/2] (cm) .3、一平面简谐波在0 t 时刻的波形曲线如图所示?,则O 点的振动初位相为: D题图5ux (m)y (m) · ··O -· a b4cmOy (cm) x (cm)t = u =8cm/sπππ23)(;)(;21)(;0)(D C B A4、一平面简谐波?,其振幅为A ?,频率为v ?,波沿x 轴正方向传播?,设t t =0时刻波形如图所示?,则x=0处质点振动方程为:B;])(2cos[)(;]2)(2cos[)(];2)(2cos[)(;]2)(2cos[)(0000ππππππππ+-=--=+-=++=t t v A y D t t v A y C t t v A y B t t v A y A5、关于产生驻波的条件,以下说法正确的是: D (A) 任何两列波叠加都会产生驻波; (B) 任何两列相干波叠加都能产生驻波; (C) 两列振幅相同的相干波叠加能产生驻波;(D) 两列振幅相同,在同一直线上沿相反方向传播的相干波叠加才能产生驻波. (二) 计算题1、如图所示?,一平面简谐波沿Ox 轴传播?,波动方程为])(2cos[ϕλπ+-=xvt A y ?,求:1)P 处质点的振动方程; 2)该质点的速度表达式与加速度表达式?。
振动、波动部分答案(新)

大学物理学——振动和波振 动班级 学号 姓名 成绩内容提要1、简谐振动的三个判据(1);(2);(3)2、描述简谐振动的特征量: A 、T 、γ;T1=γ,πγπω22==T3、简谐振动的描述:(1)公式法 ;(2)图像法;(3)旋转矢量法4、简谐振动的速度和加速度:)2cos()sin(v00πϕωϕωω++=+-==t v t A dt dx m ; a=)()(πϕωϕωω±+=+=0m 0222t a t cos -dtxd A 5、振动的相位随时间变化的关系:6、简谐振动实例弹簧振子:,单摆小角度振动:,复摆:0mgh dt d 22=+θθJ ,T=2mghJπ 7、简谐振动的能量:222m 21k 21A A Eω==系统的动能为:)(ϕωω+==t sin m 21mv 212222A E K ;系统的势能为:)ϕω+==t (cos k 21kx 21222A E P8、两个简谐振动的合成(1)两个同方向同频率的简谐振动的合成合振动方程为:)(ϕω+=t cos x A其中,其中;。
*(2) 两个同方向不同频率简谐振动的合成拍:当频率较大而频率之差很小的两个同方向简谐运动合成时,其合振动的振幅表现为时而加强时而减弱的现象,拍频:12-γγγ=*(3)两个相互垂直简谐振动的合成合振动方程:)(1221221222212-sin )(cos xy 2y x ϕϕϕϕ=--+A A A A ,为椭圆方程。
练习一一、 填空题1.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1。
若将此弹簧截去一半的长度,下端挂一质量为m/2的物体,则系统的周期T 2等于 。
2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为:A = ;=ω ;=ϕ 。
3.如图,一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,做成一复摆。
已知细棒绕过其一端的轴的转动惯量J =3/2ml ,此摆作微小振动的周期为 。
大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。
假如使物体上下振动,且规定向下为正方向。
〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。
〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
如此弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。
题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北大学物理作业答案振动和波-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第9章 振动 作 业一、教材:选择填空题 1~5;计算题:13,14,18 二、附加题(一)、选择题1、一沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π34,则t =0时,质点的位置在: D(A )过A x 21=处,向负方向运动; (B) 过A x 21=处,向正方向运动; (C) 过A x 21-=处,向负方向运动; (D) 过A x 21-=处,向正方向运动。
