关于磁控溅射发展历程的综述

合集下载

磁控溅射镀膜技术综合介绍

磁控溅射镀膜技术综合介绍

一.磁控溅射电镀上世纪80年代开始, 磁控溅射技术得到迅猛的发展, 其应用领域得到了极大的推广。

现在磁控溅射技术已经在镀膜领域占有举足轻重的地位, 在工业生产和科学领域发挥着极大的作用。

正是近来市场上各方面对高质量薄膜日益增长的需要使磁控溅射不断的发展。

在许多方面, 磁控溅射薄膜的表现都比物理蒸发沉积制成的要好;并且在同样的功能下采用磁控溅射技术制得的可以比采用其他技术制得的要厚。

因此, 磁控溅射技术在许多应用领域涉及制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要是影响。

磁控溅射技术得以广泛的应用,是由该技术有别于其它镀膜方法的特点所决定的。

其特点可归纳为:可制备成靶材的各种材料均可作为薄膜材料,涉及各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷等物质,特别适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,容易获得均匀的高精度的膜厚,且反复性好;溅射粒子几乎不受重力影响,靶材与基片位置可自由安排;基片与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时高能量使基片只要较低的温度即可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。

1.磁控溅射工作原理:磁控溅射属于辉光放电范畴, 运用阴极溅射原理进行镀膜。

膜层粒子来源于辉光放电中, 氩离子对阴极靶材产生的阴极溅射作用。

氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。

磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹, 使得电子在正交电磁场中变成了摆线运动, 因而大大增长了与气体分子碰撞的几率。

用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶), 使固体原子(分子)从表面射出的现象称为溅射。

磁控溅射技术及其发展

磁控溅射技术及其发展
n mi , 现 了“ 速” 射【 m/ n 实 高 溅 1 川。
度 , 改善膜 层 的结 构 和 性 能 , 来 但在 很 多 的情 况 下 ,
工 件材 料本 身不 能 承受 所需 的高 温 , 就需 要 继 续 这
溅 射镀 膜 的产业 化 , 随后 便 出现 了三 级 溅射 和磁 控
溅射。 3 1 平衡磁 控溅 射技 术 .
磁控 溅射 最典 型 的特点 就是 在溅 射过 程 中基 板 温升 低 和能实 现“ 高速 ” 溅射 。溅 射产 生二 次 电子被
加速 为 高能 电子后 , 在正 交磁 场作 用下 作摆 线运 动 ,
不断 与气 体分 子发 生碰 撞 , 能量 传递 给气 体分 子 , 把 本身 变 为低 能 粒 子 , 就 不 会 使 基 板 过 热 [ 还 有 也 1 妇;
平 衡 磁控 溅 射 即传 统 的 磁控 溅 射 , 在 直 流二 是 级 溅射 的基 础上 发展起 来 的 。在 阴极 靶材 背后 放置 永 磁体 或 电磁线 圈 , 靶 材 表 面形 成 与 电场方 向垂 在
m a ne r n s ut e i g t o p t rng
摘要 : 控溅射技术可制备超硬膜 、 腐蚀摩擦 薄膜 、 导 薄膜 、 性 薄膜 、 学 薄膜 , 及各种 具有 特殊功 能的薄膜 , 磁 耐 超 磁 光 以 在 工 业 薄 膜 制 备 领 域 的应 用 非 常 广 泛 。本 文 着 重 介 绍 了磁 控 溅 射 技 术原 理 、 点 、 控 溅 射 技 术 的发 展 史 及 其 发 展 趋 势 。 特 磁 关 键 词 : 膜 制 备 ; 控 溅 射 ; 衡 磁 控 溅 射 ; 平 衡 磁 控 溅 射 薄 磁 平 非
因E3 1 。溅 射速 率高 是 因为二 次 电子 作 摆 线运 动 , 2 要 经过 上百 米 的飞行 才最 终 被 阳极 吸 收[ 而气 压 为 1 ,

