江苏省南通市如皋中学2019-2020学年高一下学期期初考试数学试题

合集下载

江苏省如皋中学2019-2020高一第二学期数学阶段考试试题

江苏省如皋中学2019-2020高一第二学期数学阶段考试试题

江苏省如皋中学2019-2020高一第二学期数学阶段考试试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题的四个选项中,只有一项是符合题目要求的.1. 在等差数列{}n a 中,1252,2a a ==,则101a 的值是 ( )A 、49B 、50C 、51D 、522. 若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是 ( ) A. l ∥a B. l 与a 异面 C. l 与a 相交 D. l 与a 没有公共点3. 等比数列}{n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a ( ) A.31 B. 31- C. 91 D. 91-4.若a ,b 为异面直线,,,a b l αβαβ⊂⊂=I ,则 ( )A.l 与a ,b 分别相交B. l 至少与a ,b 中的一条相交C.l 与a ,b 都不相交D.l 至多与a ,b 中的一条相交5.在空间四边形ABCD 中,2AD BC ==,,E F 分别是AB 、CD的中点,EF =则异面直线AD 与BC 所成的角为 ( ) A .120ο B. 90ο C. 60ο D. 45ο6. 在数列{a n }中,已知S n =1-4+7-10+13-16+…+1(1)(32)n n ---, 则S 15+S 22-S 31的值( )A .57B .46C .13D .-577. 如图,△ABC 中,∠ACB=90ο,直线l 过点A 且垂直于平面ABC ,动点P ∈l ,当点P 逐渐远离 点A 时,∠PCB 的大小 ( )A .不变B .变小C .变大D .有时变大有时变小lPBAB ECFD8. 定义12nnp p p +++L 为n 个正数12,,,n p p p L 的“均倒数”.若已知正项数列{}n a 的前n 项的“均倒数”为121n +,14n n a b +=,则12231011111b b b b b b +++L 的 值为 ( )A .111B .112C .1011D .1112二、多项选择题:本题共4小题,每小题5分,共20分,在每小题的四个选项中,有多项符合题目要求。

江苏省南通市如皋中学2019_2020学年高一数学下学期6月阶段考试试题创新班含解析

江苏省南通市如皋中学2019_2020学年高一数学下学期6月阶段考试试题创新班含解析
A。 B. C. D.
【答案】B
【解析】
【分析】
求出整个抽样过程中,每个学生被抽到的概率为 ,结合样本容量为 可求得该学校学生的总数.
【详解】从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为 ,
所以,在整个抽样过程中,每个学生被抽到的概率为 ,
所以,从该学校中抽取一个容量为 的样本时,则该学校学生的总数为 。
【答案】
【解析】
【分析】
列举出所有的基本事件,并确定事件“取出的两个球的编号之和小于 ”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率。
【详解】从袋中随机抽取出两个球,则所有的基本事件有: 、 、 、 、 、 ,共 种,
其中,事件“取出的两个球的编号之和小于 ”所包含的基本事件有: 、 ,共 种,
当a=0时,e2x﹣alnx a即为e2x≥0显然成立;
当a>0时,f(x)=e2x﹣alnx的导数为 =2e2x ,
由于y=2e2x 在(0,+∞)递增(增函数+增函数=增函数),
设 =0的根为m,即有a=2me2m, .
当0<x<m时, <0,f(x)单调递减;当x>m时, >0,f(x)单调递增,
因此,所求事件的概率为 .
故答案为: 。
【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.
14.如表是某厂2020年1~4月份用水量(单位:百吨)的一组数据
月份x
1
2
3
4
用水量y
2.5
3
4
4。5
由散点图可知,用水量y与月份x之间有较明显的线性相关关系,其线性回归方程是 ,预测2020年6月份该厂的用水量为_____百吨.

