数学建模作业一:汽车刹车距离.doc

合集下载

刹车距离 数学建模

刹车距离 数学建模

刹车距离数学建模刹车距离是指车辆从发现需要停车的信号或情况到完全停下来所需的距离。

在驾驶中,我们常常需要根据道路情况和车速合理判断刹车距离,以确保安全停车。

本文将从数学建模的角度出发,探讨影响刹车距离的因素,并介绍一种常用的数学模型来计算刹车距离。

刹车距离受到车速的影响,一般来说,车速越高,刹车距离就会越长。

这是因为车辆在高速行驶时具有更大的动能,需要更长的距离来消耗这部分能量,才能停下来。

因此,在高速行驶时,我们需要提前做好刹车准备,以避免刹车距离过长导致事故发生。

刹车距离还受到刹车系统的性能和状态的影响。

刹车系统包括刹车片、刹车盘、刹车液等部件,它们的磨损程度和工作状态会直接影响刹车的效果。

如果刹车片磨损严重或刹车盘存在问题,会导致刹车距离增加。

因此,定期检查和维护刹车系统是确保刹车距离符合要求的重要措施之一。

刹车距离还与路面情况和天气条件有关。

在湿滑或结冰的路面上刹车,由于附着力减小,刹车距离会明显增加。

此时,驾驶员需要根据实际情况调整刹车力度,以减少刹车距离。

针对刹车距离的计算,数学建模提供了一种有效的方法。

常用的刹车距离计算模型是基于物理学中的运动学原理建立的。

根据运动学原理,刹车距离与车速的平方成正比,与刹车加速度的倒数成正比。

具体来说,刹车距离可以表示为刹车时间乘以车速的一半,即:刹车距离 = 时间× 速度 / 2。

在实际应用中,为了更加准确地计算刹车距离,需要考虑到刹车系统的响应时间。

刹车系统的响应时间是指从踩下刹车踏板到刹车系统开始工作的时间间隔。

在这段时间内,车辆仍然以原有的速度行驶,因此需要额外的距离来消耗动能。

因此,最终的刹车距离计算公式应为:刹车距离 = 响应时间× 速度 + 时间× 速度 / 2。

需要注意的是,刹车距离的计算模型只是一个理论模型,实际情况可能会受到多种因素的影响。

在实际驾驶中,驾驶员应根据实际情况综合考虑车辆性能、道路条件和天气因素,合理判断刹车距离,并采取相应的措施确保安全驾驶。

数学建模汽车刹车距离论文

数学建模汽车刹车距离论文

数学模型姓名:班级:学院:指导老师:摘要:司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到汽车完全停止住汽车行驶的离称为刹车距离,车速越快,刹车距离越长。

就要对刹车距离与车速进行分析,它们之间有怎样的数量关系?美国的某些司机培训课程中有这样的规则:在正常驾驶条件下车速每增加10英里/小时,后面与前面一辆车的距离应增加一个车身长度。

又云,实现这个规则的一种简便方法是所谓“2秒规则”,即后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何。