磁控溅射技术研究进展

磁控溅射技术研究进展

磁控溅射技术研究进展薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。

磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。

1 磁控溅射技术原理溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。

溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。

磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。

而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。

图1所示为平面圆形靶磁控溅射原理。

磁控溅射技术得以广泛的应用是由该技术的特点所决定的。

可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。

磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。

在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。

随着磁控溅射技术的发展,发展起了反应磁控溅射,非平衡磁控溅射,高功率脉冲磁控溅射等新技术,下面将一一介绍。

2 磁控溅射技术发展2.1 反应磁控溅射随着表面技术的发展化合物薄膜得到了广泛的应用,反应磁控溅射技术是沉积化合物薄膜的主要方式之一(沉积多元成分的化合物薄膜)。

磁控溅射镀膜技术的研究进展

磁控溅射镀膜技术的研究进展

磁控溅射镀膜技术的研究进展磁控溅射镀膜技术是一种常见的表面处理技术,它可以在各种基材表面制备出具有特殊性能的薄膜层。

随着技术的不断发展,在材料的选择、制备工艺、表面状态分析等方面都有所进步,使得磁控溅射镀膜技术在科学研究和实际应用中发挥着重要作用。

一、磁控溅射镀膜技术的基本原理磁控溅射镀膜技术基于靶材发射金属离子的原理,通过高能离子轰击固体靶材表面,使得金属离子从靶材表面脱离并沉积在基材表面上,从而形成具有一定厚度和化学组成的功能性膜层。

这种技术的独特之处在于可以通过控制靶材的化学成分和溅射工艺参数来调控薄膜层的结构和性能。

其中,靶材的化学成分直接影响薄膜层的组成,而溅射工艺参数如气压、功率、溅射气体种类和气体流量等则直接影响溅射速率和膜层的质量。

二、材料选择与制备工艺磁控溅射镀膜技术广泛用于各种材料的制备,包括金属、合金、氧化物、硅类材料以及半导体材料等。

对于不同的材料,其制备工艺也有所不同。

金属材料通常采用单一金属靶材或合金靶材进行制备,而合金靶材的组成比例可以通过调整靶材的制备工艺来实现。

氧化物材料则需要先将靶材还原成金属或合金形态,然后利用气氛调节技术调节气氛中氧气含量来制备氧化物膜层。

在制备工艺方面,需要进行适当的气氛调节和工艺优化。

例如,在制备合金材料时,需要考虑合金靶材的制备过程中的变形问题,找到合适的制备参数来保证靶材的均匀溅射和膜层的均匀沉积。

三、表面状态分析磁控溅射镀膜技术制备出的膜层常常需要通过表面状态分析来控制其性能,最常用的分析方法是X射线衍射和扫描电镜技术。

X射线衍射技术可以用于分析膜层的结晶性、晶格参数和晶胞结构等信息,从而定量描述膜层的结构和性能。

而扫描电镜技术则可以提供更丰富和直观的表面形貌信息,包括表面粗糙度、形貌变化和结构特征等。

此外,还有一些其他的表面分析技术如原子力显微镜、能量散射光谱和X射线光电子能谱等,可以用于全面分析膜层的属性和性能。

四、应用前景磁控溅射镀膜技术在各种领域都得到了广泛应用,在新能源、医疗、航空航天等高科技产业中有着重要的地位。

磁控溅射技术进展及应用-下

磁控溅射技术进展及应用-下

3硅基发光研究项目得到国家自然科学基金委员会光电重大计划重点项目90201037资助磁控溅射技术进展及应用(下)3徐万劲(北京大学物理学院 北京 100871)摘 要 近年来磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。

随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。

本文将介绍磁控溅射技术的发展,以及闭合磁场非平衡溅射、高速率溅射及自溅射、中频及脉冲溅射等各种新技术及特点,阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。