江苏省如皋市2019-2020学年高一下学期期末教学质量调研数学试题答案

江苏省如皋市2019-2020学年高一下学期期末教学质量调研数学试题答案

高一数学期末参考答案一、单项选择题:1. D2. C3. C4. C5. B6. B7. A8. B二、多项选择题:9. AD 10. ABCD 11. AC 12. ACD三、填空题:13. π3 14. ()64, 15. 326+ 16.12+n n 四、解答题:17. 证明:(1)连接OE ,在长方体1111A B C D ABCD −中, 有四边形ABCD 为矩形,所以O 的AC 中点. 又E 为棱1C C 的中点,所以在1CAC ∆有1//AC OE .----------2分 又因为BDE OE 平面⊂,BDE AC 平面⊄1所以1AC ∥平面BDE .----------4分(2) 在长方体1111A B C D ABCD −中,有ABCD CC 平面⊥1 又ABCD BD 平面⊂,所以BD CC ⊥1----------6分 因为四边形ABCD 为正方形,所以AC BD ⊥----------8分 又1ACC AC 平面⊂,11ACC CC 平面⊂,C CC AC =1I 所以11ACC A BD 平面⊥.----------10分18. 因为AC 边上的高线BD 所在直线方程为022=−+y x , 所以直线AC 的斜率为2,又直线AC 过点()2,4−A 所以直线AC 的方程为082=+−y x .----------3分 联立直线MC AC 与的方程: ⎩⎨⎧=+−=+−01082y x y x 解得C 的坐标为()76,----------6分因为B 为直线022=−+y x 上一点,所以设()0022,x x B −又M 为AB 的中点,所以⎪⎭⎫ ⎝⎛−−002,24x x M 因为M 点在直线01=+−y x 上,所以20=x ,即()2-,2B ----------9分 所以直线BC 的方程为02649=−−y x .----------12分19. (1)由已知132a a S n n −=,有()232111≥−=−−n a a S n n ,两式相减得13−=n n a a --------3分 即233a a =,又因为33321=+−a a a ,所以031≠=a所以数列{}n a 是以3为首项,3为公比的等比数列,其通项公式为n n a 3=--------6分(2)由(1)得,n n a 311=,所以⎪⎭⎫ ⎝⎛−=−⎪⎭⎫ ⎝⎛−=+++=n n n n T 31121311311313131312Λ--------8分 因为985492≤n T ,所以985984311≤−n 即9853≤n ,--------10分 解得61≤≤n ,所以使得不等式成立的n 的最大值为6.--------12分20. (1)因为()()101k a f x x x =<<且2338a f ⎛⎫= ⎪⎝⎭,()0,1a ∈,所以411=k ;----------2分 又因为()()()21011k a g x x x −=<<−且314g a ⎛⎫=− ⎪⎝⎭,()0,1a ∈,所以412=k .----------4分 (2)因为()()920f xg x +>对于任意()0,1x ∈恒成立,即5911>−−+x a x a 恒成立 又因为()1,0∈x ()0,1a ∈,所以()()()()a a xx a x x a x x x a x a −+≥−−+−+=−+−−+1211111111)( 即()59121>−+a a ----------10分 解得5451<<a ,所以实数a 的取值范围为⎪⎭⎫ ⎝⎛5451,.----------12分 21. (1)因为四边形ABCD 为菱形,所以DC DA =. 又060=∠ADC ,所以ADC ∆为等边三角形,即有CD CA =, 又在ADC ∆中,因为E 的AD 中点,所以AD CE ⊥. 因为PA ⊥平面ABCD ,ABCD CE 平面⊂,所以PA CE ⊥.又A AD PA =I ,PAD AD PAD PA 平面平面⊂⊂, 所以PAD EC 平面⊥又PCE CE 平面⊂所以PAD PCE 平面平面⊥..----------4分(2)因为PAD EC 平面⊥,所以斜线PC 在平面内的射影为PE , 即CPE ∠为PC 与平面PAD 所成的角的平面角...----------6分 因为ABCD PA 平面⊥,ABCD AD 平面⊂,所以AD PA ⊥ 在PAE Pt ∆中,522=+=AE PA PE 在CED Pt ∆中,322=−=ED CD CE 因为PAD EC 平面⊥,PAD PE 平面⊂,所以PE EC ⊥ 在CEP Pt ∆中,有515tan ==∠PE CE CPE 所以PC 与平面PAD 所成的角的正切值为515....----------8分 (3) 在平面PAD 中,过E 点作PD EM ⊥,垂足为M ,连接CM 因为PAD EC 平面⊥,PAD PD 平面⊂,所以PD EC ⊥ 又M CM EM =I ,EMC EM 平面⊂,EMC CM 平面⊂ 所以EMC PD 平面⊥又EMC CM 平面⊂所以CM PD ⊥,即EMC ∠为二面角A PD C −−的平面角.....----------10分 在EMD Pt ∆中,1=ED ,045=∠ADP ,所以22==MD EM 在CMD Pt ∆中,22=MD ,2=CD ,所以21422=−=MD CD CM 在EMC ∆中,3=EC ,由余弦定理71214222327212cos 222=⨯⨯−+=⋅−+=∠MC ME EC MC ME EMC 所以二面角A PD C −−的正弦值为742......----------12分 22. (1)在圆M 中,因为060=∠ACB ,所以0120=∠AMB 因为圆M 过点A 、B ,点C 在x 轴上方,所以圆心M 在y 轴的正半轴上, 即060=∠=∠MOB MOA又在直角三角形MOB 中,因为3=OB ,所以1=OM ,2=MB所以△ABC 的外接圆M 的方程为()4122=−+y x ----------3分(2)设()00,y x P ,00>x ,00>y ,则412020=+y x ,00x y k OP = 又因为EF OP ⊥,所以00y x k EF −=又直线EF 过点P ,所以直线EF 的方程为04100=−+y y x x 过M 点EF MH ⊥,垂足为H , 则4120−=y MH 所以2024144242⎪⎭⎫ ⎝⎛−−=−=y MH EF 因为2100<<y ,所以(]415,∈EF ----------7分 (3)EF 中点H 的横坐标为221x x + 因为MH OP //,所以00x y K MH=,即直线MH 的方程为0000=+−x y x x y 又直线EF 的方程为04100=−+y y x x ,联立方程组0004y x x x H −= 0002182y x x x x −=+----------10分 因为)42(24100002020时取等号当且仅当==≥=+y x y x y x 所以8100≤y x 所以()18200021−≥−=−+y x x x x ,即()0212x x x −+的最小值为-1----------12分。

江苏省如皋市2019-2020学年高一下学期期末教学质量调研数学试题含答案

江苏省如皋市2019-2020学年高一下学期期末教学质量调研数学试题含答案

在 PtCED 中, CE = CD2 − ED2 = 3
因为 EC ⊥ 平面PAD , PE 平面PAD ,所以 EC ⊥ PE
在 PtCEP 中,有 tan CPE = CE = 15 PE 5
⑴求△ ABC 的外接圆 M 的方程; ⑵求 EF 的长度的取值范围;
⑶求 ( x1 + x2 ) − 2x0 的最小值.
高一数学期末参考答案
一、单项选择题: 1. D 2. C 3. C 4. C 5. B 6. B 7. A 8. B 二、多项选择题: 9. AD 10. ABCD 11. AC 12. ACD 三、填空题:
22.(本小题满分 12 分)
( ) ( ) 已知: A − 3,0 , B 3,0 ,点 C 在 x 轴上方,且∠ ACB = 60o ,△ ABC 的外接圆的圆
心为
M
.设
P ( x0 ,
y0
)
为圆 O :
x2
+
y2
=
1 4
上的动点,且点

在第一象限,圆 O
在点
P
处的
切线交圆 M 于 E ( x1, y1 ), F ( x2 , y2 ) 两点.
数列an 的通项公式为 an = n2 2n+2 − 2n ,则该数列的前 n 项的“奇因子”的倒数之和为 ▲ .
四、解答题:本大题共 6 小题,共 70 分。解答应写出文字说明,证明过程或演算步骤。 17.(本小题满分 10 分)
在长方体 A1B1C1D1 − ABCD 中, AC I BD = O , E 为棱 C1C 的中 点. ⑴求证: AC1 ∥平面 BDE ;
D. 5x+12y − 26 = 0 或 y = 3