试判断“2秒规则”与上述规则是否一致?是否有更好的规则?并建立刹车距离的模型。

汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。

容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。

所以我们还要对刹车距离与速度做更仔细的分析,通过各种分析(主要通过数据分析)以及各种假设,我们提出了更加合理的准则,即“t秒准则”。

在道路上行驶的汽车保持足够安全的前后车距是非常重要的,人们为此提出各种五花八门的建议,就上面的“一车长度准则”,“2秒准则”以及我们提出的t秒准则。

这些准则的提出都是为了怎样的刹车距离与车速的关系来保证行驶的安全。

所以为了足够安全要做仔细的分析。

关键字:刹车距离;车速;t秒准则。

一问题分析问题要求建立刹车距离与车速之间的数量关系。

制定这样的规定是为了在后车急刹车情况下不致撞到前面的车,即要确定汽车的刹车距离。

刹车距离显然与车速有关,先看看汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。

容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。

数学建模汽车刹车距离

数学建模汽车刹车距离

数学建模汽车刹车距离1. 前言汽车刹车距离在车辆的安全行驶和驾驶过程中起着至关重要的作用。

单独考虑车辆的马力、制动能力和路面情况都是不够的,需要将这些因素综合考虑,以保证行驶的安全性。

本文通过建立模型,探究车辆刹车距离的影响因素,以及如何优化车辆的行驶效率。

2. 模型的建立在考虑汽车刹车距离时,需要综合考虑车辆的制动性能、车速、路面状态等多个因素。

为了更好地探究这些因素之间的关系,我们建立了如下的数学模型。

设汽车在行驶过程中的车速为v,制动的加速度为a,路面的摩擦系数为μ,刹车距离为d。

根据牛顿第二定律可得:$$F=ma$$其中F为刹车制动力,m为车辆质量,a为制动加速度。

由于制动力与车速、制动器摩擦系数均有关系,因此可以通过以上参数进行表达。

可得到如下公式:$$F=C_{f}+C_{r}mg(v)$$式中,Cf和Cr分别为车轮前后制动器产生的制动力,g(v)为与车速有关的函数,m为车辆质量。

在刹车的过程中,系统对车辆施加一定的制动力,车速逐渐降低,直到最终停止。

设t为刹车的时间,可得如下公式:$$d=\frac{1}{2}at^{2}+\frac{1}{2}vt$$式中,第一项为制动过程加速度造成的路程,第二项为刹车前车辆的行驶路程。

将制动加速度a代入上述公式,可以得到:代入刚才的F公式,可以得到:这便是本文研究的汽车刹车距离的数学模型。

从中可以看出,刹车距离与车速、制动力、摩擦系数等参数均有关系,需要综合考虑。

3. 模型的应用和分析在上一章节中,我们得到了汽车刹车距离的数学模型。

下面将具体分析模型中的各个参数。

3.1 制动加速度制动加速度是指行驶中车辆的减速度,即刹车踏板产生的力作用在车辆质量上所产生的减速度。

制动加速度越大,车速下降的速率就越快,刹车距离也就相应越短。

反之,制动加速度越小,刹车距离就越长。

3.2 车速3.3 摩擦系数摩擦系数是路面与轮胎之间的摩擦力系数。

摩擦系数越大,所产生的摩擦力也就越大,车辆制动效果就越好,刹车距离就相应更短。

数学建模课件汽车刹车距离模型

数学建模课件汽车刹车距离模型

05 结论与展望
本研究的贡献与局限性
贡献
本研究建立了一个汽车刹车距离的数学模型,为预测汽车在给定条件下的刹车 距离提供了理论支持。同时,该模型考虑了多种影响因素,如车速、路面状况、 车辆类型等,具有较高的实用价值。
局限性
本研究主要关注于理想条件下的刹车距离模型,未考虑驾驶员反应时间、车辆 机械故障等实际情况。此外,模型的适用范围有限,仅适用于特定类型的车辆 和路面条件。
模型改进
考虑其他影响因素,对模型进行 改进,使其更贴近实际情况。
04 模型的应用
安全行车距离的计算
总结词
安全行车距离是保障道路交通安全的重要因素之一。通过数学建模,可以精确地计算出 在不同条件下的安全行车距离,为驾驶员提供科学的指导,提高道路交通的安全性。
详细描述
在计算安全行车距离时,需要考虑车速、车辆性能、驾驶员反应时间等因素。数学模型 可以建立这些因素之间的数学关系,从而计算出在不同条件下的安全行车距离。这个模 型可以为驾驶员提供科学的指导,让他们根据实际情况调整行车距离,提高道路交通的
预测不同路面条件下的刹车距离
总结词
不同路面条件下,车辆的刹车距离会有所不同。通过 数学建模可以预测在不同路面条件下的刹车距离,为 驾驶员提供科学的行车建议,提高道路交通的有很大的影响。在湿滑路 面、结冰路面等情况下,由于摩擦力减小,车辆的刹 车距离会明显增加。数学模型可以综合考虑路面状况 、车速、车辆性能等因素,预测在不同路面条件下的 刹车距离。这个模型可以为驾驶员提供科学的行车建 议,例如在湿滑路面上减速慢行或者保持更长的安全 距离等,从而提高道路交通的安全性。
对未来研究的建议与展望
建议
未来研究可以进一步优化模型,考虑更多实际因素,如驾驶员反应时间、车辆机 械故障等。同时,可以通过实验验证模型的准确性和适用范围,提高模型的实用 价值。