关键词 磁控管 溅射率 非平衡磁控溅射 闭合场非平衡磁控溅射 自溅射213 直流溅射(DC Magnetron Sputtering )、射频溅射(RF Magnetron Sputtering )、脉冲溅射(Pulsed Magnetron Sputtering )和中频溅射(Medium Fre 2quency Magnetron Sputtering )直流溅射和射频溅射(f =13156MH z )是很早就开始应用的溅射技术,在二极溅射系统中已经被采用,直流溅射方法用于被溅射材料为导电材料的溅射和反应溅射镀膜中,其工艺设备简单,有较高的溅射速率。

而对陶瓷等介质材料靶,则只能采用射频磁控溅射方法沉积薄膜,射频磁控溅射方法能对任何材料包括各种导体、半导体和绝缘介质进行溅射镀膜。

直流反应溅射则可以使用导体及高掺杂半导体材料作为靶材,沉积介质薄膜,有较高的溅射速率。

但是反应溅射沉积介质薄膜过程中,通常会出现阳极消失、阴极中毒、放电打弧问题,破坏了等离子体的稳定性,使沉积速率发生变化,导致溅射过程难以控制,限制直流反应磁控溅射技术在介质膜的应用。

近几年来发展起来的脉冲溅射和中频溅射技术可以在反应溅射绝缘介质薄膜的过程中,释放靶表面积累的电荷、防止放电打弧的现象,并具有溅射速率快、沉积速率高等优点。

脉冲磁控溅射(10~350kH z )已经成为公认的作为绝缘材料沉积的优选的工艺过程2,33,该技术使用的脉冲电源输出电压波形是非对称的双极性脉冲(见图8),脉冲电源的正向脉冲对于释放靶表面的积聚的电荷、防止打弧是有效的,脉冲工作方式在沉积中提供稳定无弧的工作状态。

磁控溅射相关

磁控溅射相关
未来磁控溅射技术的发展需要 跨学科的合作与交叉创新,涉 及物理、化学、材料科学、机 械工程等多个领域,需要加强 学科间的交流与合作。
THANKS
感谢观看
靶材性能对溅射效果影响
靶材纯度
高纯度靶材可以减少薄膜中的杂质含 量,提高薄膜性能。
靶材致密度
高致密度靶材可以提高溅射速率和薄 膜质量。
靶材晶粒大小
细小晶粒的靶材可以提高薄膜的均匀 性和附着力。
靶材成分与组织
不同成分和组织的靶材会影响溅射过 程中粒子的能量和角度分布,从而影 响薄膜的结构和性能。
04
多功能化和智能化
未来的磁控溅射设备将实现多功能化和智能化,具备自动调节、远程监控、数据分析等 功能,提高设备的易用性和生产效率。
环保和可持续发展
环保和可持续发展是未来磁控溅射技术发展的重要方向,将采用更环保的材料和工艺, 降低能耗和废弃物排放。
未来研究方向和挑战
新材料和新工艺的探索
未来需要探索新的靶材、基材 以及工艺参数,以适应不同领 域和应用的需求,并提高磁控 溅射技术的性能。
关键技术参数与性能指标
溅射速率
单位时间内溅射到基片上的物 质质量或厚度,与靶材成分、 电源功率、真空度等因素相关

薄膜均匀性
基片上薄膜厚度的均匀程度, 受磁场分布、基片位置、溅射 角度等因素影响。
靶材利用率
靶材被有效利用的比例,与靶 材形状、磁场设计、溅射方式 等因素有关。
设备稳定性与可靠性
设备在长时间运行过程中的稳 定性和故障率,是评价设备性
06
磁控溅射技术应用实例分析
在微电子领域应用案例
薄膜晶体管(TFT)制造
利用磁控溅射技术,在玻璃或塑料基板上沉积薄膜,用于制造TFT显示器,如液晶显示屏 (LCD)和有机发光二极管(OLED)显示屏。