江苏省南通市如皋中学2019_2020学年高一数学下学期期初考试试题含解析

江苏省南通市如皋中学2019_2020学年高一数学下学期期初考试试题含解析
考点:1。正弦定理;2.余弦定理的推论;3.均值不等式.
【思路点晴】本题主要考查了余弦定理的推论及均值不等式求最值,属于中档题.在本题中,由正弦定理把 化为 ,再由余弦定理推论求出 的表达式,还用到用均值不等式求出 ,再算出结果来。
四、解答题:本大题共6小题,共70分,解答应写成文字说明、证明过程或演算步骤。
14.如图所示, 为圆内接四边形,若 , , ,则线段 ______.
【答案】
【解析】
【分析】
由 , , 及正弦定理即可解出答案
【详解】因为 , ,
所以在 中由正弦定理得:
即 ,解得
故答案为:
【点睛】本题考查的是利用正弦定理解三角形,较简单.
15.设等比数列 前 项和为 ,若 。则数列的公比 ______。
当 时,不等式的解集为 .
【点睛】解含参的一元二次不等式常从以下几个方面讨论:开口方向、根的个数、根的大小.
20.根据下列条件,求数列 的通项公式。
(1) , ;
(2) , 。
(3) ,
【答案】(1) ;(2) ;(3)
【解析】
【分析】
(1)用累加法求出 即可
(2)用累乘法求出 即可
(3)由 得 ,然后可得数列 是等比数列,其中首项为 ,公比为10
【答案】
【解析】
【分析】
分 和 两种情况讨论,当 时,可得 ,然后化简解出来即可。
【详解】若 ,则 ,不满足
所以
所以
整理得:
由 得
即 ,所以
解得
故答案为:
【点睛】本题考查的是等比数列的基本运算,较简单,但要注意讨论 的情况不成立.
16。若△ABC的内角 满足 ,则 的最小值是.
【答案】

江苏如皋中学高一下学期期初复学考试数学试题含答案

江苏如皋中学高一下学期期初复学考试数学试题含答案

江苏省如皋中学2019-2020学年度高一年级第二学期数学期初考试0407一、单项选择题:本题共8小题,每小题5分,共40分.在每小题的四个选项中,只有一项是符合题目要求的.1. 已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°2. 若,0<<b a 下列不等式成立的是 ( ) A.22b a < B. ab a <2C. 1<a bD. ba 11<3. 等差数列}{n a 中,若45076543=++++a a a a a ,则前9项和9S = ( ) A.1620 B.810 C.900 D.6754. 已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是 A.),2()3,(+∞---∞Y B.)2,3(-- ( ) C.),3()2,(+∞-∞Y D. )3,2(5.已知ABC ∆的三内角C B A ,,的对边为c b a ,,,若1=+++cb ab ac ,则B 的大小为 A.o 30 B. o 60 C. o 120 D. o 150 ( )6. 若0,0>>y x 且191=+yx ,则y x +的最小值为( ) A.6 B.12 C. 16 D.247. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:( ) A .3盏 B .6盏 C . 9盏 D . 281盏8. 已知命题:“在等差数列{}n a 中,若()210424a a a ++=,则11S 为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( ) A. 17 B. 18 C. 19 D. 20二、多项选择题:本题共4小题,每小题5分,共20分,在每小题的四个选项中,有多项符合题目要求。