停车距离问题——数学建模案例

停车距离问题——数学建模案例

停车距离问题——数学建模案例摘要:汽车在行驶中,为规避险情,常常需要急刹车。

怎样实施刹车操作,最大限度地规避险情,保障司乘人员、车辆、障碍物的安全呢?在交通事故发生后,交管部门对事故现场的勘探,也常常需要还原驾驶人员刹车的操作是否规范?车辆是否在事故发生时超速行驶?以便公正、公平地进行事故责任认定。

所以,研究汽车刹车问题就具有现实意义。

本文旨在通过对行驶中的汽车刹车距离问题的探索,用数学模型刻画影响汽车刹车距离的关键因素,及各因素之间的数量关系。

为驾驶人的安全驾驶及交管部门的事故责任认定,提供有价值的参考。

关键词:距离、速度、参数、假设、检验、线性回归、数学建模。

一、符号说明驾驶人在实施刹车前,要根据险情判断何时开始刹车及刹车力度。

从做出判断到实施刹车这段时间,我们定义为反应时间,记作,这段时间汽车滑行的速度记作,滑行的距离定义为反应距离,记作;从汽车刹车到汽车停车滑行的这段时间,定义为制动时间,记作,这段时间汽车滑行距离定义为制动距离,记作;从做出需要刹车得判断到汽车停止滑行的这段时间定义为停车时间,记作,这段时间汽车滑行的距离定义为停车距离,记作;汽车刹车时,车辆轮胎与路面的滚动摩擦力记作;汽车的质量记作;刹车时汽车滑行的加速度记作。

二、基本假设2.1.在反应时间段内,驾驶人在判断需要刹车时,一般都会松开油门踏板。

此时,汽车滑行仅受轮胎与地面滚动摩擦力的较小影响,我们假设这期间汽车保持油门踏板松开的那一时刻的瞬时速度匀速行驶。

由于在现实生活中,因人而异,很难确定的具体数值,因此,最终只能确定与成正比。

2.2.在制动时间段内,驾驶人在实际操作中,刹车受力大小一般是由小逐渐快速增大的,增大的速度也并不均匀,在汽车停止滑动的瞬间,受力又突然变为零。

车辆的防抱死系统也是为了避免急刹车时,因驾驶人瞬间踩死刹车,使车辆仅受轮胎与路面的巨大滑动摩擦力控制,造成更大的危险(如爆胎、侧翻、方向盘失灵等)。

这里,我们仅研究假设这期间刹车受力F的大小为定值,其近似等于车辆轮胎与路面的滚动摩擦力。

汽车刹车距离问题数学建模

汽车刹车距离问题数学建模

汽车刹车距离问题数学建模
汽车刹车距离问题可以使用物理学的运动学理论进行建模。

假设汽车从某一速度开始制动,刹车过程中速度逐渐减小,直到停止。

要求建立汽车刹车距离与初始速度、制动时间和摩擦系数之间的数学模型。

假设汽车的制动过程是匀减速运动,即加速度恒定。

设汽车的初始速度为v0(m/s),制动时间为t(s),加速度为a(m/s²),刹车距离为d(m),摩擦系数为μ。

根据物理学的等加速度运动公式,可以得到刹车距离和其他参数之间的关系为:
d = v0t - 0.5at²
其中,刹车距离d与初始速度v0、制动时间t和加速度a有关。

此外,根据牛顿第二定律,摩擦力与摩擦系数μ成正比,可以得到:
F = μmg = ma
其中,F为摩擦力,m为汽车的质量,g为重力加速度。

根据摩擦力的定义,可以将摩擦力表示为:
F = μmg = m * a
代入等加速度运动的公式中,得到:
d = v0t - 0.5(m * a)t²
综上,可以得到汽车刹车距离与初始速度、制动时间和摩擦系数之间的数学模型为:
d = v0t - 0.5(m * a)t²
其中,a = μg。