2、一物体作简谐振动,振动方程为:x =A cos(ωt +π/4 ) 在t=T/4(T 为周期)时刻,物体的加速度为: B(A) 222ωA -. (B) 222ωA . (C) 232ωA -. (D) 232ωA .(二)、计算题1、一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s .当t = 0时, 物体的位移x 0= 0.06m ,且向x 轴正向运动.求: (1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度; 解:(1)0.12cos 3x t ππ⎛⎫=- ⎪⎝⎭m(2)0.12sin 3v t πππ⎛⎫=-- ⎪⎝⎭m/s 20.12cos 3a t πππ⎛⎫=-- ⎪⎝⎭m/s 2 t = T /4时0.12cos 0.106x π==≈m0.12sin0.060.196v πππ=-=-≈- m/s20.12cos 0.06 1.026a πππ=-=-≈- m/s 22、一物体沿x 轴做简谐运动,振幅A = 10.0cm ,周期T = 2.0s .当t = 0时, 物体的位移x 0= -5cm ,且向x 轴负方向运动.求: (1)简谐运动方程;(2)t = 0.5s 时,物体的位移; (3)何时物体第一次运动到x = 5cm 处?(4)再经过多少时间物体第二次运动到x = 5cm 处?解:(1)20.1cos 3x t ππ⎛⎫=+ ⎪⎝⎭m(2)t = 0.5s 时,270.1cos 0.1cos0.087236x πππ⎛⎫=+=≈- ⎪⎝⎭m (3)利用旋转矢量法,第一次运动到x = 5cm 处,相位是15233t πππ=+所以 11t =s(3)利用旋转矢量法,第二次运动到x = 5cm 处,相位是27233t πππ=+所以 253t =s 215210.6733t t t s ∆=-=-==3、若简谐振动方程为m ]4/20cos[1.0ππ+=t x ,求: (1)振幅、频率、角频率、周期和初相; (2)t =2s 时的位移、速度和加速度. 解:(1)可用比较法求解.据]4/20cos[1.0]cos[ππϕω+=+=t t A x得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 据cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-4、一简谐振动的振动曲线如图所示,求振动方程.解:设所求方程为)cos(ϕω+=t A x当t=0时:115,0x cm v =-<由A 旋转矢量图可得:02/3t rad ϕπ== 当t=2s 时:从x-t 图中可以看出:220,0x v => 据旋转矢量图可以看出, 223/2t rad ϕπππ==-+=所以,2秒内相位的改变量203/22/35/6t t rad ϕϕϕπππ==∆=-=-= 据t ϕω∆=∆可求出:/5/12/t rad s ωϕπ=∆∆=于是:所求振动方程为:520.1cos()()123x t SI ππ=+5、一物体沿x 轴作简谐振动,振幅为0.06m ,周期为2.0s ,当t =0时位移为0.03m ,且向轴正方向运动,求:(1)t =0.5s 时,物体的位移、速度和加速度;(2)物体从m 03.0-x =处向x 轴负方向运动开始,到达平衡位置,至少需要多少时间?解:设该物体的振动方程为)cos(ϕω+=t A x 依题意知:2//,0.06T rad s A m ωππ=== 据Ax 01cos -±=ϕ得)(3/rad πϕ±= 由于00v >,应取)(3/rad πϕ-= 可得:)3/cos(06.0ππ-=t x(1)0.5t s =时,振动相位为:/3/6t rad ϕπππ=-= 据22cos ,sin ,cos x A v A a A x ϕωϕωϕω==-=-=- 得20.052,0.094/,0.512/x m v m s a m s ==-=-(2)由A 旋转矢量图可知,物体从0.03x m =-m 处向x 轴负方向运动,到达平衡位置时,A 矢量转过的角度为5/6ϕπ∆=,该过程所需时间为:/0.833t s ϕω∆=∆=第10章 波动 作 业一、教材:选择填空题 1~5;计算题:12,13,14, 21,30 二、附加题(一)、选择题1、一平面简谐波的波动方程为y = 0.1cos(3πt -πx+π) (SI). t = 0时的波形曲线如图所示,则: C(A) O 点的振幅为-0.1m . (B) 波长为3m . (C) a 、b 两点间相位差为π/2 . (D) 波速为9m/s .题图5ux (m)y (m) · ·· O-0.10.1 · a b2、某平面简谐波在t = 0.25s 时波形如图所示,则该波的波函数为: A (A) y = 0.5cos[4π (t -x /8)-π/2] (cm) . (B) y = 0.5cos[4π (t + x /8) + π/2] (cm) . (C) y = 0.5cos[4π (t + x /8)-π/2] (cm) .