江苏省如皋中学2019~2020学年高一第二学期数学5月31日周练八含答案

江苏省如皋中学2019~2020学年高一第二学期数学5月31日周练八含答案

2019--2020江苏省如皋中学高一第二学期数学周练八20200531一、单选题1.直线20x ++=的倾斜角是( ) A .30°B .60︒C .120︒D .150︒2.在正方体1111ABCD A B C D -中,E 为棱11A B 的中点,则异面直线AE 与1BC 所成角的余弦值为( ) A .13BCD3.已知圆锥的母线长是10,侧面展开图是半圆,则该圆锥的侧面积为( ) A .1003π B .100πC .503π D .50π4.等差数列中18153120a a a ++=,则9102a a -的值是( ) A .24B .22C .20D .8-5.在等差数列{}n a 中,首项10a =,公差0d ≠,n S 是其前n 项和,若7k a S =,则k =( ) A .20B .21C .22D .236.在数列{}n a 中,已知对任意123,...31nn n N a a a a *∈++++=-,则2222123...n a a a a ++++=( )A .()231-n B .()1912n- C .91n -D .()1314n-7.已知数列{}n a 满足115,2nn n a a a +==,则73a a = ( ) A .4 B .2 C .5D .528.设等差数列{}n a 的前n 项的和为n S ,等差数列{}n b 的前n 项的和为n T ,且满足()()1311n n n S n T +=+.若存在正整数k 使得n n a kb =,则n 的最大值为( )A .3B .4C .6D .8二、多选题9.已知l ,m 是两条不同的直线,α,β是两个不同的平面,且//l α,m β⊥,则下列命题中正确的是( ) A .若//αβ,则m α⊥ B .若αβ⊥,则l m ⊥ C .若l m ⊥,则//l βD .若//m α,则αβ⊥10.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是( )A .AC BE ⊥B .//EF 平面ABCDC .AEF V 的面积与BEF V 的面积相等D .三棱锥A BEF -的体积为定值11.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <,则( ) A .60a >B .2437d -<<- C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE V 折起,使点A 到达点P的位置,且PC = )A .平面PED ⊥平面EBCDB .PC ED ⊥C .二面角P DC B --的大小为4π D .PC 与平面PED三、填空题13.已知等差数列{}n a 的各项不为零,且3a 、13a 、63a 成等比数列,则公比是________ 14.已知正项数列{}n a 满足2212n naa +=+,1a =11nn a a +⎧⎫⎨⎬+⎩⎭的前8项和8S =___________.15.矩形ABCD 中,8AB =,6BC =,沿AC 将矩形ABCD 折成一个大小为2π的二面角B AC D --,则四面体ABCD 的外接球的表面积为__________.16.已知{}n a 是首项为2,公比为()1q q >的等比数列,且{}n a 的前n 项和为n S,若也为等比数列,则q =____.四、解答题17.在数列{n a }中,1a =2,1n n a a cn +=+ (n∈N*,常数c≠0),且123,,a a a 成等比数列. (I)求c 的值;(∈)求数列{n a }的通项公式.18.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB AC =,点D 、E 、F 分別是AB 、AC 、BC 的中点.(1)求证://BC 平面PDE ; (2)求证:平面PAF ⊥平面PDE .19.已知数列{}n a 满足11a =,且122nn n a a -=+(2n ≥,且*n N ∈).(1)求证:数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列{}n a 的通项公式(3)设数列{}n a 的前n 项和n S ,求证:232nn S n >-. 20.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ; (Ⅱ)求证:BD ⊥平面PAB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面PAB ,若存在,确定点M 的位置,若不存在,请说明理由.21.若数列{}n a 的前n 项和为n S ,对任意正整数n ,都有n n a S 216-=,记n n a b 21log =.(1)求21,a a 的值;(2)求数列{}n b 的通项公式; (3)令22)1()2(1-++=n n b n n c ,数列{}n c 的前n 项和为n T ,证明:对于任意的*∈N n ,都有645<n T . 22.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,AC BC =,124AB A A ==.以AB ,BC 为邻边作平行四边形ABCD ,连接1A D 和1DC .(1)求证:1//A D 平面11BCC B ; (2)若二面角1A DC A --为45°, ①证明:平面11AC D ⊥平面1A AD ; ②求直线1A A 与平面11AC D 所成角的正切值.2019--2020江苏省如皋中学高一第二学期数学周练八20200531一、单选题1.直线20x ++=的倾斜角是( ) A .30° B .60︒C .120︒D .150︒【答案】D2.在正方体1111ABCD A B C D -中,E 为棱11A B 的中点,则异面直线AE 与1BC 所成角的余弦值为( )A .13B C D 【答案】C3.已知圆锥的母线长是10,侧面展开图是半圆,则该圆锥的侧面积为( ) A .1003π B .100πC .503π D .50π【答案】D4.等差数列中18153120a a a ++=,则9102a a -的值是( ) A .24 B .22 C .20 D .8-【答案】A5.在等差数列{}n a 中,首项10a =,公差0d ≠,n S 是其前n 项和,若7k a S =,则k =( ) A .20 B .21 C .22 D .23【答案】C6.在数列{}n a 中,已知对任意123,...31nn n N a a a a *∈++++=-,则2222123...n a a a a ++++=( )A .()231-n B .()1912n- C .91n - D .()1314n-【答案】B7.已知数列{}n a 满足115,2nn n a a a +==,则73a a = ( ) A .4 B .2 C .5 D .52【答案】A8.设等差数列{}n a 的前n 项的和为n S ,等差数列{}n b 的前n 项的和为n T ,且满足()()1311n n n S n T +=+.若存在正整数k 使得n n a kb =,则n 的最大值为( )A .3B .4C .6D .8【答案】B 二、多选题9.已知l ,m 是两条不同的直线,α,β是两个不同的平面,且//l α,m β⊥,则下列命题中正确的是( ) A .若//αβ,则m α⊥ B .若αβ⊥,则l m ⊥ C .若l m ⊥,则//l β D .若//m α,则αβ⊥【答案】AD10.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是( )A .AC BE ⊥B .//EF 平面ABCDC .AEF V 的面积与BEF V 的面积相等D .三棱锥A BEF -的体积为定值 10.ABD11.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <,则( ) A .60a > B .2437d -<<- C .0nS <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ABCD12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE V 折起,使点A 到达点P的位置,且PC = )A .平面PED ⊥平面EBCDB .PC ED ⊥C .二面角P DC B --的大小为4π D .PC 与平面PED12.AC 三、填空题13.已知等差数列{}n a 的各项不为零,且3a 、13a 、63a 成等比数列,则公比是________ 【答案】1或514.已知正项数列{}n a 满足2212n n a a +=+,1a =11nn a a +⎧⎫⎨⎬+⎩⎭的前8项和8S =___________.15.