关于磁控溅射发展历程的综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁控溅射

1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。1974年,j.chapin发现了平衡磁控溅射。这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。

磁控溅射的发展历程:

溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。

溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下:

(1)二级溅射:

二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。

(2)传统磁控溅射(也叫平衡磁控溅射):

平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。

(3)非平衡磁控溅射:

B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。这样可以使磁控溅射技术更适合工业生产。

(4)脉冲磁控溅射:

由于在通过直流反应溅射来制得高密、无缺陷的绝缘膜(尤其是氧化物薄膜)时,经常存在不少的问题。其结果会严重的影响膜的结构和性能。但是通过脉冲磁控溅射可以与制得金属薄膜同样的效率来制得高质量的绝缘体薄膜。近年来,随着脉冲中频电源的研发成功,使镀膜工艺技术又上了一个新的台阶;利用中频电源,采用中频对靶或者孪生靶,进行中频磁控溅射,有效地解决了靶中毒严重的现象,特别是在溅射绝缘材料的靶时,克服了溅射过程中,阳极消失的现象。

(5)磁控溅射技术新型应用:

磁控溅射技术的新型应用是指在以上基础上,再根据应用的需要,对磁控溅射系统进行改进而衍生出的多种多样的设备和装置。这些改进主要是在系统内磁力线的分布上以及磁控溅射靶的设置和分布上。

关于磁控溅射发展历程的总结:

近年来,磁控溅射技术在固体靶表面的溅射机理,非平衡磁控溅射以及脉冲磁控溅射对沉积涂层的影响等方面的研究取得了重要的进展。溅射沉积镀膜的核心是在低真空条件下产生等离子体,通过等离子体轰击将固体靶面原子击出,因此控制等离子体的能量分布与行为是研究磁控溅射工艺的关键。尽管目前许多国内外研究者都在不遗余力的研究工艺参数对不同成分涂层的影响,并根据不同材料开发了一系列的沉积工艺的过程。直流非平衡磁控溅射是直流磁控溅射技术中的重要里程碑,使得溅射技术直接过渡到离子镀阶段,而脉冲磁控溅射技术稳定沉积高质量的非导电涂层做出了重要的贡献。这两项关键技术的核心是改变等离子体的密度分布和输送过程,因此控制离子流的行为状态则是磁控溅射研究的核心环节。

相关文档
最新文档