磁 控 溅 射 简 介

磁 控 溅 射 简 介

CdS薄膜的 薄膜的SEM分析 薄膜的 分析
CdCl2处理后退火的CdS薄 膜与没有任何处理的相比, 晶粒显著增大,表面也变得 非常光滑
谢 谢
溅射示意图
溅射后的现象
二次电子 基本离子 背散射颗粒 气体解吸
溅射颗粒
非晶层
化合物形成 冲撞链 震动波 点缺陷 热链 1kev的离子能量下,溅射出的中性粒子,二次电子和二次离子之比约为1000:10: 1kev的离子能量下,溅射出的中性粒子,二次电子和二次离子之比约为1000:10:1 的离子能量下 1000 注入原子
真空溅射原理
原理: 原理: 真空镀膜是借助高能粒子轰击所产生的动量交换, 真空镀膜是借助高能粒子轰击所产生的动量交换, 把镀膜材料的原子从固体( 表面撞出并放射出来。 把镀膜材料的原子从固体(靶)表面撞出并放射出来。 放在靶前面的基材拦截溅射出来的原子流, 放在靶前面的基材拦截溅射出来的原子流,后者凝聚并 形成镀层。 形成镀层。 阴极发射电子在电场的作用下加速飞向基片的过程 中与溅射气体原子发生碰撞, 中与溅射气体原子发生碰撞,电离出大量的正离子和电 电子飞向基片, 子, 电子飞向基片, 正离子在电场的作用下加速轰击 靶材,溅射出大量的靶材原子,呈中性的靶原子( 靶材,溅射出大量的靶材原子,呈中性的靶原子(或分 沉积在基片上成膜。 子)沉积在基片上成膜。
混合真空计

真空腔内压强
物质流量控制计

气体溅射流量
溅射的温度控制
基板温度
最大电压
温度
溅射的电压电流监控
功率
电流 电压
磁控溅射法制备CdS薄膜 薄膜 磁控溅射法制备
射频磁控溅射系统
– – – –
本实验采用射频磁控溅射方法制备CdS薄膜; 本实验采用射频磁控溅射方法制备CdS薄膜; CdS薄膜 CdS(99.99% ,直径为 直径为76mm ,厚度为 厚度为3.2 mm; 靶材为高纯 CdS(99.99%) ,直径为76mm ,厚度为3.2 mm; 衬底为已经清洗过的导电玻璃; 衬底为已经清洗过的导电玻璃; (99.9%)为溅射气体 为溅射气体。 在实验过程中引入高纯 Ar (99.9%)为溅射气体

磁控溅射技术的原理与发展

磁控溅射技术的原理与发展

磁控溅射技术的原理与发展磁控溅射技术因为其自身所具有的显著优点,已经被越来越广泛的运用于各个领域,其中以工业镀膜方面的应用最为广泛,相应的其生产技术也得到了很大的改进。

文章着重讲述磁控技溅射技术的原理,特点以及磁控溅射技术的发展趋势。

标签:镀膜技术;磁控溅射;平衡磁控溅射;非平衡磁控溅射自1852年,格洛夫发现阴极溅射现象,对于溅射技术的运用便逐步发展起来,从上世纪80年代至今,磁控溅射技术在表面工程领域占据举足轻重的地位。

磁控溅射技术可制备超硬膜、耐腐蚀摩擦薄膜、超导薄膜、磁性薄膜、光学薄膜,以及各种具有特殊功能的薄膜,是一种十分有效的薄膜沉积方法。

1 溅射镀膜的原理溅射技术是指用有一定能量的粒子轰击固体表面,使该固体表面的原子或者分子离开其表面,溅射出去的技术,该固体被称为靶材,飞溅而出的原子或分子落于另一固体表面形成镀膜,被镀膜的固体称之为基片。

电子在外加电场作用下,加速向外飞出,与Ar原子发生碰撞,使Ar原子电离成Ar离子和二次电子,并将其大部分能量传递给Ar离子,Ar离子获得能量后以高速轰击靶材,使其上原子或分子脱离靶材表面飞溅出去,这些获得能量的原子或分子落于基片表面并沉淀下来形成镀膜。