矩形ABCD 中,8AB =,6BC =,沿AC 将矩形ABCD 折成一个大小为2π的二面角B AC D --,则四面体ABCD 的外接球的表面积为__________. 【答案】100π16.已知{}n a 是首项为2,公比为()1q q >的等比数列,且{}n a 的前n 项和为n S,若也为等比数列,则q =____.【答案】2 四、解答题17.在数列{n a }中,1a =2,1n n a a cn +=+ (n∈N*,常数c≠0),且123,,a a a 成等比数列. (I)求c 的值;(∈)求数列{n a }的通项公式. 【详解】(Ⅰ)由题知,1a =2,2a =2+c ,3a =2+3c , 因为1a ,2a ,3a 成等比数列,所以(2+c )2=2(2+3c ), 解得c =0或c =2,又c ≠0,故c =2. (Ⅱ)当n ≥2时,由1n n a a cn +=+ 得2a ﹣1a =c ,3a ﹣2a =2c ,…1n n a a -- =(n ﹣1)c ,以上各式相加,得()()111212n n n a a n c c -⎡⎤-=+++-=⎣⎦L ,又1a =2,c =2,故()222n a n n n =-+≥,当n =1时上式也成立,所以数列{a n }的通项公式为22n a n n =-+.(n ∈N *).18.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB AC =,点D 、E 、F 分別是AB 、AC 、BC 的中点.(1)求证://BC 平面PDE ; (2)求证:平面PAF ⊥平面PDE . 【详解】(1)在ABC V 中,因为D 、E 分别是AB 、AC 的中点,所以//DE BC , 因为BC ⊄平面PDE ,DE ⊂平面PDE ,所以//BC 平面PDE ; (2)因为PA ⊥平面ABC ,DE ⊂平面ABC ,所以PA DE ⊥, 在ABC V 中,因为AB AC =,F 是BC 的中点,所以AF BC ⊥, 因为//DE BC ,所以DE AF ⊥,又因为AF PA A =I ,AF ⊂平面PAF ,PA ⊂平面PAF ,所以DE ⊥平面PAF , 因为DE ⊂平面PDE ,所以平面PAF ⊥平面PDE .19.已知数列{}n a 满足11a =,且122nn n a a -=+(2n ≥,且*n N ∈).(1)求证:数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列{}n a 的通项公式(3)设数列{}n a 的前n 项和n S ,求证:232nnS n >-. 【详解】解:(1)由122nn n a a -=+,得11122n n n n a a --=+,即11122n n n n a a ---=. ∴数列2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,1为公差的等差数列. (2)∵数列2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,1为公差的等差数列,∴122n n a n =-,∴122n n a n ⎛⎫=- ⎪⎝⎭. (3)1231n n n S a a a a a -=++++L1231135312222222222n n n n -⎛⎫⎛⎫=⨯+⨯+⨯+-+- ⎪ ⎪⎝⎭⎝⎭L 23411353122222222222n n n S n n +⎛⎫⎛⎫=⨯+⨯+⨯++-+- ⎪ ⎪⎝⎭⎝⎭L 2311122222n n n S n +⎛⎫-=+++-- ⎪⎝⎭L 13322n n +⎛⎫=-+-+ ⎪⎝⎭. ∴13232n n S n +⎛⎫=-+ ⎪⎝⎭, ∴3232322n n nS n n =-+>-. 20.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ;(Ⅱ)求证:BD ⊥平面PAB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面PAB ,若存在,确定点M 的位置,若不存在,请说明理由.【详解】(Ⅰ)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD ⊥P A .因为CD ⊥AD ,PA AD A ⋂=,所以CD ⊥平面P AD .因为PD ⊂平面P AD ,所以CD ⊥PD .(II )因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A .在直角梯形ABCD 中,12BC CD AD ==,由题意可得AB BD ==,所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A =I ,所以BD ⊥平面P AB .(Ⅲ)解:在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 证明:取P A 的中点N ,连接MN ,BN ,因为M 是PD 的中点,所以12MN AD P. 因为12BC AD P ,所以MN BC P . 所以MNBC 是平行四边形,所以CM ∥BN .因为CM ⊄平面P AB , BN ⊂平面P AB .所以//CM 平面P AB .21.若数列{}n a 的前n 项和为n S ,对任意正整数n ,都有n n a S 216-=,记n n a b 21log =.(1)求21,a a 的值;(2)求数列{}n b 的通项公式;(3)令22)1()2(1-++=n n b n n c ,数列{}n c 的前n 项和为n T ,证明:对于任意的*∈N n ,都有645<n T . 试题解析:(1)解:由11216a S -=得:11216a a -= 解得811=a (1分) 由22216a S -=得:22121)(6a a a -=+ 解得3212=a (3分) (2)解:由n n a S 216-= ①当2≥n 时,有11216---=n n a S ② (4分)①-②得:411=-n n a a (5分) {}n a 数列∴是首项811=a ,公比41=q 的等比数列 12111214181+--⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯==∴n n n n q a a 1221log log 122121+=⎪⎭⎫ ⎝⎛==∴+n a b n n n(3)证明:由(2)有⎥⎦⎤⎢⎣⎡+-=++=2222)2(11161)2()2(1n n n n n c n , ()()()222222222111111111111632435112n c n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎢⎥⎣⎦L ()()22221111115111621626412n n ⎡⎤⎛⎫+--<+=⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦.22.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,AC BC =,124AB A A ==.以AB ,BC 为邻边作平行四边形ABCD ,连接1A D 和1DC .(1)求证:1//A D 平面11BCC B ;(2)若二面角1A DC A --为45°,①证明:平面11AC D ⊥平面1AAD ; ②求直线1A A 与平面11AC D 所成角的正切值.【详解】(1)如图所示连接1B C ,在平行四边形ABCD 中,//,AB CD AB CD =, 在三棱柱111ABC A B C -中,又1111//,=A B AB A B AB , 所以1111//,A B CD A B CD =,所以四边形11A B CD 是平行四边形,所以11//A D B C ,又1A D ⊄平面11BCC B ,1B C ⊂平面11BCC B , 所以1//A D 平面11BCC B ;(2)①取CD 的中点O ,连接1,AO A O ,因为AC BC =,所以AO CD ⊥,又因为1A A ⊥平面ABC , 所以1A A CD ⊥,1A A AO A ⋂=, 所以CD ⊥平面1A AO , 所以1A O CD ⊥, 所以1A OA ∠为二面角1A DC A --的平面角, 在1Rt A OA △中,12OA A A ==,12AO CD =, 所以AC CD ⊥,又因为11,AC A A A A DA A ⊥⋂=, 所以AC ⊥平面1A AD ,又因为111//,AC AC AC ⊂平面11AC D ,所以平面11AC D ⊥平面1A AD ; ②过A 作1AM A D ⊥,因为平面11AC D ⊥平面1A AD , 所以AM ⊥平面11AC D , 所以1A M 是1A A 在平面11AC D 上的射影, 所以1AA M ∠是直线1A A 与平面11AC D 所成角,在1Rt AA M V 中,12,A A AD ==11tan AD AA M AA ∠==。