(D) y = 0.5cos[4π (t -x /8) + π/2] (cm) .3、一平面简谐波在0=t 时刻的波形曲线如图所示 ,则O 点的振动初位相为: Dπππ23)(;)(;21)(;0)(D C B A4、一平面简谐波 ,其振幅为A ,频率为v ,波沿x 轴正方向传播 ,设t t =0时刻波形如图所示 ,则x=0处质点振动方程为:B;])(2cos[)(;]2)(2cos[)(];2)(2cos[)(;]2)(2cos[)(0000ππππππππ+-=--=+-=++=t t v A y D t t v A y C t t v A y B t t v A y A5、关于产生驻波的条件,以下说法正确的是: D (A) 任何两列波叠加都会产生驻波; (B) 任何两列相干波叠加都能产生驻波; (C) 两列振幅相同的相干波叠加能产生驻波;(D) 两列振幅相同,在同一直线上沿相反方向传播的相干波叠加才能产生驻波. (二) 计算题1、如图所示 ,一平面简谐波沿Ox 轴传播 ,波动方程为])(2cos[ϕλπ+-=xvt A y ,求:1)P 处质点的振动方程; 2)该质点的速度表达式与加速度表达式 。
解:1)P 处质点的振动方程 cos 22L y A vt ππϕλ⎛⎫=++ ⎪⎝⎭2)速度 2sin 22L v A vt πνππϕλ⎛⎫=-++ ⎪⎝⎭)3(选择题)4(选择题加速度 224cos 22L a A vt πνππϕλ⎛⎫=-++ ⎪⎝⎭2、一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示. 求:(1)P 点的振动表达式;(2)波动方程;解:1)0.2A m = 1T s = 2ωπ=0t =时,cos 0ϕ= 向上运动 2πϕ=-P 点的振动表达式 0.2cos 22y t ππ⎛⎫=- ⎪⎝⎭ m2) 40.450.63m λ=⨯= 0.6u m s =0t =,0x =时 cos 0ϕ= 向下运动 2πϕ=波动方程 0.2cos 20.62x y t ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭3、 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.解:(1)()0.050.03cos 40.03cos 450.20.222x y t t x ππππ⎛⎫⎛⎫⎛⎫=-+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭m (2)x = -0.05m 30.03cos 42y t ππ⎛⎫=+⎪⎝⎭m 4、一平面简谐波沿x 轴正向传播,波的振幅10A cm =,波的角频率7/rad s ωπ=,当 1.0t s =时,10x cm =处的a 质点正通过其平衡位置向y 轴负方向运动,而20x cm =处的b 质点正通过 5.0y cm =点向y 轴正方向运动.设该波波长10cm λ>,求该平面波的波方程.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为ϕ,则该列平面简谐波的表达式可写成 ))(/27cos(1.0SI x t y ϕλππ+-=1.0t s =时10x cm = 处 0])/1.0(27cos[1.0=+-=ϕλππy因此时a 质点向y 轴负方向运动,故172(0.1/)(1)2ππλϕπ-+=而此时, b 质点正通过m y 05.0=处,有05.0])/2.0(27cos[1.0=+-=ϕλππy ,且质点b 向y 轴正方向运动,故172(0.2/)(2)3ππλϕπ-+=-由(1)、(2)两式联立得 m 24.0=λ , 3/17πϕ-= 所以,该平面简谐波的表达式为:)](31712.07cos[1.0SI xt y πππ--=5、如图,一平面波在介质中以波速20/u m s =沿x 轴负方向传播,已知A 点的振动方程为)(4cos 1032SI t y π-⨯=.(1)以A 点为坐标原点写出波方程;(2)以距A 点5m 处的B 点为坐标原点,写出波方程. 解:(1)坐标为x 处质点的振动相位为)]20/([4)]/([4x t u x t t +=+=+ππϕω 波的表达式为 ))](20/([4cos 1032SI x t y +⨯=-π (2)以B 点为坐标原点,则坐标为x 点的振动相位为)](205[4'SI x t t -+=+πϕω 波的表达式为 )]()20(4cos[1032SI xt y ππ-+⨯=-6、火车以u 30m/s =的速度行驶,汽笛的频率为Hz 6500=ν.在铁路近旁的公路上坐在汽车里的人在下列情况听到火车鸣笛的声音频率分别是多少?(1)汽车静止;(2)汽车以h km v /45=的速度与火车同向行驶.(设空气中声速为v 340m/s =)u题图5解: (1)火车迎面而来 0713VHz V uνν==- 火车背离而去 0597VHz V u νν==+ (2)汽车在前 0687V vHz V uνν-==-火车在前 0619V vHz V uνν+==+。