根据实际情况,可以通过实验或者经验数据获取摩擦系数μ的值,进而计算刹车距离。

数学建模--刹车距离与车速

数学建模--刹车距离与车速

刹车距离与车速的关系摘要汽车司机在行驶中发现前方出现突发事件会紧急刹车,从司机决定刹车到完全停止这段时间内汽车行驶的距离称为刹车距离。

刹车距离由反应距离和制动距离两部分组成。

车速越快,刹车距离越长。

在反应时间内,车做匀速运动,对反应距离与车速进行分析,确立其比例关系。

对于制动距离,刹车时使用最大制动力做的功等于汽车动能的改变,根据动能定理,可以分析出制动距离与初速度之间的关系。

而反应距离与制动距离之和为刹车距离,这样就初步建立了刹车距离与车速之间的数学模型,进一步运用matlab进行系数求解和曲线模拟。

一、问题的重述汽车司机在行驶中发现前方出现突发事件会紧急刹车,从司机决定刹车到完全停止这段时间内汽车行驶的距离称为刹车距离。

刹车距离由反应距离和制动距离两部分组成,前者指从司机决定刹车到制动器开始起作用这段时间内汽车所行驶的距离,反应距离由反映时间和车速决定(对固定汽车和同一类型司机,反应时间可视为常数)。

二、模型的基本假设(1)刹车时使用最大制动力F基本不变。

(2)F做的功等于汽车动能的改变。

(3)F与车的质量m成正比。

(4)汽车牌子固定,在不变的道路、气候等条件下,由同一司机驾驶。

(5)人的反应时间为一个常数。

(6)在反应时间内车速不变。

(7)汽车的刹车距离等于反应距离和制动距离之和。

(8)反映距离与车速成正比,比例系数为反应时间。

三、符号说明F:刹车最大制动力;m:车的质量;S1:反应距离;t:反应时间;S2:制动距离;S:刹车距离;v:汽车的初速度;k1:反应距离与初速度的比例系数;k2:制动距离与初速度的比例系数。

四、问题的分析在反应时间内,车做匀速运动,对反应距离与初速度成正比关系。

对于制动距离,由于刹车时使用最大制动力做的功等于汽车动能的改变,根据动能定理,可以分析出制动距离为初速度的二次函数。

而反应距离与制动距离之和为刹车距离,由于反应距离与初速度成正比关系, 制动距离为初速度的二次函数,这样就初步确定刹车距离是初速度的二次函数。

数学建模作业一:汽车刹车距离

数学建模作业一:汽车刹车距离

汽车刹车距离一、问题描写司机在碰到突发紧迫情形时都邑刹车,从司机决议刹车开端到汽车停滞行驶的距离为刹车距离,车速越快,刹车距离越长.那么刹车距离与车速之间具有什么样的关系呢?二、问题剖析汽车的刹车距离有反响距离和刹车距离两部分构成,反响距离指的是司机看到须要刹车的情形到汽车制动器开端起感化汽车行使的距离,刹车距离指的是制动器开端起感化到汽车完整停滞的距离.反响距离有反响时光和车速决议,反响时光取决于司机小我状态(敏锐.机灵等)和制动体系的敏锐性,因为很难对反响时光进行差别,是以,平日以为反响时光为常数,并且在这段时光内车速不变.刹车距离与制动感化力.车重.车速以及路面状态等身分有关系.由能量守恒制动力所做的功等于汽车动能的转变.设计制动器的一个合理原则是,最大制动力大体上与汽车的质量成正比,汽车的减速度根本上是常数.路面状态可以为是固定的.三、问题求解1、模子假设依据上述剖析,可作如下假设:①刹车距离d等于反响距离1d和制动距离2d之和;②反响距离1d 与车速v 成正比,且比例系数为反响时光t;③刹车时应用最大制动力F,F 作的功等于汽车动能的转变,且F 与车质量m 成正比;④人的反响时光t 为一个常数; ⑤在反响时光内车速v 不变 ; ⑥路面状态是固定的;⑦汽车的减速度a 根本上是一个常数. 2、 模子树立由上述假设,可得: ⑴tv d =2;⑵2221mv Fd =,而ma F =,则2221v ad =.所以22kv d =. 综上,刹车距离的模子为2kv tv d +=. 3.参数估量可用我国某机构供给的刹车距离现实不雅察数据来拟合未知参数t 和k.转化单位后得:车速(公里/小时) 20 40 60 80 100 120 140现实刹车距离(米)118.0用Mathematica 进行拟合,代码如下: Clear[x,v,d];x={{20/3.6,6.5},{40/3.6,17.8},{60/3.6,33.6},{80/3.6,57.1},{100/3.6,83.4},{120/3.6,118},{140/3.6,153.5}}; d=Fit[x,{v,v^2},v];Print["d=",d];Plot[d,{v,0,200/3.6}] 成果: 4. 成果剖析将拟合成果与现实成果比较:(代码) Clear[v,d];d=0.65218*v/3.6+0.0852792*(v/3.6)^2;For[v=20,v<=140,v=v+20,Print["速度为",v,"km/h 时刹车距离为",d]] 成果:车速(公里/小时) 20 40 60 80 100 120 140 现实刹车距离(米) 盘算刹车距离(米)盘算刹车距离与现实刹车距离基底细当.综上,反响时光t 约等于0.6522秒,刹车时减速度约等于2/62/1s m k ≈.刹车距离与车速的关系知足:208528.06522.0d v v +=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车刹车距离
一、 问题描述
司机在遇到突发紧急情况时都会刹车,从司机决定刹车开始到汽车停止行驶的距离为刹车距离,车速越快,刹车距离越长。