2019-2020学年江苏省南通市如皋中学高一(创新班)下学期6月阶段考试数学试题(解析版)

2019-2020学年江苏省南通市如皋中学高一(创新班)下学期6月阶段考试数学试题(解析版)

2019-2020学年江苏省南通市如皋中学高一(创新班)下学期6月阶段考试数学试题一、单选题1.椭圆22195x y +=的焦点的坐标为( )A.( B .(2,0),(2,0)- C.(0, D .(0,2),(0,2)-【答案】B【解析】根据椭圆的方程,求出c ,即可得出焦点坐标. 【详解】因为椭圆方程为22195x y +=,所以2c ==,且焦点在x 轴上, 所以焦点坐标为:(2,0),(2,0)-. 故选:B. 【点睛】本题主要考查求椭圆的焦点坐标,熟记椭圆的简单性质即可,属于基础题型.2.某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为2:3:5,现用分层抽样抽取一个容量为200的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为14,则该学校学生的总数为( ) A .400 B .800C .1000D .2000【答案】B【解析】求出整个抽样过程中,每个学生被抽到的概率为14,结合样本容量为200可求得该学校学生的总数. 【详解】从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为14, 所以,在整个抽样过程中,每个学生被抽到的概率为14, 所以,从该学校中抽取一个容量为200的样本时,则该学校学生的总数为20080014=.故选:B. 【点睛】本题考查利用分层抽样计算总容量,考查计算能力,属于基础题.3.已知数据1210,,,2,x x x ⋯的平均值为2,方差为1,则数据1210,,,x x x ⋯的方差是( ) A .小于1 B .1C .大于1D .无法确定【答案】C【解析】根据数据的平均值和方差公式计算比较可得答案. 【详解】因为数据1210,,,2,x x x ⋯的平均值为2, 所以12102211x x x ++++=L ,所以121020x x x +++=L ,所以1210,,,x x x L 的平均值为2, 数据1210,,,2,x x x ⋯的平均值为2,方差为1 所以222212101[(2)(2)(2)(22)]111x x x -+-++-+-=L , 所以2221210[(2)(2)(2)]11x x x -+-++-=L ,所以数据1210,,,x x x ⋯的方差是22212101[(2)(2)(2)]10x x x -+-++-L 1110=1>, 故选:C. 【点睛】本题考查了数据的平均值和方差公式,属于基础题.4.若抛物线22y x =上的一点M 到坐标原点O 则点M 到该抛物线焦点的距离为( ) A .3 B .32C .2D .1【答案】B【解析】设2,2y M y ⎛⎫ ⎪⎝⎭=22y =,故212y x ==,计算得到答案. 【详解】设2,2y M y ⎛⎫ ⎪⎝⎭,M 到坐标原点O =,解得22y =,故212y x ==.点M到该抛物线焦点的距离为131222px+=+=.故选:B.【点睛】本题考查了抛物线中的距离问题,意在考查学生的计算能力和转化能力.5.假设在元旦假期期间,甲地降雨概率是0.2,乙地降雨概率是0.3,且两地是否降雨相互之间没有影响,则在该时段两地中恰有一个地区降雨的概率为()A.0.06B.0.38C.0.5D.0.56【答案】B【解析】根据甲、乙两地恰有一个地方下雨,包括甲地下雨,乙地不下雨和甲地不下雨,乙地下雨两类情况,再根据相互独立事件同时发生的概率公式得到结果;【详解】解:甲、乙两地恰有一个地方下雨的概率:0.2(10.3)(10.2)0.30.140.240.38P=⨯-+-⨯=+=故选:B【点睛】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,注意应用相互独立事件同时发生的概率公式,属于基础题.6.近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路”沿线国家的游客人次情况,则下列说法正确的是()①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加②2013-2018年这6年中,2016年中国到“一带一路”沿线国家的游客人次增幅最小③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平A.①③B.②③C.①②D.①②③【答案】A【解析】根据图象上的数据,对三种说法逐个分析可得答案.【详解】观察图像可知说法① 正确;观察图像可知2014年增加45万人,2016年增加350万人,故说法② 不正确,排除B ,C ,D ;观察图像可知2017年增加320万人,2018年增加259万人,2016-2018年这3年中,每年增加的人次相差不大,基本持平,故说法③ 正确. 故选:A. 【点睛】本题考查了对统计图表的理解和应用,属于基础题.7.已知双曲线22142x y -=的右焦点为F ,P 为双曲线左支上一点,点(0,2)A ,则APF ∆周长的最小值为( )A .42+B .4(12)+C .2(26)+D .632+【答案】B【解析】曲线22142x y -=右焦点为F()6,0,APF ∆周长2l AF AP PF AF AP a PF =++=++'+ 要使APF ∆周长最小,只需AP PF +' 最小,如图:当,,A P F '三点共线时取到,故l =2|AF |+2a =(412 故选B点睛:本题考查了双曲线的定义,两条线段之和取得最小值的转化,考查了转化思想,属于中档题.8.12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“抽得1件次品2件正品”互斥而不对立的事件是( )A .抽得3件正品B .抽得至少有1件正品C .抽得至少有1件次品D .抽得3件正品或2件次品1件正品【答案】A【解析】根据互斥事件和对立事件的概念逐项分析可得答案. 【详解】对于A , 抽得3件正品与抽得1件次品2件正品是互斥而不对立事件; 对于B , 抽得至少有1件正品与抽得1件次品2件正品不是互斥事件, 对于C , 抽得至少有1件次品与抽得1件次品2件正品不是互斥事件,对于D , 抽得3件正品或2件次品1件正品与抽得1件次品2件正品既是互斥也是对立事件. 故选:A 【点睛】本题考查了互斥事件与对立事件的概念,掌握互斥事件与对立事件的概念是答题的关键,属于基础题.9.在平面直角坐标系xOy 中,圆221:4C x y +=与圆222:44120C x y x y +-+-=的公共弦的长为( )A .BC .D .【答案】C【解析】先用两圆方程相减求出公共弦所在直线方程,再求圆心到直线的距离,最后用勾股定理可得. 【详解】解:由2222444120x y x y x y ⎧+=⎨+-+-=⎩,得: 两圆的公共弦所在的直线方程为:20x y -+=,圆221:4C x y +=的圆心(0,0)到直线20x y -+==公共弦长为:=故选:C . 【点睛】本题考查了圆与圆的位置关系及其判定,属中档题.直线与圆的方程,两圆的公共弦长问题.10.已知实数0a >,且1a ≠,函数2,1,()4ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,则实数a 的取值范围( ) A .15a <≤ B .25a ≤≤C .1a >D .5a ≤【答案】B【解析】当1,()x x f x a <=,由指数函数的性质分析可得1a >,当1x ≥时,由导数与函数单调性的关系可得24()20af x x x x'=-+≥,在[1,)+∞上恒成立,变形可得2a ≥,再结合函数的单调性,分析可得14a ≤+,分析可得答案. 【详解】根据题意,函数()2,14ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,当1,()xx f x a <=,若()f x 为增函数,则1a >①,当241,()ln x f x x a x x≥=++, 若()f x 为增函数,必有24()20af x x x x'=-+≥在[1,)+∞上恒成立, 变形可得:242a x x≥-, 又由1x ≥,可得()242g x x x =-在[1,)+∞上单调递减,则2442212x x -≤-=,若242a x x≥-在[1,)+∞上恒成立,则有2a ≥②,若函数()f x 在R 上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有145a ≤+=,③ 联立①②③可得:25a ≤≤. 故选:B. 【点睛】本题主要考查函数单调性以及分段函数的应用.首先根据指数函数确定出参数的大范围,然后再利用求导进一步求出参数范围,最后根据单调性来解答临界值的大小,从而得到结论,考查了运算和推论能力,属于中档题.11.已知圆()22:22C x y -+=,直线:2l y kx =-,若直线l 上存在点P ,过点P 引圆的两条切线12,l l ,使得12l l ⊥,则实数k 的取值范围是( ) A .)()0,2323,⎡-⋃++∞⎣ B .[23-,23+]C .(),0-∞D .[0∞+,) 【答案】D【解析】由题意结合几何性质可知点P 的轨迹方程为22(2)4x y -+=,则原问题转化为圆心到直线的距离小于等于半径,据此求解关于k 的不等式即可求得实数k 的取值范围. 