但由于发生了多次的能量传递,导致电子无法轰击电离靶材,而是直接落于基片之上。

磁控溅射是在外加电场的两极之间引入一个磁场,电子受电场力加速作用的同时受到洛伦兹磁力的束缚作用,从而使其运动轨迹由原来的直线变成摆线,从而增加了高速电子与氩气分子相碰撞的几率,能大大提高氩气分子的电离程度,因此便可降低了工作气压,而Ar离子在高压电场加速作用下,轰击靶材表面,使靶材表面更多的原子或分子脱离原晶格而溅出靶材飞向基片,高速撞击沉淀于基片上形成薄膜,由于二次电子残余的能量较低,落于基片后引起的温度变化并不明显,于是磁控溅射镀膜技术拥有“高速低温”的特点。

2 磁控溅射镀膜技术与传统的镀膜技术相比的优点可制备成靶材的材料很多,选材面较广,几乎所有金属,合金和陶瓷材料都可以被用来制作靶材;在一定条件下通过多个靶材共同溅射方式,可在基片表面镀上一层比例精确的合金膜;通过精确地控制磁场与电场的大小可以获得高质量且较为均匀的膜厚;由于是通过离子溅射从而使得靶材物质由固态直接转变为高速离子态,而且溅射靶的安装是不受限制的,使之十分适合大容积多靶装置的设计;此外,在溅射的放电气氛中加入氧、氮或其它活性气体,可以是靶材与这些气体发生反应形成化合物膜层沉淀在基片的表面;同时,磁控溅射技术形成镀膜具有速度快,膜层致密均匀精度高附着性好等特点,从而此项技术十分适合大批量的工业化生产,并具有极高的生产率与生产效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁控溅射
1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。

1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。

1974年,j.chapin发现了平衡磁控溅射。

这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。

磁控溅射的发展历程:
溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。

溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下:
(1)二级溅射:
二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。

(2)传统磁控溅射(也叫平衡磁控溅射):
平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。

但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。

(3)非平衡磁控溅射:
B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。

并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。

这样可以使磁控溅射技术更适合工业生产。

(4)脉冲磁控溅射:
由于在通过直流反应溅射来制得高密、无缺陷的绝缘膜(尤其是氧化物薄膜)时,经常存在不少的问题。

其结果会严重的影响膜的结构和性能。

但是通过脉冲磁控溅射可以与制得金属薄膜同样的效率来制得高质量的绝缘体薄膜。

近年来,随着脉冲中频电源的研发成功,使镀膜工艺技术又上了一个新的台阶;利用中频电源,采用中频对靶或者孪生靶,进行中频磁控溅射,有效地解决了靶中毒严重的现象,特别是在溅射绝缘材料的靶时,克服了溅射过程中,阳极消失的现象。

(5)磁控溅射技术新型应用:
磁控溅射技术的新型应用是指在以上基础上,再根据应用的需要,对磁控溅射系统进行改进而衍生出的多种多样的设备和装置。

这些改进主要是在系统内磁力线的分布上以及磁控溅射靶的设置和分布上。

关于磁控溅射发展历程的总结:
近年来,磁控溅射技术在固体靶表面的溅射机理,非平衡磁控溅射以及脉冲磁控溅射对沉积涂层的影响等方面的研究取得了重要的进展。

溅射沉积镀膜的核心是在低真空条件下产生等离子体,通过等离子体轰击将固体靶面原子击出,因此控制等离子体的能量分布与行为是研究磁控溅射工艺的关键。

尽管目前许多国内外研究者都在不遗余力的研究工艺参数对不同成分涂层的影响,并根据不同材料开发了一系列的沉积工艺的过程。

直流非平衡磁控溅射是直流磁控溅射技术中的重要里程碑,使得溅射技术直接过渡到离子镀阶段,而脉冲磁控溅射技术稳定沉积高质量的非导电涂层做出了重要的贡献。

这两项关键技术的核心是改变等离子体的密度分布和输送过程,因此控制离子流的行为状态则是磁控溅射研究的核心环节。

相关文档
最新文档