那么刹车距离与车速之间具有什么样的关系呢?
二、 问题分析
汽车的刹车距离有反应距离和刹车距离两部分组成,反应距离指的是司机看到需要刹车的情况到汽车制动器开始起作用汽车行使的距离,刹车距离指的是制动器开始起作用到汽车完全停止的距离。

反应距离有反应时间和车速决定,反应时间取决于司机个人状况(灵敏、机警等)和制动系统的灵敏性,由于很难对反应时间进行区别,因此,通常认为反应时间为常数,而且在这段时间内车速不变。

刹车距离与制动作用力、车重、车速以及路面状况等因素有关系。

由能量守恒制动力所做的功等于汽车动能的改变。

设计制动器的一个合理原则是,最大制动力大体上与汽车的质量成正比,汽车的减速度基本上是常数。

路面状况可认为是固定的。

三、 问题求解
1、 模型假设
根据上述分析,可作如下假设:
①刹车距离d 等于反应距离1d 和制动距离2d 之和;
②反应距离1d 与车速v 成正比,且比例系数为反应时间t ;
③刹车时使用最大制动力F ,F 作的功等于汽车动能的改变,且F 与车质量m 成正比; ④人的反应时间t 为一个常数;
⑤在反应时间内车速v 不变 ;
⑥路面状况是固定的;
⑦汽车的减速度a 基本上是一个常数。

2、 模型建立
由上述假设,可得:
⑴tv d =2; ⑵2221mv Fd =,而ma F =,则2221v a
d =。

所以22kv d =。

综上,刹车距离的模型为2kv tv d +=。

3、 参数估计
可用我国某机构提供的刹车距离实际观察数据来拟合未知参数t 和k 。

转化单位后得:
车速(公里/小时)20 40 60 80 100 120 140
实际刹车距离(米) 6.5 17.8 33.6 57.1 83.4 118.0 153.5
用Mathematica进行拟合,代码如下:
Clear[x,v,d];
x={{20/3.6,6.5},{40/3.6,17.8},{60/3.6,33.6},{80/3.6,57.1},{100/3.6,83.4},{120/ 3.6,118},{140/3.6,153.5}};
d=Fit[x,{v,v^2},v];
Print["d=",d];
Plot[d,{v,0,200/3.6}]
结果:
4、结果分析
将拟合结果与实际结果对比:(代码)
Clear[v,d];
d=0.65218*v/3.6+0.0852792*(v/3.6)^2;
For[v=20,v<=140,v=v+20,Print["速度为",v,"km/h时刹车距离为",d]]
结果:
车速(公里/小时)20 40 60 80 100 120 140
实际刹车距离(米) 6.5 17.8 33.6 57.1 83.4 118.0 153.5
计算刹车距离(米) 6.2 17.8 34.6 56.6 83.9 116.5 154.3
计算刹车距离与实际刹车距离基本相当。

综上,反应时间t约等于0.6522秒,刹车时减速度约等于2
/
6
2/1s
m
k≈。

刹车距离与车速的关系满足:
2
08528
.0
6522
.0
d v
v+
=。

相关文档
最新文档