【详解】圆C (2,0),半径r =2,设P (x ,y ),因为两切线12l l ⊥,如下图,P A ⊥PB ,由切线性质定理,知:P A ⊥AC ,PB ⊥BC ,P A =PB ,所以,四边形P ACB 为正方形,所以,|PC |=2, 则:22(2)4x y -+=,即点P 的轨迹是以(2,0)为圆心,2为半径的圆.直线:2l y kx =-过定点(0,-2),直线方程即20kx y --=,只要直线与P 点的轨迹(圆)有交点即可,即大圆的圆心到直线的距离小于等于半径, 即:221d k =≤+,解得:0k ≥,即实数k 的取值范围是[0∞+,). 本题选择D 选项. 【点睛】本题主要考查直线与圆的位置关系,轨迹方程的求解与应用,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力. 12.若关于x 的不等式e 2x ﹣a ln x 12≥a 恒成立,则实数a 的取值范围是( )A .[0,2e ]B .(﹣∞,2e ]C .[0,2e 2]D .(﹣∞,2e 2]【答案】C【解析】讨论a <0时,f (x )=e 2x ﹣a ln x 无最小值,不符题意;检验a =0时显然成立;讨论a >0时,求得f (x )的导数和极值点m 、极值和最值,解不等式求得m 的范围,结合a =2me 2m ,可得所求范围. 【详解】解:当a <0时,f (x )=e 2x ﹣a ln x 为(0,+∞)的增函数(增函数+增函数=增函数),此时0x →时,f (x )→-∞,所以不符合题意; 当a =0时,e 2x ﹣a ln x 12≥a 即为e 2x ≥0显然成立; 当a >0时,f (x )=e 2x ﹣a ln x 的导数为()f x '=2e 2x a x-, 由于y =2e 2x ax-在(0,+∞)递增(增函数+增函数=增函数), 设()f x '=0的根为m ,即有a =2me 2m ,22ma em=. 当0<x <m 时,()f x '<0,f (x )单调递减;当x >m 时,()f x '>0,f (x )单调递增, 可得x =m 处f (x )取得极小值,且为最小值e 2m ﹣a ln m , 由题意可得e 2m ﹣a ln m 12≥a ,即2a m -a ln m 12≥a , 化为m +2m ln m ≤1,设g (m )=m +2m ln m ,()g m '=1+2(1+ln m ),所以函数()g m 在320,)e -(内单调递减,在32,)e -+∞(单调递增.当m =1时,g (1)=1,当0x →时,()0g m <. 可得m +2m ln m ≤1的解为0<m ≤1, 设22()2,()2(21)0,mmh m me h m m e '=∴=+>所以函数()h m 在(0,1]单调递增. 则a =2me 2m ∈(0,2e 2], 综上可得a ∈[0,2e 2], 故选:C . 【点睛】本题主要考查利用导数研究函数的单调性和最值,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题13.不透明的口袋中有形状和大小完全相同的四个球,球的编号分别为1、2、3、4.若从袋中随机抽取出两个球,则取出的两个球的编号之和小于5的概率为______. 【答案】13【解析】列举出所有的基本事件,并确定事件“取出的两个球的编号之和小于5”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率. 【详解】从袋中随机抽取出两个球,则所有的基本事件有:()1,2、()1,3、()1,4、()2,3、()2,4、()3,4,共6种,其中,事件“取出的两个球的编号之和小于5”所包含的基本事件有:()1,2、()1,3,共2种,因此,所求事件的概率为2163=. 故答案为:13. 【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.14.如表是某厂2020年1~4月份用水量(单位:百吨)的一组数据由散点图可知,用水量y 与月份x 之间有较明显的线性相关关系,其线性回归方程是1.75x y b +=$$,预测2020年6月份该厂的用水量为_____百吨.【答案】5.95【解析】求出样本中心的坐标,代入回归直线方程,求出b $,然后代入x =6,推出结果即可. 【详解】解:由题意可知12342.54x +++==,2.534 4.53.54y +++==;又线性回归方程是 1.75x y b +=$$,经过样本中心,所以3.5 2.5 1.75b =+$, 解得:0.7b =$, 所以0.7 1.75y x =+$,x =6时,y $=0.7×6+1.75=5.95(百吨). 预测2020年6月份该厂的用水量为5.95百吨. 故答案为:5.95. 【点睛】本题主要考查了线性回归方程的计算以及根据回归方程预测的问题.属于基础题. 15.甲、乙、丙、丁、戊,共5位同学排成一排,若甲、乙都不排在两端,则不同的排法总数为_______. 【答案】18【解析】先排甲、乙,再排没有限制条件的三人,结合分步计数原理,即可求解. 【详解】由题意,甲、乙都不排在两端,共有233A =种不同的排法, 其余三个位置进行全排列即可,共有336A =种排法,根据分步计数原理,可得共有1863=⨯种不同的排法. 故答案为:18. 【点睛】本题主要考查了分步计数原理的应用,属于基础题,解题时要注意先安排题目中有限制条件的元素,最后再排列没有限制条件的元素,这是解题的常见方法. 16.在平面上给定相异两点A,B ,设P 点在同一平面上且满足|PA ||PB |λ=,当λ>0且λ≠1时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗斯圆,现有椭圆()222210x y a b a b+=>>,A,B 为椭圆的长轴端点,C,D 为椭圆的短轴端点,动点P 满足2PA PB=,△PAB 面积最大值为163,△PCD 面积最小值为23,则椭圆离心率为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省如皋中学2019-2020学年度高一年级第二学期
数学期初考试
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题的四个选项中,只有一项是符合题目要求的.
1. 已知ABC 中,4a =,b =30A
︒=,则B 等于( )
. A. 60︒或120︒ B. 30︒ C. 60︒ D. 30︒或150︒ 2. 已知0a b <<,则下列不等式成立的是 ( )
A. 22a b <
B. 2a ab <
C. 11a b <
D. 1b a
< 3. 等差数列{}n a 中,若34567450a a a a a ++++=,则前9项和9S =( )
A. 1620
B. 810
C. 900
D. 675
4. 已知不等式210ax bx --≥的解集是11,23⎡⎤--⎢⎥⎣⎦
,则不等式20x bx a --<的解集是( ) A. ()(),32,-∞-⋃-+∞
B. ()3,2--
C. ()(),23,-∞+∞
D. ()2,3 5. 已知△ABC 三内角A ,B ,C 的对边分别为a ,b ,c ,若
c a a b b c +++=1,则B 的大小为( ) A. 30
B. 60
C. 120
D. 150
6. 若0,0x y >>且
191x y +=,则x y +的最小值是( ) A. 6 B. 12 C. 24 D. 16
7. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:
A. 281盏
B. 9盏
C. 6盏
D. 3盏
8. 已知命题:“在等差数列{}n a 中,若()210424a a a ++=,则11S 为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( )
A 17
B. 18
C. 19
D. 20 二、多项选择题:本题共4小题,每小题5分,共20分,在每小题的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.
9. 已知{}n a 是等差数列,其前n 项和为n S ,满足1263a a S +=,则下列四个选项中正确的有( )
A. 70a =
B. 130S =
C. 7S 最小
D. 58S S =
10. 下列选项中,值为
14的是( ) A. cos72cos36︒︒ B. 5sin sin 1212ππ
C. 1sin 50cos50+︒︒
D. 212cos 1533-︒ 11. 下列函数中,最小值为4的函数是( ) A. 4x x y e e
-=+ B. ()4sin 0sin y x x x π=+<<
C. 2y =
D. ()3log log 811x y x x =+> 12. 在三角形ABC 中,下列命题正确
有( ) A. 若30A =︒,4b =,5a =,则三角形ABC 有两解
B. 若0tan tan 1A B <⋅<,则ABC ∆一定是钝角三角形
C. 若()()()cos cos cos 1A B B C C A ---=,则ABC ∆一定是等边三角形
D. 若cos cos a b c B c A -=⋅-⋅,则ABC ∆的形状是等腰或直角三角形
三、填空题:本题共4题,每小题5分,共20分.
13. 若实数x 满足4x >-,则函数()94
f x x x =+
+最小值为_________ . 14. 如图所示,ABCD 为圆内接四边形,若45DBC ∠=︒,30ABD ∠=︒,6CD =,则线段AD =______. .

15. 设等比数列{}n a 前n 项和为n S ,若3692S S S +=.则数列的公比q =______.
16. 若△ABC 的内角,,A B C
满足sin 2sin A B C +=,则cos C 的最小值是_____.
四、解答题:本大题共6小题,共70分,解答应写成文字说明、证明过程或演算步骤. 17. 已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边.
(1)若ABC ∆
的面积2602
ABC S c A ︒∆===,,,求,a b 的值; (2)若=cos a c B ,且sin b c A =,试判断ABC ∆的形状.
18. 已知等差数列{}n a 的前n 项和n S 满足356,15S S ==.
(1)求{}n a 的通项公式;
(2)设,2n
n n a a b =求数列{}n b 前n 项和n T . 19. 解关于x 的不等式:220ax x ++≤.
20. 根据下列条件,求数列{}n a 的通项公式.
(1)11a =,12n n n a a +=+;
(2)112
a =,()1121n n n a a n n --=≥+. (3)18999a =,1101n n a a +=+ 21. 某校为扩大教学规模,从今年起扩大招生,现有学生人数为
b 人,以后学生人数年增长率为4.9‰.该校今年年初有旧实验设备a 套,其中需要换掉的旧设备占了一半.学校决定每年以当年年初设备数量的10%的增长率增加新设备,同时每年淘汰x 套旧设备.
(1)如果10年后该校学生的人均占有设备的比率正好比目前翻一番,那么每年应更换的旧设备是多少套? (2)依照(1)更换速度,共需多少年能更换所有需要更换的旧设备?
下列数据提供计算时参考:

.
22. 已知n S 为正项数列{}n a 的前n 项和,且满足()2*1122n n n S a a n N =+∈. (1)求数列{}n a 的通项公式; (2)数列{}n b 满足1n n b a =+,n T 为数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和,若n m T >对任意n ∈+N 恒成立,求m 范围.。

相关文档
最新文档